| // This file was extracted from the TCG Published |
| // Trusted Platform Module Library |
| // Part 4: Supporting Routines |
| // Family "2.0" |
| // Level 00 Revision 01.16 |
| // October 30, 2014 |
| |
| #define NV_C |
| #include "InternalRoutines.h" |
| #include "Platform.h" |
| // |
| // NV Index/evict object iterator value |
| // |
| typedef UINT32 NV_ITER; // type of a NV iterator |
| #define NV_ITER_INIT 0xFFFFFFFF // initial value to start an |
| // iterator |
| // |
| // |
| // NV Utility Functions |
| // |
| // NvCheckState() |
| // |
| // Function to check the NV state by accessing the platform-specific function to get the NV state. The result |
| // state is registered in s_NvIsAvailable that will be reported by NvIsAvailable(). |
| // This function is called at the beginning of ExecuteCommand() before any potential call to NvIsAvailable(). |
| // |
| void |
| NvCheckState(void) |
| { |
| int func_return; |
| func_return = _plat__IsNvAvailable(); |
| if(func_return == 0) |
| { |
| s_NvStatus = TPM_RC_SUCCESS; |
| } |
| else if(func_return == 1) |
| { |
| s_NvStatus = TPM_RC_NV_UNAVAILABLE; |
| } |
| else |
| { |
| s_NvStatus = TPM_RC_NV_RATE; |
| } |
| return; |
| } |
| // |
| // |
| // NvIsAvailable() |
| // |
| // This function returns the NV availability parameter. |
| // |
| // Error Returns Meaning |
| // |
| // TPM_RC_SUCCESS NV is available |
| // TPM_RC_NV_RATE NV is unavailable because of rate limit |
| // TPM_RC_NV_UNAVAILABLE NV is inaccessible |
| // |
| TPM_RC |
| NvIsAvailable( |
| void |
| ) |
| { |
| // Make sure that NV state is still good |
| if (s_NvStatus == TPM_RC_SUCCESS) |
| NvCheckState(); |
| |
| return s_NvStatus; |
| } |
| // |
| // |
| // NvCommit |
| // |
| // This is a wrapper for the platform function to commit pending NV writes. |
| // |
| BOOL |
| NvCommit( |
| void |
| ) |
| { |
| BOOL success = (_plat__NvCommit() == 0); |
| return success; |
| } |
| // |
| // |
| // NvReadMaxCount() |
| // |
| // This function returns the max NV counter value. |
| // |
| static UINT64 |
| NvReadMaxCount( |
| void |
| ) |
| { |
| UINT64 countValue; |
| _plat__NvMemoryRead(s_maxCountAddr, sizeof(UINT64), &countValue); |
| return countValue; |
| } |
| // |
| // |
| // NvWriteMaxCount() |
| // |
| // This function updates the max counter value to NV memory. |
| // |
| static void |
| NvWriteMaxCount( |
| UINT64 maxCount |
| ) |
| { |
| _plat__NvMemoryWrite(s_maxCountAddr, sizeof(UINT64), &maxCount); |
| return; |
| } |
| // |
| // |
| // NV Index and Persistent Object Access Functions |
| // |
| // Introduction |
| // |
| // These functions are used to access an NV Index and persistent object memory. In this implementation, |
| // the memory is simulated with RAM. The data in dynamic area is organized as a linked list, starting from |
| // address s_evictNvStart. The first 4 bytes of a node in this link list is the offset of next node, followed by |
| // the data entry. A 0-valued offset value indicates the end of the list. If the data entry area of the last node |
| // happens to reach the end of the dynamic area without space left for an additional 4 byte end marker, the |
| // end address, s_evictNvEnd, should serve as the mark of list end |
| // |
| // NvNext() |
| // |
| // This function provides a method to traverse every data entry in NV dynamic area. |
| // To begin with, parameter iter should be initialized to NV_ITER_INIT indicating the first element. Every |
| // time this function is called, the value in iter would be adjusted pointing to the next element in traversal. If |
| // there is no next element, iter value would be 0. This function returns the address of the 'data entry' |
| // pointed by the iter. If there is no more element in the set, a 0 value is returned indicating the end of |
| // traversal. |
| // |
| static UINT32 |
| NvNext( |
| NV_ITER *iter |
| ) |
| { |
| NV_ITER currentIter; |
| // If iterator is at the beginning of list |
| if(*iter == NV_ITER_INIT) |
| { |
| // Initialize iterator |
| *iter = s_evictNvStart; |
| } |
| // If iterator reaches the end of NV space, or iterator indicates list end |
| if(*iter + sizeof(UINT32) > s_evictNvEnd || *iter == 0) |
| return 0; |
| // Save the current iter offset |
| currentIter = *iter; |
| // Adjust iter pointer pointing to next entity |
| // Read pointer value |
| _plat__NvMemoryRead(*iter, sizeof(UINT32), iter); |
| if(*iter == 0) return 0; |
| return currentIter + sizeof(UINT32); // entity stores after the pointer |
| } |
| // |
| // |
| // NvGetEnd() |
| // |
| // Function to find the end of the NV dynamic data list |
| // |
| static UINT32 |
| NvGetEnd( |
| void |
| ) |
| { |
| NV_ITER iter = NV_ITER_INIT; |
| UINT32 endAddr = s_evictNvStart; |
| UINT32 currentAddr; |
| while((currentAddr = NvNext(&iter)) != 0) |
| endAddr = currentAddr; |
| if(endAddr != s_evictNvStart) |
| { |
| // Read offset |
| endAddr -= sizeof(UINT32); |
| _plat__NvMemoryRead(endAddr, sizeof(UINT32), &endAddr); |
| } |
| return endAddr; |
| } |
| // |
| // |
| // NvGetFreeByte |
| // |
| // This function returns the number of free octets in NV space. |
| // |
| static UINT32 |
| NvGetFreeByte( |
| void |
| ) |
| { |
| return s_evictNvEnd - NvGetEnd(); |
| } |
| // |
| // NvGetEvictObjectSize |
| // |
| // This function returns the size of an evict object in NV space |
| // |
| static UINT32 |
| NvGetEvictObjectSize( |
| void |
| ) |
| { |
| return sizeof(TPM_HANDLE) + sizeof(OBJECT) + sizeof(UINT32); |
| } |
| // |
| // |
| // NvGetCounterSize |
| // |
| // This function returns the size of a counter index in NV space. |
| // |
| static UINT32 |
| NvGetCounterSize( |
| void |
| ) |
| { |
| // It takes an offset field, a handle and the sizeof(NV_INDEX) and |
| // sizeof(UINT64) for counter data |
| return sizeof(TPM_HANDLE) + sizeof(NV_INDEX) + sizeof(UINT64) + sizeof(UINT32); |
| } |
| // |
| // |
| // NvTestSpace() |
| // |
| // This function will test if there is enough space to add a new entity. |
| // |
| // Return Value Meaning |
| // |
| // TRUE space available |
| // FALSE no enough space |
| // |
| static BOOL |
| NvTestSpace( |
| UINT32 size, // IN: size of the entity to be added |
| BOOL isIndex // IN: TRUE if the entity is an index |
| ) |
| { |
| UINT32 remainByte = NvGetFreeByte(); |
| // For NV Index, need to make sure that we do not allocate and Index if this |
| // would mean that the TPM cannot allocate the minimum number of evict |
| // objects. |
| if(isIndex) |
| { |
| // Get the number of persistent objects allocated |
| UINT32 persistentNum = NvCapGetPersistentNumber(); |
| // If we have not allocated the requisite number of evict objects, then we |
| // need to reserve space for them. |
| // NOTE: some of this is not written as simply as it might seem because |
| // the values are all unsigned and subtracting needs to be done carefully |
| // so that an underflow doesn't cause problems. |
| if(persistentNum < MIN_EVICT_OBJECTS) |
| { |
| UINT32 needed = (MIN_EVICT_OBJECTS - persistentNum) |
| * NvGetEvictObjectSize(); |
| if(needed > remainByte) |
| remainByte = 0; |
| else |
| remainByte -= needed; |
| } |
| // if the requisite number of evict objects have been allocated then |
| // no need to reserve additional space |
| } |
| // This checks for the size of the value being added plus the index value. |
| // NOTE: This does not check to see if the end marker can be placed in |
| // memory because the end marker will not be written if it will not fit. |
| return (size + sizeof(UINT32) <= remainByte); |
| } |
| // |
| // |
| // NvAdd() |
| // |
| // This function adds a new entity to NV. |
| // This function requires that there is enough space to add a new entity (i.e., that NvTestSpace() has been |
| // called and the available space is at least as large as the required space). |
| // |
| static void |
| NvAdd( |
| UINT32 totalSize, // IN: total size needed for this entity For |
| // evict object, totalSize is the same as |
| // bufferSize. For NV Index, totalSize is |
| // bufferSize plus index data size |
| UINT32 bufferSize, // IN: size of initial buffer |
| BYTE *entity // IN: initial buffer |
| ) |
| { |
| UINT32 endAddr; |
| UINT32 nextAddr; |
| UINT32 listEnd = 0; |
| // Get the end of data list |
| endAddr = NvGetEnd(); |
| // Calculate the value of next pointer, which is the size of a pointer + |
| // the entity data size |
| nextAddr = endAddr + sizeof(UINT32) + totalSize; |
| // Write next pointer |
| _plat__NvMemoryWrite(endAddr, sizeof(UINT32), &nextAddr); |
| // Write entity data |
| _plat__NvMemoryWrite(endAddr + sizeof(UINT32), bufferSize, entity); |
| // Write the end of list if it is not going to exceed the NV space |
| if(nextAddr + sizeof(UINT32) <= s_evictNvEnd) |
| _plat__NvMemoryWrite(nextAddr, sizeof(UINT32), &listEnd); |
| // Set the flag so that NV changes are committed before the command completes. |
| g_updateNV = TRUE; |
| } |
| // |
| // |
| // NvDelete() |
| // |
| // This function is used to delete an NV Index or persistent object from NV memory. |
| // |
| static void |
| NvDelete( |
| UINT32 entityAddr // IN: address of entity to be deleted |
| ) |
| { |
| UINT32 next; |
| UINT32 entrySize; |
| UINT32 entryAddr = entityAddr - sizeof(UINT32); |
| UINT32 listEnd = 0; |
| // Get the offset of the next entry. |
| _plat__NvMemoryRead(entryAddr, sizeof(UINT32), &next); |
| // The size of this entry is the difference between the current entry and the |
| // next entry. |
| entrySize = next - entryAddr; |
| // Move each entry after the current one to fill the freed space. |
| // Stop when we have reached the end of all the indexes. There are two |
| // ways to detect the end of the list. The first is to notice that there |
| // is no room for anything else because we are at the end of NV. The other |
| // indication is that we find an end marker. |
| // The loop condition checks for the end of NV. |
| while(next + sizeof(UINT32) <= s_evictNvEnd) |
| { |
| UINT32 size, oldAddr, newAddr; |
| // Now check for the end marker |
| _plat__NvMemoryRead(next, sizeof(UINT32), &oldAddr); |
| if(oldAddr == 0) |
| break; |
| size = oldAddr - next; |
| // Move entry |
| _plat__NvMemoryMove(next, next - entrySize, size); |
| // Update forward link |
| newAddr = oldAddr - entrySize; |
| _plat__NvMemoryWrite(next - entrySize, sizeof(UINT32), &newAddr); |
| next = oldAddr; |
| } |
| // Mark the end of list |
| _plat__NvMemoryWrite(next - entrySize, sizeof(UINT32), &listEnd); |
| // Set the flag so that NV changes are committed before the command completes. |
| g_updateNV = TRUE; |
| } |
| // |
| // |
| // RAM-based NV Index Data Access Functions |
| // |
| // Introduction |
| // |
| // The data layout in ram buffer is {size of(NV_handle() + data), NV_handle(), data} for each NV Index data |
| // stored in RAM. |
| // NV storage is updated when a NV Index is added or deleted. We do NOT updated NV storage when the |
| // data is updated/ |
| // |
| // NvTestRAMSpace() |
| // |
| // This function indicates if there is enough RAM space to add a data for a new NV Index. |
| // |
| // |
| // |
| // |
| // Return Value Meaning |
| // |
| // TRUE space available |
| // FALSE no enough space |
| // |
| static BOOL |
| NvTestRAMSpace( |
| UINT32 size // IN: size of the data to be added to RAM |
| ) |
| { |
| BOOL success = ( s_ramIndexSize |
| + size |
| + sizeof(TPM_HANDLE) + sizeof(UINT32) |
| <= RAM_INDEX_SPACE); |
| return success; |
| } |
| // |
| // |
| // NvGetRamIndexOffset |
| // |
| // This function returns the offset of NV data in the RAM buffer |
| // This function requires that NV Index is in RAM. That is, the index must be known to exist. |
| // |
| static UINT32 |
| NvGetRAMIndexOffset( |
| TPMI_RH_NV_INDEX handle // IN: NV handle |
| ) |
| { |
| UINT32 currAddr = 0; |
| while(currAddr < s_ramIndexSize) |
| { |
| TPMI_RH_NV_INDEX currHandle; |
| UINT32 currSize; |
| memcpy(&currHandle, &s_ramIndex[currAddr + sizeof(UINT32)], |
| sizeof(currHandle)); |
| // Found a match |
| if(currHandle == handle) |
| // data buffer follows the handle and size field |
| break; |
| memcpy(&currSize, &s_ramIndex[currAddr], sizeof(currSize)); |
| currAddr += sizeof(UINT32) + currSize; |
| } |
| // We assume the index data is existing in RAM space |
| pAssert(currAddr < s_ramIndexSize); |
| return currAddr + sizeof(TPMI_RH_NV_INDEX) + sizeof(UINT32); |
| } |
| // |
| // |
| // NvAddRAM() |
| // |
| // This function adds a new data area to RAM. |
| // This function requires that enough free RAM space is available to add the new data. |
| // |
| static void |
| NvAddRAM( |
| TPMI_RH_NV_INDEX handle, // IN: NV handle |
| UINT32 size // IN: size of data |
| ) |
| { |
| // Add data space at the end of reserved RAM buffer |
| UINT32 value = size + sizeof(TPMI_RH_NV_INDEX); |
| memcpy(&s_ramIndex[s_ramIndexSize], &value, |
| sizeof(s_ramIndex[s_ramIndexSize])); |
| memcpy(&s_ramIndex[s_ramIndexSize + sizeof(UINT32)], &handle, |
| sizeof(s_ramIndex[s_ramIndexSize + sizeof(UINT32)])); |
| s_ramIndexSize += sizeof(UINT32) + sizeof(TPMI_RH_NV_INDEX) + size; |
| pAssert(s_ramIndexSize <= RAM_INDEX_SPACE); |
| // Update NV version of s_ramIndexSize |
| _plat__NvMemoryWrite(s_ramIndexSizeAddr, sizeof(UINT32), &s_ramIndexSize); |
| // Write reserved RAM space to NV to reflect the newly added NV Index |
| _plat__NvMemoryWrite(s_ramIndexAddr, RAM_INDEX_SPACE, s_ramIndex); |
| return; |
| } |
| // |
| // |
| // NvDeleteRAM() |
| // |
| // This function is used to delete a RAM-backed NV Index data area. |
| // This function assumes the data of NV Index exists in RAM |
| // |
| static void |
| NvDeleteRAM( |
| TPMI_RH_NV_INDEX handle // IN: NV handle |
| ) |
| { |
| UINT32 nodeOffset; |
| UINT32 nextNode; |
| UINT32 size; |
| nodeOffset = NvGetRAMIndexOffset(handle); |
| // Move the pointer back to get the size field of this node |
| nodeOffset -= sizeof(UINT32) + sizeof(TPMI_RH_NV_INDEX); |
| // Get node size |
| memcpy(&size, &s_ramIndex[nodeOffset], sizeof(size)); |
| // Get the offset of next node |
| nextNode = nodeOffset + sizeof(UINT32) + size; |
| // Move data |
| MemoryMove(s_ramIndex + nodeOffset, s_ramIndex + nextNode, |
| s_ramIndexSize - nextNode, s_ramIndexSize - nextNode); |
| // Update RAM size |
| s_ramIndexSize -= size + sizeof(UINT32); |
| // Update NV version of s_ramIndexSize |
| _plat__NvMemoryWrite(s_ramIndexSizeAddr, sizeof(UINT32), &s_ramIndexSize); |
| // Write reserved RAM space to NV to reflect the newly delete NV Index |
| _plat__NvMemoryWrite(s_ramIndexAddr, RAM_INDEX_SPACE, s_ramIndex); |
| return; |
| } |
| // |
| // |
| // |
| // Utility Functions |
| // |
| // NvInitStatic() |
| // |
| // This function initializes the static variables used in the NV subsystem. |
| // |
| static void |
| NvInitStatic( |
| void |
| ) |
| { |
| UINT16 i; |
| UINT32 reservedAddr; |
| s_reservedSize[NV_DISABLE_CLEAR] = sizeof(gp.disableClear); |
| s_reservedSize[NV_OWNER_ALG] = sizeof(gp.ownerAlg); |
| s_reservedSize[NV_ENDORSEMENT_ALG] = sizeof(gp.endorsementAlg); |
| s_reservedSize[NV_LOCKOUT_ALG] = sizeof(gp.lockoutAlg); |
| s_reservedSize[NV_OWNER_POLICY] = sizeof(gp.ownerPolicy); |
| s_reservedSize[NV_ENDORSEMENT_POLICY] = sizeof(gp.endorsementPolicy); |
| s_reservedSize[NV_LOCKOUT_POLICY] = sizeof(gp.lockoutPolicy); |
| s_reservedSize[NV_OWNER_AUTH] = sizeof(gp.ownerAuth); |
| s_reservedSize[NV_ENDORSEMENT_AUTH] = sizeof(gp.endorsementAuth); |
| s_reservedSize[NV_LOCKOUT_AUTH] = sizeof(gp.lockoutAuth); |
| s_reservedSize[NV_EP_SEED] = sizeof(gp.EPSeed); |
| s_reservedSize[NV_SP_SEED] = sizeof(gp.SPSeed); |
| s_reservedSize[NV_PP_SEED] = sizeof(gp.PPSeed); |
| s_reservedSize[NV_PH_PROOF] = sizeof(gp.phProof); |
| s_reservedSize[NV_SH_PROOF] = sizeof(gp.shProof); |
| s_reservedSize[NV_EH_PROOF] = sizeof(gp.ehProof); |
| s_reservedSize[NV_TOTAL_RESET_COUNT] = sizeof(gp.totalResetCount); |
| s_reservedSize[NV_RESET_COUNT] = sizeof(gp.resetCount); |
| s_reservedSize[NV_PCR_POLICIES] = sizeof(gp.pcrPolicies); |
| s_reservedSize[NV_PCR_ALLOCATED] = sizeof(gp.pcrAllocated); |
| s_reservedSize[NV_PP_LIST] = sizeof(gp.ppList); |
| s_reservedSize[NV_FAILED_TRIES] = sizeof(gp.failedTries); |
| s_reservedSize[NV_MAX_TRIES] = sizeof(gp.maxTries); |
| s_reservedSize[NV_RECOVERY_TIME] = sizeof(gp.recoveryTime); |
| s_reservedSize[NV_LOCKOUT_RECOVERY] = sizeof(gp.lockoutRecovery); |
| s_reservedSize[NV_LOCKOUT_AUTH_ENABLED] = sizeof(gp.lockOutAuthEnabled); |
| s_reservedSize[NV_ORDERLY] = sizeof(gp.orderlyState); |
| s_reservedSize[NV_AUDIT_COMMANDS] = sizeof(gp.auditComands); |
| s_reservedSize[NV_AUDIT_HASH_ALG] = sizeof(gp.auditHashAlg); |
| s_reservedSize[NV_AUDIT_COUNTER] = sizeof(gp.auditCounter); |
| s_reservedSize[NV_ALGORITHM_SET] = sizeof(gp.algorithmSet); |
| s_reservedSize[NV_FIRMWARE_V1] = sizeof(gp.firmwareV1); |
| s_reservedSize[NV_FIRMWARE_V2] = sizeof(gp.firmwareV2); |
| s_reservedSize[NV_ORDERLY_DATA] = sizeof(go); |
| s_reservedSize[NV_STATE_CLEAR] = sizeof(gc); |
| s_reservedSize[NV_STATE_RESET] = sizeof(gr); |
| // Initialize reserved data address. In this implementation, reserved data |
| // is stored at the start of NV memory |
| reservedAddr = 0; |
| for(i = 0; i < NV_RESERVE_LAST; i++) |
| { |
| s_reservedAddr[i] = reservedAddr; |
| reservedAddr += s_reservedSize[i]; |
| } |
| // Initialize auxiliary variable space for index/evict implementation. |
| // Auxiliary variables are stored after reserved data area |
| // RAM index copy starts at the beginning |
| s_ramIndexSizeAddr = reservedAddr; |
| s_ramIndexAddr = s_ramIndexSizeAddr + sizeof(UINT32); |
| // Maximum counter value |
| s_maxCountAddr = s_ramIndexAddr + RAM_INDEX_SPACE; |
| // dynamic memory start |
| s_evictNvStart = s_maxCountAddr + sizeof(UINT64); |
| // dynamic memory ends at the end of NV memory |
| s_evictNvEnd = NV_MEMORY_SIZE; |
| return; |
| } |
| // |
| // |
| // NvInit() |
| // |
| // This function initializes the NV system at pre-install time. |
| // This function should only be called in a manufacturing environment or in a simulation. |
| // The layout of NV memory space is an implementation choice. |
| // |
| void |
| NvInit( |
| void |
| ) |
| { |
| UINT32 nullPointer = 0; |
| UINT64 zeroCounter = 0; |
| // Initialize static variables |
| NvInitStatic(); |
| // Initialize RAM index space as unused |
| _plat__NvMemoryWrite(s_ramIndexSizeAddr, sizeof(UINT32), &nullPointer); |
| // Initialize max counter value to 0 |
| _plat__NvMemoryWrite(s_maxCountAddr, sizeof(UINT64), &zeroCounter); |
| // Initialize the next offset of the first entry in evict/index list to 0 |
| _plat__NvMemoryWrite(s_evictNvStart, sizeof(TPM_HANDLE), &nullPointer); |
| return; |
| } |
| // |
| // |
| // NvReadReserved() |
| // |
| // This function is used to move reserved data from NV memory to RAM. |
| // |
| void |
| NvReadReserved( |
| NV_RESERVE type, // IN: type of reserved data |
| void *buffer // OUT: buffer receives the data. |
| ) |
| { |
| // Input type should be valid |
| pAssert(type >= 0 && type < NV_RESERVE_LAST); |
| _plat__NvMemoryRead(s_reservedAddr[type], s_reservedSize[type], buffer); |
| return; |
| } |
| // |
| // |
| // NvWriteReserved() |
| // |
| // This function is used to post a reserved data for writing to NV memory. Before the TPM completes the |
| // operation, the value will be written. |
| // |
| void |
| NvWriteReserved( |
| NV_RESERVE type, // IN: type of reserved data |
| void *buffer // IN: data buffer |
| ) |
| { |
| // Input type should be valid |
| pAssert(type >= 0 && type < NV_RESERVE_LAST); |
| _plat__NvMemoryWrite(s_reservedAddr[type], s_reservedSize[type], buffer); |
| // Set the flag that a NV write happens |
| g_updateNV = TRUE; |
| return; |
| } |
| // |
| // |
| // NvReadPersistent() |
| // |
| // This function reads persistent data to the RAM copy of the gp structure. |
| // |
| void |
| NvReadPersistent( |
| void |
| ) |
| { |
| // Hierarchy persistent data |
| NvReadReserved(NV_DISABLE_CLEAR, &gp.disableClear); |
| NvReadReserved(NV_OWNER_ALG, &gp.ownerAlg); |
| NvReadReserved(NV_ENDORSEMENT_ALG, &gp.endorsementAlg); |
| NvReadReserved(NV_LOCKOUT_ALG, &gp.lockoutAlg); |
| NvReadReserved(NV_OWNER_POLICY, &gp.ownerPolicy); |
| NvReadReserved(NV_ENDORSEMENT_POLICY, &gp.endorsementPolicy); |
| NvReadReserved(NV_LOCKOUT_POLICY, &gp.lockoutPolicy); |
| NvReadReserved(NV_OWNER_AUTH, &gp.ownerAuth); |
| NvReadReserved(NV_ENDORSEMENT_AUTH, &gp.endorsementAuth); |
| NvReadReserved(NV_LOCKOUT_AUTH, &gp.lockoutAuth); |
| NvReadReserved(NV_EP_SEED, &gp.EPSeed); |
| NvReadReserved(NV_SP_SEED, &gp.SPSeed); |
| NvReadReserved(NV_PP_SEED, &gp.PPSeed); |
| NvReadReserved(NV_PH_PROOF, &gp.phProof); |
| NvReadReserved(NV_SH_PROOF, &gp.shProof); |
| NvReadReserved(NV_EH_PROOF, &gp.ehProof); |
| // Time persistent data |
| NvReadReserved(NV_TOTAL_RESET_COUNT, &gp.totalResetCount); |
| NvReadReserved(NV_RESET_COUNT, &gp.resetCount); |
| // PCR persistent data |
| NvReadReserved(NV_PCR_POLICIES, &gp.pcrPolicies); |
| NvReadReserved(NV_PCR_ALLOCATED, &gp.pcrAllocated); |
| // Physical Presence persistent data |
| NvReadReserved(NV_PP_LIST, &gp.ppList); |
| // Dictionary attack values persistent data |
| NvReadReserved(NV_FAILED_TRIES, &gp.failedTries); |
| NvReadReserved(NV_MAX_TRIES, &gp.maxTries); |
| NvReadReserved(NV_RECOVERY_TIME, &gp.recoveryTime); |
| // |
| NvReadReserved(NV_LOCKOUT_RECOVERY, &gp.lockoutRecovery); |
| NvReadReserved(NV_LOCKOUT_AUTH_ENABLED, &gp.lockOutAuthEnabled); |
| // Orderly State persistent data |
| NvReadReserved(NV_ORDERLY, &gp.orderlyState); |
| // Command audit values persistent data |
| NvReadReserved(NV_AUDIT_COMMANDS, &gp.auditComands); |
| NvReadReserved(NV_AUDIT_HASH_ALG, &gp.auditHashAlg); |
| NvReadReserved(NV_AUDIT_COUNTER, &gp.auditCounter); |
| // Algorithm selection persistent data |
| NvReadReserved(NV_ALGORITHM_SET, &gp.algorithmSet); |
| // Firmware version persistent data |
| #ifdef EMBEDDED_MODE |
| _plat__GetFwVersion(&gp.firmwareV1, &gp.firmwareV2); |
| #else |
| NvReadReserved(NV_FIRMWARE_V1, &gp.firmwareV1); |
| NvReadReserved(NV_FIRMWARE_V2, &gp.firmwareV2); |
| #endif |
| return; |
| } |
| // |
| // |
| // NvIsPlatformPersistentHandle() |
| // |
| // This function indicates if a handle references a persistent object in the range belonging to the platform. |
| // |
| // Return Value Meaning |
| // |
| // TRUE handle references a platform persistent object |
| // FALSE handle does not reference platform persistent object and may |
| // reference an owner persistent object either |
| // |
| BOOL |
| NvIsPlatformPersistentHandle( |
| TPM_HANDLE handle // IN: handle |
| ) |
| { |
| return (handle >= PLATFORM_PERSISTENT && handle <= PERSISTENT_LAST); |
| } |
| // |
| // |
| // NvIsOwnerPersistentHandle() |
| // |
| // This function indicates if a handle references a persistent object in the range belonging to the owner. |
| // |
| // Return Value Meaning |
| // |
| // TRUE handle is owner persistent handle |
| // FALSE handle is not owner persistent handle and may not be a persistent |
| // handle at all |
| // |
| BOOL |
| NvIsOwnerPersistentHandle( |
| TPM_HANDLE handle // IN: handle |
| ) |
| { |
| return (handle >= PERSISTENT_FIRST && handle < PLATFORM_PERSISTENT); |
| } |
| // |
| // |
| // NvNextIndex() |
| // |
| // This function returns the offset in NV of the next NV Index entry. A value of 0 indicates the end of the list. |
| // Family "2.0" TCG Published Page 131 |
| // Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014 |
| // Trusted Platform Module Library Part 4: Supporting Routines |
| // |
| static UINT32 |
| NvNextIndex( |
| NV_ITER *iter |
| ) |
| { |
| UINT32 addr; |
| TPM_HANDLE handle; |
| while((addr = NvNext(iter)) != 0) |
| { |
| // Read handle |
| _plat__NvMemoryRead(addr, sizeof(TPM_HANDLE), &handle); |
| if(HandleGetType(handle) == TPM_HT_NV_INDEX) |
| return addr; |
| } |
| pAssert(addr == 0); |
| return addr; |
| } |
| // |
| // |
| // NvNextEvict() |
| // |
| // This function returns the offset in NV of the next evict object entry. A value of 0 indicates the end of the |
| // list. |
| // |
| static UINT32 |
| NvNextEvict( |
| NV_ITER *iter |
| ) |
| { |
| UINT32 addr; |
| TPM_HANDLE handle; |
| while((addr = NvNext(iter)) != 0) |
| { |
| // Read handle |
| _plat__NvMemoryRead(addr, sizeof(TPM_HANDLE), &handle); |
| if(HandleGetType(handle) == TPM_HT_PERSISTENT) |
| return addr; |
| } |
| pAssert(addr == 0); |
| return addr; |
| } |
| // |
| // |
| // NvFindHandle() |
| // |
| // this function returns the offset in NV memory of the entity associated with the input handle. A value of |
| // zero indicates that handle does not exist reference an existing persistent object or defined NV Index. |
| // |
| static UINT32 |
| NvFindHandle( |
| TPM_HANDLE handle |
| ) |
| { |
| UINT32 addr; |
| NV_ITER iter = NV_ITER_INIT; |
| while((addr = NvNext(&iter)) != 0) |
| { |
| TPM_HANDLE entityHandle; |
| // Read handle |
| // |
| _plat__NvMemoryRead(addr, sizeof(TPM_HANDLE), &entityHandle); |
| if(entityHandle == handle) |
| return addr; |
| } |
| pAssert(addr == 0); |
| return addr; |
| } |
| |
| // |
| // NvCheckAndMigrateIfNeeded() |
| // |
| // Supported only in EMBEDDED_MODE. |
| // |
| // Check if the NVRAM storage format changed, and if so - reinitialize the |
| // NVRAM. No content migration yet, hopefully it will come one day. |
| // |
| // Note that the NV_FIRMWARE_V1 and NV_FIRMWARE_V2 values not used to store |
| // TPM versoion when in embedded mode are used for NVRAM format version |
| // instead. |
| // |
| // |
| static void |
| NvCheckAndMigrateIfNeeded(void) |
| { |
| #ifdef EMBEDDED_MODE |
| UINT32 nv_vers1; |
| UINT32 nv_vers2; |
| |
| NvReadReserved(NV_FIRMWARE_V1, &nv_vers1); |
| NvReadReserved(NV_FIRMWARE_V2, &nv_vers2); |
| |
| if ((nv_vers1 == ~nv_vers2) && (nv_vers1 == NV_FORMAT_VERSION)) |
| return; // All is well. |
| |
| // This will reinitialize NVRAM to empty. Migration code will come here |
| // later. |
| NvInit(); |
| |
| nv_vers1 = NV_FORMAT_VERSION; |
| nv_vers2 = ~NV_FORMAT_VERSION; |
| |
| NvWriteReserved(NV_FIRMWARE_V1, &nv_vers1); |
| NvWriteReserved(NV_FIRMWARE_V2, &nv_vers2); |
| |
| NvCommit(); |
| #endif |
| } |
| |
| |
| // |
| // |
| // NvPowerOn() |
| // |
| // This function is called at _TPM_Init() to initialize the NV environment. |
| // |
| // Return Value Meaning |
| // |
| // TRUE all NV was initialized |
| // FALSE the NV containing saved state had an error and |
| // TPM2_Startup(CLEAR) is required |
| // |
| BOOL |
| NvPowerOn( |
| void |
| ) |
| { |
| int nvError = 0; |
| // If power was lost, need to re-establish the RAM data that is loaded from |
| // NV and initialize the static variables |
| if(_plat__WasPowerLost(TRUE)) |
| { |
| if((nvError = _plat__NVEnable(0)) < 0) |
| FAIL(FATAL_ERROR_NV_UNRECOVERABLE); |
| NvInitStatic(); |
| NvCheckAndMigrateIfNeeded(); |
| } |
| return nvError == 0; |
| } |
| // |
| // |
| // NvStateSave() |
| // |
| // This function is used to cause the memory containing the RAM backed NV Indices to be written to NV. |
| // |
| void |
| NvStateSave( |
| void |
| ) |
| { |
| // Write RAM backed NV Index info to NV |
| // No need to save s_ramIndexSize because we save it to NV whenever it is |
| // updated. |
| _plat__NvMemoryWrite(s_ramIndexAddr, RAM_INDEX_SPACE, s_ramIndex); |
| // Set the flag so that an NV write happens before the command completes. |
| g_updateNV = TRUE; |
| return; |
| } |
| // |
| // |
| // |
| // NvEntityStartup() |
| // |
| // This function is called at TPM_Startup(). If the startup completes a TPM Resume cycle, no action is |
| // taken. If the startup is a TPM Reset or a TPM Restart, then this function will: |
| // a) clear read/write lock; |
| // b) reset NV Index data that has TPMA_NV_CLEAR_STCLEAR SET; and |
| // c) set the lower bits in orderly counters to 1 for a non-orderly startup |
| // It is a prerequisite that NV be available for writing before this function is called. |
| // |
| void |
| NvEntityStartup( |
| STARTUP_TYPE type // IN: start up type |
| ) |
| { |
| NV_ITER iter = NV_ITER_INIT; |
| UINT32 currentAddr; // offset points to the current entity |
| // Restore RAM index data |
| _plat__NvMemoryRead(s_ramIndexSizeAddr, sizeof(UINT32), &s_ramIndexSize); |
| _plat__NvMemoryRead(s_ramIndexAddr, RAM_INDEX_SPACE, s_ramIndex); |
| // If recovering from state save, do nothing |
| if(type == SU_RESUME) |
| return; |
| // Iterate all the NV Index to clear the locks |
| while((currentAddr = NvNextIndex(&iter)) != 0) |
| { |
| NV_INDEX nvIndex; |
| UINT32 indexAddr; // NV address points to index info |
| TPMA_NV attributes; |
| UINT32 attributesValue; |
| UINT32 publicAreaAttributesValue; |
| indexAddr = currentAddr + sizeof(TPM_HANDLE); |
| // Read NV Index info structure |
| _plat__NvMemoryRead(indexAddr, sizeof(NV_INDEX), &nvIndex); |
| attributes = nvIndex.publicArea.attributes; |
| // Clear read/write lock |
| if(attributes.TPMA_NV_READLOCKED == SET) |
| attributes.TPMA_NV_READLOCKED = CLEAR; |
| if( attributes.TPMA_NV_WRITELOCKED == SET |
| && ( attributes.TPMA_NV_WRITTEN == CLEAR |
| || attributes.TPMA_NV_WRITEDEFINE == CLEAR |
| ) |
| ) |
| attributes.TPMA_NV_WRITELOCKED = CLEAR; |
| // Reset NV data for TPMA_NV_CLEAR_STCLEAR |
| if(attributes.TPMA_NV_CLEAR_STCLEAR == SET) |
| { |
| attributes.TPMA_NV_WRITTEN = CLEAR; |
| attributes.TPMA_NV_WRITELOCKED = CLEAR; |
| } |
| // Reset NV data for orderly values that are not counters |
| // NOTE: The function has already exited on a TPM Resume, so the only |
| // things being processed are TPM Restart and TPM Reset |
| if( type == SU_RESET |
| && attributes.TPMA_NV_ORDERLY == SET |
| && attributes.TPMA_NV_COUNTER == CLEAR |
| ) |
| attributes.TPMA_NV_WRITTEN = CLEAR; |
| // Write NV Index info back if it has changed |
| memcpy(&attributesValue, &attributes, sizeof(attributesValue)); |
| memcpy(&publicAreaAttributesValue, &nvIndex.publicArea.attributes, |
| sizeof(publicAreaAttributesValue)); |
| if(attributesValue != publicAreaAttributesValue) |
| { |
| nvIndex.publicArea.attributes = attributes; |
| _plat__NvMemoryWrite(indexAddr, sizeof(NV_INDEX), &nvIndex); |
| // Set the flag that a NV write happens |
| g_updateNV = TRUE; |
| } |
| // Set the lower bits in an orderly counter to 1 for a non-orderly startup |
| if( g_prevOrderlyState == SHUTDOWN_NONE |
| && attributes.TPMA_NV_WRITTEN == SET) |
| { |
| if( attributes.TPMA_NV_ORDERLY == SET |
| && attributes.TPMA_NV_COUNTER == SET) |
| { |
| TPMI_RH_NV_INDEX nvHandle; |
| UINT64 counter; |
| // Read NV handle |
| _plat__NvMemoryRead(currentAddr, sizeof(TPM_HANDLE), &nvHandle); |
| // Read the counter value saved to NV upon the last roll over. |
| // Do not use RAM backed storage for this once. |
| nvIndex.publicArea.attributes.TPMA_NV_ORDERLY = CLEAR; |
| NvGetIntIndexData(nvHandle, &nvIndex, &counter); |
| nvIndex.publicArea.attributes.TPMA_NV_ORDERLY = SET; |
| // Set the lower bits of counter to 1's |
| counter |= MAX_ORDERLY_COUNT; |
| // Write back to RAM |
| NvWriteIndexData(nvHandle, &nvIndex, 0, sizeof(counter), &counter); |
| // No write to NV because an orderly shutdown will update the |
| // counters. |
| } |
| } |
| } |
| return; |
| } |
| // |
| // |
| // NV Access Functions |
| // |
| // Introduction |
| // |
| // This set of functions provide accessing NV Index and persistent objects based using a handle for |
| // reference to the entity. |
| // |
| // NvIsUndefinedIndex() |
| // |
| // This function is used to verify that an NV Index is not defined. This is only used by |
| // TPM2_NV_DefineSpace(). |
| // |
| // |
| // |
| // |
| // Return Value Meaning |
| // |
| // TRUE the handle points to an existing NV Index |
| // FALSE the handle points to a non-existent Index |
| // |
| BOOL |
| NvIsUndefinedIndex( |
| TPMI_RH_NV_INDEX handle // IN: handle |
| ) |
| { |
| UINT32 entityAddr; // offset points to the entity |
| pAssert(HandleGetType(handle) == TPM_HT_NV_INDEX); |
| // Find the address of index |
| entityAddr = NvFindHandle(handle); |
| // If handle is not found, return TPM_RC_SUCCESS |
| if(entityAddr == 0) |
| return TPM_RC_SUCCESS; |
| // NV Index is defined |
| return TPM_RC_NV_DEFINED; |
| } |
| // |
| // |
| // NvIndexIsAccessible() |
| // |
| // This function validates that a handle references a defined NV Index and that the Index is currently |
| // accessible. |
| // |
| // Error Returns Meaning |
| // |
| // TPM_RC_HANDLE the handle points to an undefined NV Index If shEnable is CLEAR, |
| // this would include an index created using ownerAuth. If phEnableNV |
| // is CLEAR, this would include and index created using platform auth |
| // TPM_RC_NV_READLOCKED Index is present but locked for reading and command does not write |
| // to the index |
| // TPM_RC_NV_WRITELOCKED Index is present but locked for writing and command writes to the |
| // index |
| // |
| TPM_RC |
| NvIndexIsAccessible( |
| TPMI_RH_NV_INDEX handle, // IN: handle |
| TPM_CC commandCode // IN: the command |
| ) |
| { |
| UINT32 entityAddr; // offset points to the entity |
| NV_INDEX nvIndex; // |
| pAssert(HandleGetType(handle) == TPM_HT_NV_INDEX); |
| // Find the address of index |
| entityAddr = NvFindHandle(handle); |
| // If handle is not found, return TPM_RC_HANDLE |
| if(entityAddr == 0) |
| return TPM_RC_HANDLE; |
| // Read NV Index info structure |
| _plat__NvMemoryRead(entityAddr + sizeof(TPM_HANDLE), sizeof(NV_INDEX), |
| &nvIndex); |
| if(gc.shEnable == FALSE || gc.phEnableNV == FALSE) |
| { |
| // if shEnable is CLEAR, an ownerCreate NV Index should not be |
| // indicated as present |
| if(nvIndex.publicArea.attributes.TPMA_NV_PLATFORMCREATE == CLEAR) |
| { |
| /* |
| * FWMP is a Chrome OS specific object saved at address 0x100a, it |
| * needs to be available for reading even before TPM2_Startup |
| * command is issued. |
| */ |
| UINT32 isFwmpRead = (handle == 0x100100a) && |
| IsReadOperation(commandCode); |
| |
| if((gc.shEnable == FALSE) && !isFwmpRead) |
| return TPM_RC_HANDLE; |
| } |
| // if phEnableNV is CLEAR, a platform created Index should not |
| // be visible |
| else if(gc.phEnableNV == FALSE) |
| return TPM_RC_HANDLE; |
| } |
| // If the Index is write locked and this is an NV Write operation... |
| if( nvIndex.publicArea.attributes.TPMA_NV_WRITELOCKED |
| && IsWriteOperation(commandCode)) |
| { |
| // then return a locked indication unless the command is TPM2_NV_WriteLock |
| if(commandCode != TPM_CC_NV_WriteLock) |
| return TPM_RC_NV_LOCKED; |
| return TPM_RC_SUCCESS; |
| } |
| // If the Index is read locked and this is an NV Read operation... |
| if( nvIndex.publicArea.attributes.TPMA_NV_READLOCKED |
| && IsReadOperation(commandCode)) |
| { |
| // then return a locked indication unless the command is TPM2_NV_ReadLock |
| if(commandCode != TPM_CC_NV_ReadLock) |
| return TPM_RC_NV_LOCKED; |
| return TPM_RC_SUCCESS; |
| } |
| // NV Index is accessible |
| return TPM_RC_SUCCESS; |
| } |
| // |
| // |
| // NvIsUndefinedEvictHandle() |
| // |
| // This function indicates if a handle does not reference an existing persistent object. This function requires |
| // that the handle be in the proper range for persistent objects. |
| // |
| // Return Value Meaning |
| // |
| // TRUE handle does not reference an existing persistent object |
| // FALSE handle does reference an existing persistent object |
| // |
| static BOOL |
| NvIsUndefinedEvictHandle( |
| TPM_HANDLE handle // IN: handle |
| ) |
| { |
| UINT32 entityAddr; // offset points to the entity |
| pAssert(HandleGetType(handle) == TPM_HT_PERSISTENT); |
| // Find the address of evict object |
| entityAddr = NvFindHandle(handle); |
| // If handle is not found, return TRUE |
| if(entityAddr == 0) |
| return TRUE; |
| else |
| return FALSE; |
| } |
| |
| // |
| // |
| // NvUnmarshalObject() |
| // |
| // This function accepts a buffer containing a marshaled OBJECT |
| // structure, a pointer to the area where the input data should be |
| // unmarshaled, and a pointer to the size of the output area. |
| // |
| // No error checking is performed, unmarshaled data is guaranteed not to |
| // spill over the allocated space. |
| // |
| static TPM_RC NvUnmarshalObject(OBJECT *o, BYTE **buf, INT32 *size) |
| { |
| TPM_RC result; |
| |
| // There is no generated function to unmarshal the attributes field, do it |
| // by hand. |
| MemoryCopy(&o->attributes, *buf, sizeof(o->attributes), *size); |
| *buf += sizeof(o->attributes); |
| *size -= sizeof(o->attributes); |
| |
| result = TPMT_PUBLIC_Unmarshal(&o->publicArea, buf, size); |
| if (result != TPM_RC_SUCCESS) |
| return result; |
| |
| result = TPMT_SENSITIVE_Unmarshal(&o->sensitive, buf, size); |
| if (result != TPM_RC_SUCCESS) |
| return result; |
| |
| #ifdef TPM_ALG_RSA |
| result = TPM2B_PUBLIC_KEY_RSA_Unmarshal(&o->privateExponent, buf, size); |
| if (result != TPM_RC_SUCCESS) |
| return result; |
| #endif |
| |
| result = TPM2B_NAME_Unmarshal(&o->qualifiedName, buf, size); |
| if (result != TPM_RC_SUCCESS) |
| return result; |
| |
| result = TPMI_DH_OBJECT_Unmarshal(&o->evictHandle, buf, size, TRUE); |
| if (result != TPM_RC_SUCCESS) |
| return result; |
| |
| return TPM2B_NAME_Unmarshal(&o->name, buf, size); |
| } |
| |
| // |
| // |
| // NvGetEvictObject() |
| // |
| // This function is used to dereference an evict object handle and get a pointer to the object. |
| // |
| // Error Returns Meaning |
| // |
| // TPM_RC_HANDLE the handle does not point to an existing persistent object |
| // |
| TPM_RC |
| NvGetEvictObject( |
| TPM_HANDLE handle, // IN: handle |
| OBJECT *object // OUT: object data |
| ) |
| { |
| UINT32 entityAddr; // offset points to the entity |
| TPM_RC result = TPM_RC_SUCCESS; |
| pAssert(HandleGetType(handle) == TPM_HT_PERSISTENT); |
| // Find the address of evict object |
| entityAddr = NvFindHandle(handle); |
| // If handle is not found, return an error |
| if(entityAddr == 0) { |
| result = TPM_RC_HANDLE; |
| } else { |
| UINT32 storedSize; |
| UINT32 nextEntryAddr; |
| |
| // Let's calculate the size of object as stored in NVMEM. |
| _plat__NvMemoryRead(entityAddr - sizeof(UINT32), |
| sizeof(UINT32), &nextEntryAddr); |
| |
| storedSize = nextEntryAddr - entityAddr; |
| |
| if (storedSize == (sizeof(TPM_HANDLE) + sizeof(OBJECT))) { |
| // Read evict object stored unmarshaled. |
| _plat__NvMemoryRead(entityAddr + sizeof(TPM_HANDLE), |
| sizeof(OBJECT), |
| object); |
| } else { |
| // Must be stored marshaled, let's unmarshal it. |
| BYTE marshaled[sizeof(OBJECT)]; |
| INT32 max_size = sizeof(marshaled); |
| BYTE *marshaledPtr = marshaled; |
| |
| _plat__NvMemoryRead(entityAddr + sizeof(TPM_HANDLE), |
| storedSize, marshaled); |
| result = NvUnmarshalObject(object, &marshaledPtr, &max_size); |
| } |
| } |
| // whether there is an error or not, make sure that the evict |
| // status of the object is set so that the slot will get freed on exit |
| object->attributes.evict = SET; |
| return result; |
| } |
| // |
| // |
| // NvGetIndexInfo() |
| // |
| // This function is used to retrieve the contents of an NV Index. |
| // An implementation is allowed to save the NV Index in a vendor-defined format. If the format is different |
| // from the default used by the reference code, then this function would be changed to reformat the data into |
| // the default format. |
| // A prerequisite to calling this function is that the handle must be known to reference a defined NV Index. |
| // |
| void |
| NvGetIndexInfo( |
| TPMI_RH_NV_INDEX handle, // IN: handle |
| NV_INDEX *nvIndex // OUT: NV index structure |
| ) |
| { |
| UINT32 entityAddr; // offset points to the entity |
| pAssert(HandleGetType(handle) == TPM_HT_NV_INDEX); |
| // Find the address of NV index |
| entityAddr = NvFindHandle(handle); |
| pAssert(entityAddr != 0); |
| // This implementation uses the default format so just |
| // read the data in |
| _plat__NvMemoryRead(entityAddr + sizeof(TPM_HANDLE), sizeof(NV_INDEX), |
| nvIndex); |
| return; |
| } |
| // |
| // |
| // NvInitialCounter() |
| // |
| // This function returns the value to be used when a counter index is initialized. It will scan the NV counters |
| // and find the highest value in any active counter. It will use that value as the starting point. If there are no |
| // active counters, it will use the value of the previous largest counter. |
| // |
| UINT64 |
| NvInitialCounter( |
| void |
| ) |
| { |
| UINT64 maxCount; |
| NV_ITER iter = NV_ITER_INIT; |
| UINT32 currentAddr; |
| // Read the maxCount value |
| maxCount = NvReadMaxCount(); |
| // Iterate all existing counters |
| while((currentAddr = NvNextIndex(&iter)) != 0) |
| { |
| TPMI_RH_NV_INDEX nvHandle; |
| NV_INDEX nvIndex; |
| // Read NV handle |
| _plat__NvMemoryRead(currentAddr, sizeof(TPM_HANDLE), &nvHandle); |
| // Get NV Index |
| NvGetIndexInfo(nvHandle, &nvIndex); |
| if( nvIndex.publicArea.attributes.TPMA_NV_COUNTER == SET |
| && nvIndex.publicArea.attributes.TPMA_NV_WRITTEN == SET) |
| { |
| UINT64 countValue; |
| // Read counter value |
| NvGetIntIndexData(nvHandle, &nvIndex, &countValue); |
| if(countValue > maxCount) |
| maxCount = countValue; |
| } |
| } |
| // Initialize the new counter value to be maxCount + 1 |
| // A counter is only initialized the first time it is written. The |
| // way to write a counter is with TPM2_NV_INCREMENT(). Since the |
| // "initial" value of a defined counter is the largest count value that |
| // may have existed in this index previously, then the first use would |
| // add one to that value. |
| return maxCount; |
| } |
| // |
| // |
| // NvGetIndexData() |
| // |
| // This function is used to access the data in an NV Index. The data is returned as a byte sequence. Since |
| // counter values are kept in native format, they are converted to canonical form before being returned. |
| // Family "2.0" TCG Published Page 139 |
| // Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014 |
| // Trusted Platform Module Library Part 4: Supporting Routines |
| // |
| // |
| // This function requires that the NV Index be defined, and that the required data is within the data range. It |
| // also requires that TPMA_NV_WRITTEN of the Index is SET. |
| // |
| void |
| NvGetIndexData( |
| TPMI_RH_NV_INDEX handle, // IN: handle |
| NV_INDEX *nvIndex, // IN: RAM image of index header |
| UINT32 offset, // IN: offset of NV data |
| UINT16 size, // IN: size of NV data |
| void *data // OUT: data buffer |
| ) |
| { |
| pAssert(nvIndex->publicArea.attributes.TPMA_NV_WRITTEN == SET); |
| if( nvIndex->publicArea.attributes.TPMA_NV_BITS == SET |
| || nvIndex->publicArea.attributes.TPMA_NV_COUNTER == SET) |
| { |
| // Read bit or counter data in canonical form |
| UINT64 dataInInt; |
| NvGetIntIndexData(handle, nvIndex, &dataInInt); |
| UINT64_TO_BYTE_ARRAY(dataInInt, (BYTE *)data); |
| } |
| else |
| { |
| if(nvIndex->publicArea.attributes.TPMA_NV_ORDERLY == SET) |
| { |
| UINT32 ramAddr; |
| // Get data from RAM buffer |
| ramAddr = NvGetRAMIndexOffset(handle); |
| MemoryCopy(data, s_ramIndex + ramAddr + offset, size, size); |
| } |
| else |
| { |
| UINT32 entityAddr; |
| entityAddr = NvFindHandle(handle); |
| // Get data from NV |
| // Skip NV Index info, read data buffer |
| entityAddr += sizeof(TPM_HANDLE) + sizeof(NV_INDEX) + offset; |
| // Read the data |
| _plat__NvMemoryRead(entityAddr, size, data); |
| } |
| } |
| return; |
| } |
| // |
| // |
| // NvGetIntIndexData() |
| // |
| // Get data in integer format of a bit or counter NV Index. |
| // This function requires that the NV Index is defined and that the NV Index previously has been written. |
| // |
| void |
| NvGetIntIndexData( |
| TPMI_RH_NV_INDEX handle, // IN: handle |
| NV_INDEX *nvIndex, // IN: RAM image of NV Index header |
| UINT64 *data // IN: UINT64 pointer for counter or bit |
| ) |
| { |
| // Validate that index has been written and is the right type |
| pAssert( nvIndex->publicArea.attributes.TPMA_NV_WRITTEN == SET |
| && ( nvIndex->publicArea.attributes.TPMA_NV_BITS == SET |
| || nvIndex->publicArea.attributes.TPMA_NV_COUNTER == SET |
| ) |
| ); |
| // bit and counter value is store in native format for TPM CPU. So we directly |
| // copy the contents of NV to output data buffer |
| if(nvIndex->publicArea.attributes.TPMA_NV_ORDERLY == SET) |
| { |
| UINT32 ramAddr; |
| // Get data from RAM buffer |
| ramAddr = NvGetRAMIndexOffset(handle); |
| MemoryCopy(data, s_ramIndex + ramAddr, sizeof(*data), sizeof(*data)); |
| } |
| else |
| { |
| UINT32 entityAddr; |
| entityAddr = NvFindHandle(handle); |
| // Get data from NV |
| // Skip NV Index info, read data buffer |
| _plat__NvMemoryRead( |
| entityAddr + sizeof(TPM_HANDLE) + sizeof(NV_INDEX), |
| sizeof(UINT64), data); |
| } |
| return; |
| } |
| // |
| // |
| // NvWriteIndexInfo() |
| // |
| // This function is called to queue the write of NV Index data to persistent memory. |
| // This function requires that NV Index is defined. |
| // |
| // Error Returns Meaning |
| // |
| // TPM_RC_NV_RATE NV is rate limiting so retry |
| // TPM_RC_NV_UNAVAILABLE NV is not available |
| // |
| TPM_RC |
| NvWriteIndexInfo( |
| TPMI_RH_NV_INDEX handle, // IN: handle |
| NV_INDEX *nvIndex // IN: NV Index info to be written |
| ) |
| { |
| UINT32 entryAddr; |
| TPM_RC result; |
| // Get the starting offset for the index in the RAM image of NV |
| entryAddr = NvFindHandle(handle); |
| pAssert(entryAddr != 0); |
| // Step over the link value |
| entryAddr = entryAddr + sizeof(TPM_HANDLE); |
| // If the index data is actually changed, then a write to NV is required |
| if(_plat__NvIsDifferent(entryAddr, sizeof(NV_INDEX),nvIndex)) |
| { |
| // Make sure that NV is available |
| result = NvIsAvailable(); |
| if(result != TPM_RC_SUCCESS) |
| return result; |
| _plat__NvMemoryWrite(entryAddr, sizeof(NV_INDEX), nvIndex); |
| g_updateNV = TRUE; |
| } |
| return TPM_RC_SUCCESS; |
| } |
| // |
| // |
| // NvWriteIndexData() |
| // |
| // This function is used to write NV index data. |
| // This function requires that the NV Index is defined, and the data is within the defined data range for the |
| // index. |
| // |
| // Error Returns Meaning |
| // |
| // TPM_RC_NV_RATE NV is rate limiting so retry |
| // TPM_RC_NV_UNAVAILABLE NV is not available |
| // |
| TPM_RC |
| NvWriteIndexData( |
| TPMI_RH_NV_INDEX handle, // IN: handle |
| NV_INDEX *nvIndex, // IN: RAM copy of NV Index |
| UINT32 offset, // IN: offset of NV data |
| UINT32 size, // IN: size of NV data |
| void *data // OUT: data buffer |
| ) |
| { |
| TPM_RC result; |
| // Validate that write falls within range of the index |
| pAssert(nvIndex->publicArea.dataSize >= offset + size); |
| // Update TPMA_NV_WRITTEN bit if necessary |
| if(nvIndex->publicArea.attributes.TPMA_NV_WRITTEN == CLEAR) |
| { |
| nvIndex->publicArea.attributes.TPMA_NV_WRITTEN = SET; |
| result = NvWriteIndexInfo(handle, nvIndex); |
| if(result != TPM_RC_SUCCESS) |
| return result; |
| } |
| // Check to see if process for an orderly index is required. |
| if(nvIndex->publicArea.attributes.TPMA_NV_ORDERLY == SET) |
| { |
| UINT32 ramAddr; |
| // Write data to RAM buffer |
| ramAddr = NvGetRAMIndexOffset(handle); |
| MemoryCopy(s_ramIndex + ramAddr + offset, data, size, |
| sizeof(s_ramIndex) - ramAddr - offset); |
| // NV update does not happen for orderly index. Have |
| // to clear orderlyState to reflect that we have changed the |
| // NV and an orderly shutdown is required. Only going to do this if we |
| // are not processing a counter that has just rolled over |
| if(g_updateNV == FALSE) |
| g_clearOrderly = TRUE; |
| } |
| // Need to process this part if the Index isn't orderly or if it is |
| // an orderly counter that just rolled over. |
| if(g_updateNV || nvIndex->publicArea.attributes.TPMA_NV_ORDERLY == CLEAR) |
| { |
| // Processing for an index with TPMA_NV_ORDERLY CLEAR |
| UINT32 entryAddr = NvFindHandle(handle); |
| pAssert(entryAddr != 0); |
| // |
| // Offset into the index to the first byte of the data to be written |
| entryAddr += sizeof(TPM_HANDLE) + sizeof(NV_INDEX) + offset; |
| // If the data is actually changed, then a write to NV is required |
| if(_plat__NvIsDifferent(entryAddr, size, data)) |
| { |
| // Make sure that NV is available |
| result = NvIsAvailable(); |
| if(result != TPM_RC_SUCCESS) |
| return result; |
| _plat__NvMemoryWrite(entryAddr, size, data); |
| g_updateNV = TRUE; |
| } |
| } |
| return TPM_RC_SUCCESS; |
| } |
| // |
| // |
| // NvGetName() |
| // |
| // This function is used to compute the Name of an NV Index. |
| // The name buffer receives the bytes of the Name and the return value is the number of octets in the |
| // Name. |
| // This function requires that the NV Index is defined. |
| // |
| UINT16 |
| NvGetName( |
| TPMI_RH_NV_INDEX handle, // IN: handle of the index |
| NAME *name // OUT: name of the index |
| ) |
| { |
| UINT16 dataSize, digestSize; |
| NV_INDEX nvIndex; |
| BYTE marshalBuffer[sizeof(TPMS_NV_PUBLIC)]; |
| BYTE *buffer; |
| INT32 bufferSize; |
| HASH_STATE hashState; |
| // Get NV public info |
| NvGetIndexInfo(handle, &nvIndex); |
| // Marshal public area |
| buffer = marshalBuffer; |
| bufferSize = sizeof(TPMS_NV_PUBLIC); |
| dataSize = TPMS_NV_PUBLIC_Marshal(&nvIndex.publicArea, &buffer, &bufferSize); |
| // hash public area |
| digestSize = CryptStartHash(nvIndex.publicArea.nameAlg, &hashState); |
| CryptUpdateDigest(&hashState, dataSize, marshalBuffer); |
| // Complete digest leaving room for the nameAlg |
| CryptCompleteHash(&hashState, digestSize, &((BYTE *)name)[2]); |
| // Include the nameAlg |
| UINT16_TO_BYTE_ARRAY(nvIndex.publicArea.nameAlg, (BYTE *)name); |
| return digestSize + 2; |
| } |
| // |
| // |
| // NvDefineIndex() |
| // |
| // This function is used to assign NV memory to an NV Index. |
| // |
| // |
| // |
| // Error Returns Meaning |
| // |
| // TPM_RC_NV_SPACE insufficient NV space |
| // |
| TPM_RC |
| NvDefineIndex( |
| TPMS_NV_PUBLIC *publicArea, // IN: A template for an area to create. |
| TPM2B_AUTH *authValue // IN: The initial authorization value |
| ) |
| { |
| // The buffer to be written to NV memory |
| BYTE nvBuffer[sizeof(TPM_HANDLE) + sizeof(NV_INDEX)]; |
| NV_INDEX *nvIndex; // a pointer to the NV_INDEX data in |
| // nvBuffer |
| UINT16 entrySize; // size of entry |
| entrySize = sizeof(TPM_HANDLE) + sizeof(NV_INDEX) + publicArea->dataSize; |
| // Check if we have enough space to create the NV Index |
| // In this implementation, the only resource limitation is the available NV |
| // space. Other implementation may have other limitation on counter or on |
| // NV slot |
| if(!NvTestSpace(entrySize, TRUE)) return TPM_RC_NV_SPACE; |
| // if the index to be defined is RAM backed, check RAM space availability |
| // as well |
| if(publicArea->attributes.TPMA_NV_ORDERLY == SET |
| && !NvTestRAMSpace(publicArea->dataSize)) |
| return TPM_RC_NV_SPACE; |
| // Copy input value to nvBuffer |
| // Copy handle |
| memcpy(nvBuffer, &publicArea->nvIndex, sizeof(TPM_HANDLE)); |
| // Copy NV_INDEX |
| nvIndex = (NV_INDEX *) (nvBuffer + sizeof(TPM_HANDLE)); |
| nvIndex->publicArea = *publicArea; |
| nvIndex->authValue = *authValue; |
| // Add index to NV memory |
| NvAdd(entrySize, sizeof(TPM_HANDLE) + sizeof(NV_INDEX), nvBuffer); |
| // If the data of NV Index is RAM backed, add the data area in RAM as well |
| if(publicArea->attributes.TPMA_NV_ORDERLY == SET) |
| NvAddRAM(publicArea->nvIndex, publicArea->dataSize); |
| return TPM_RC_SUCCESS; |
| } |
| |
| // |
| // |
| // NvMarshalObject() |
| // |
| // This function marshals the passed in OBJECT structure into a buffer. A |
| // pointer to pointer to the buffer and a pointer to the size of the |
| // buffer are passed in for this function to update as appropriate. |
| // |
| // On top of marshaling the object, this function also modifies one of |
| // the object's properties and sets the evictHandle field of the |
| // marshaled object to the requested value. |
| // |
| // Returns |
| // |
| // Marshaled size of the object. |
| // |
| static UINT16 NvMarshalObject(OBJECT *o, TPMI_DH_OBJECT evictHandle, |
| BYTE **buf, INT32 *size) |
| { |
| UINT16 marshaledSize; |
| OBJECT_ATTRIBUTES stored_attributes; |
| |
| stored_attributes = o->attributes; |
| stored_attributes.evict = SET; |
| marshaledSize = sizeof(stored_attributes); |
| MemoryCopy(*buf, &stored_attributes, marshaledSize, *size); |
| *buf += marshaledSize; |
| *size -= marshaledSize; |
| |
| marshaledSize += TPMT_PUBLIC_Marshal(&o->publicArea, buf, size); |
| marshaledSize += TPMT_SENSITIVE_Marshal(&o->sensitive, buf, size); |
| #ifdef TPM_ALG_RSA |
| marshaledSize += TPM2B_PUBLIC_KEY_RSA_Marshal(&o->privateExponent, |
| buf, size); |
| #endif |
| marshaledSize += TPM2B_NAME_Marshal(&o->qualifiedName, buf, size); |
| |
| // Use the supplied handle instead of the object contents. |
| marshaledSize += TPMI_DH_OBJECT_Marshal(&evictHandle, buf, size); |
| marshaledSize += TPM2B_NAME_Marshal(&o->name, buf, size); |
| |
| return marshaledSize; |
| } |
| |
| // |
| // |
| // NvAddEvictObject() |
| // |
| // This function is used to assign NV memory to a persistent object. |
| // |
| // Error Returns Meaning |
| // |
| // TPM_RC_NV_HANDLE the requested handle is already in use |
| // TPM_RC_NV_SPACE insufficient NV space |
| // |
| TPM_RC |
| NvAddEvictObject( |
| TPMI_DH_OBJECT evictHandle, // IN: new evict handle |
| // |
| OBJECT *object // IN: object to be added |
| ) |
| { |
| // The buffer to be written to NV memory |
| BYTE nvBuffer[sizeof(TPM_HANDLE) + sizeof(OBJECT)]; |
| UINT16 entrySize; // size of entry |
| BYTE *marshalSpace; |
| INT32 marshalRoom; |
| |
| // evict handle type should match the object hierarchy |
| pAssert( ( NvIsPlatformPersistentHandle(evictHandle) |
| && object->attributes.ppsHierarchy == SET) |
| || ( NvIsOwnerPersistentHandle(evictHandle) |
| && ( object->attributes.spsHierarchy == SET |
| || object->attributes.epsHierarchy == SET))); |
| |
| // Do not attemp storing a duplicate handle. |
| if(!NvIsUndefinedEvictHandle(evictHandle)) |
| return TPM_RC_NV_DEFINED; |
| |
| // Copy handle |
| entrySize = sizeof(TPM_HANDLE); |
| memcpy(nvBuffer, &evictHandle, entrySize); |
| |
| // Let's serialize the object before storing it in NVMEM |
| marshalSpace = nvBuffer + entrySize; |
| marshalRoom = sizeof(nvBuffer) - entrySize; |
| entrySize += NvMarshalObject(object, evictHandle, |
| &marshalSpace, &marshalRoom); |
| |
| // Check if we have enough space to add this evict object |
| if(!NvTestSpace(entrySize, FALSE)) return TPM_RC_NV_SPACE; |
| |
| // Add evict to NV memory |
| NvAdd(entrySize, entrySize, nvBuffer); |
| return TPM_RC_SUCCESS; |
| } |
| // |
| // |
| // NvDeleteEntity() |
| // |
| // This function will delete a NV Index or an evict object. |
| // This function requires that the index/evict object has been defined. |
| // |
| void |
| NvDeleteEntity( |
| TPM_HANDLE handle // IN: handle of entity to be deleted |
| ) |
| { |
| UINT32 entityAddr; // pointer to entity |
| entityAddr = NvFindHandle(handle); |
| pAssert(entityAddr != 0); |
| if(HandleGetType(handle) == TPM_HT_NV_INDEX) |
| { |
| NV_INDEX nvIndex; |
| // Read the NV Index info |
| _plat__NvMemoryRead(entityAddr + sizeof(TPM_HANDLE), sizeof(NV_INDEX), |
| &nvIndex); |
| // If the entity to be deleted is a counter with the maximum counter |
| // value, record it in NV memory |
| if(nvIndex.publicArea.attributes.TPMA_NV_COUNTER == SET |
| && nvIndex.publicArea.attributes.TPMA_NV_WRITTEN == SET) |
| { |
| UINT64 countValue; |
| UINT64 maxCount; |
| NvGetIntIndexData(handle, &nvIndex, &countValue); |
| maxCount = NvReadMaxCount(); |
| if(countValue > maxCount) |
| NvWriteMaxCount(countValue); |
| } |
| // If the NV Index is RAM back, delete the RAM data as well |
| if(nvIndex.publicArea.attributes.TPMA_NV_ORDERLY == SET) |
| NvDeleteRAM(handle); |
| } |
| NvDelete(entityAddr); |
| return; |
| } |
| // |
| // |
| // NvFlushHierarchy() |
| // |
| // This function will delete persistent objects belonging to the indicated If the storage hierarchy is selected, |
| // the function will also delete any NV Index define using ownerAuth. |
| // |
| void |
| NvFlushHierarchy( |
| TPMI_RH_HIERARCHY hierarchy // IN: hierarchy to be flushed. |
| ) |
| { |
| NV_ITER iter = NV_ITER_INIT; |
| UINT32 currentAddr; |
| while((currentAddr = NvNext(&iter)) != 0) |
| { |
| TPM_HANDLE entityHandle; |
| // Read handle information. |
| _plat__NvMemoryRead(currentAddr, sizeof(TPM_HANDLE), &entityHandle); |
| if(HandleGetType(entityHandle) == TPM_HT_NV_INDEX) |
| { |
| // Handle NV Index |
| NV_INDEX nvIndex; |
| // If flush endorsement or platform hierarchy, no NV Index would be |
| // flushed |
| if(hierarchy == TPM_RH_ENDORSEMENT || hierarchy == TPM_RH_PLATFORM) |
| continue; |
| _plat__NvMemoryRead(currentAddr + sizeof(TPM_HANDLE), |
| sizeof(NV_INDEX), &nvIndex); |
| // For storage hierarchy, flush OwnerCreated index |
| if( nvIndex.publicArea.attributes.TPMA_NV_PLATFORMCREATE == CLEAR) |
| { |
| // Delete the NV Index |
| NvDelete(currentAddr); |
| // Re-iterate from beginning after a delete |
| iter = NV_ITER_INIT; |
| // If the NV Index is RAM back, delete the RAM data as well |
| if(nvIndex.publicArea.attributes.TPMA_NV_ORDERLY == SET) |
| NvDeleteRAM(entityHandle); |
| } |
| } |
| else if(HandleGetType(entityHandle) == TPM_HT_PERSISTENT) |
| { |
| OBJECT object; |
| // Get evict object |
| NvGetEvictObject(entityHandle, &object); |
| // If the evict object belongs to the hierarchy to be flushed |
| if( ( hierarchy == TPM_RH_PLATFORM |
| && object.attributes.ppsHierarchy == SET) |
| || ( hierarchy == TPM_RH_OWNER |
| && object.attributes.spsHierarchy == SET) |
| || ( hierarchy == TPM_RH_ENDORSEMENT |
| && object.attributes.epsHierarchy == SET) |
| ) |
| { |
| // Delete the evict object |
| NvDelete(currentAddr); |
| // Re-iterate from beginning after a delete |
| iter = NV_ITER_INIT; |
| } |
| } |
| else |
| { |
| pAssert(FALSE); |
| } |
| } |
| return; |
| } |
| // |
| // |
| // NvSetGlobalLock() |
| // |
| // This function is used to SET the TPMA_NV_WRITELOCKED attribute for all NV Indices that have |
| // TPMA_NV_GLOBALLOCK SET. This function is use by TPM2_NV_GlobalWriteLock(). |
| // |
| void |
| NvSetGlobalLock( |
| void |
| ) |
| { |
| NV_ITER iter = NV_ITER_INIT; |
| UINT32 currentAddr; |
| // Check all Indices |
| while((currentAddr = NvNextIndex(&iter)) != 0) |
| { |
| NV_INDEX nvIndex; |
| // Read the index data |
| _plat__NvMemoryRead(currentAddr + sizeof(TPM_HANDLE), |
| sizeof(NV_INDEX), &nvIndex); |
| // See if it should be locked |
| if(nvIndex.publicArea.attributes.TPMA_NV_GLOBALLOCK == SET) |
| { |
| // if so, lock it |
| nvIndex.publicArea.attributes.TPMA_NV_WRITELOCKED = SET; |
| _plat__NvMemoryWrite(currentAddr + sizeof(TPM_HANDLE), |
| sizeof(NV_INDEX), &nvIndex); |
| // Set the flag that a NV write happens |
| g_updateNV = TRUE; |
| } |
| } |
| return; |
| } |
| // |
| // |
| // InsertSort() |
| // |
| // Sort a handle into handle list in ascending order. The total handle number in the list should not exceed |
| // MAX_CAP_HANDLES |
| // |
| static void |
| InsertSort( |
| TPML_HANDLE *handleList, // IN/OUT: sorted handle list |
| UINT32 count, // IN: maximum count in the handle list |
| TPM_HANDLE entityHandle // IN: handle to be inserted |
| ) |
| { |
| UINT32 i, j; |
| UINT32 originalCount; |
| // For a corner case that the maximum count is 0, do nothing |
| if(count == 0) return; |
| // For empty list, add the handle at the beginning and return |
| if(handleList->count == 0) |
| { |
| handleList->handle[0] = entityHandle; |
| handleList->count++; |
| return; |
| } |
| // Check if the maximum of the list has been reached |
| originalCount = handleList->count; |
| if(originalCount < count) |
| handleList->count++; |
| // Insert the handle to the list |
| for(i = 0; i < originalCount; i++) |
| { |
| if(handleList->handle[i] > entityHandle) |
| { |
| for(j = handleList->count - 1; j > i; j--) |
| { |
| handleList->handle[j] = handleList->handle[j-1]; |
| } |
| break; |
| } |
| } |
| // If a slot was found, insert the handle in this position |
| if(i < originalCount || handleList->count > originalCount) |
| handleList->handle[i] = entityHandle; |
| return; |
| } |
| // |
| // |
| // NvCapGetPersistent() |
| // |
| // This function is used to get a list of handles of the persistent objects, starting at handle. |
| // Handle must be in valid persistent object handle range, but does not have to reference an existing |
| // persistent object. |
| // |
| // Return Value Meaning |
| // |
| // YES if there are more handles available |
| // NO all the available handles has been returned |
| // |
| TPMI_YES_NO |
| NvCapGetPersistent( |
| TPMI_DH_OBJECT handle, // IN: start handle |
| UINT32 count, // IN: maximum number of returned handle |
| TPML_HANDLE *handleList // OUT: list of handle |
| ) |
| { |
| TPMI_YES_NO more = NO; |
| NV_ITER iter = NV_ITER_INIT; |
| UINT32 currentAddr; |
| pAssert(HandleGetType(handle) == TPM_HT_PERSISTENT); |
| // Initialize output handle list |
| handleList->count = 0; |
| // The maximum count of handles we may return is MAX_CAP_HANDLES |
| if(count > MAX_CAP_HANDLES) count = MAX_CAP_HANDLES; |
| while((currentAddr = NvNextEvict(&iter)) != 0) |
| { |
| TPM_HANDLE entityHandle; |
| // Read handle information. |
| _plat__NvMemoryRead(currentAddr, sizeof(TPM_HANDLE), &entityHandle); |
| // Ignore persistent handles that have values less than the input handle |
| if(entityHandle < handle) |
| continue; |
| // if the handles in the list have reached the requested count, and there |
| // are still handles need to be inserted, indicate that there are more. |
| if(handleList->count == count) |
| more = YES; |
| // A handle with a value larger than start handle is a candidate |
| // for return. Insert sort it to the return list. Insert sort algorithm |
| // is chosen here for simplicity based on the assumption that the total |
| // number of NV Indices is small. For an implementation that may allow |
| // large number of NV Indices, a more efficient sorting algorithm may be |
| // used here. |
| InsertSort(handleList, count, entityHandle); |
| // |
| } |
| return more; |
| } |
| // |
| // |
| // NvCapGetIndex() |
| // |
| // This function returns a list of handles of NV Indices, starting from handle. Handle must be in the range of |
| // NV Indices, but does not have to reference an existing NV Index. |
| // |
| // Return Value Meaning |
| // |
| // YES if there are more handles to report |
| // NO all the available handles has been reported |
| // |
| TPMI_YES_NO |
| NvCapGetIndex( |
| TPMI_DH_OBJECT handle, // IN: start handle |
| UINT32 count, // IN: maximum number of returned handle |
| TPML_HANDLE *handleList // OUT: list of handle |
| ) |
| { |
| TPMI_YES_NO more = NO; |
| NV_ITER iter = NV_ITER_INIT; |
| UINT32 currentAddr; |
| pAssert(HandleGetType(handle) == TPM_HT_NV_INDEX); |
| // Initialize output handle list |
| handleList->count = 0; |
| // The maximum count of handles we may return is MAX_CAP_HANDLES |
| if(count > MAX_CAP_HANDLES) count = MAX_CAP_HANDLES; |
| while((currentAddr = NvNextIndex(&iter)) != 0) |
| { |
| TPM_HANDLE entityHandle; |
| // Read handle information. |
| _plat__NvMemoryRead(currentAddr, sizeof(TPM_HANDLE), &entityHandle); |
| // Ignore index handles that have values less than the 'handle' |
| if(entityHandle < handle) |
| continue; |
| // if the count of handles in the list has reached the requested count, |
| // and there are still handles to report, set more. |
| if(handleList->count == count) |
| more = YES; |
| // A handle with a value larger than start handle is a candidate |
| // for return. Insert sort it to the return list. Insert sort algorithm |
| // is chosen here for simplicity based on the assumption that the total |
| // number of NV Indices is small. For an implementation that may allow |
| // large number of NV Indices, a more efficient sorting algorithm may be |
| // used here. |
| InsertSort(handleList, count, entityHandle); |
| } |
| return more; |
| } |
| // |
| // |
| // |
| // NvCapGetIndexNumber() |
| // |
| // This function returns the count of NV Indexes currently defined. |
| // |
| UINT32 |
| NvCapGetIndexNumber( |
| void |
| ) |
| { |
| UINT32 num = 0; |
| NV_ITER iter = NV_ITER_INIT; |
| while(NvNextIndex(&iter) != 0) num++; |
| return num; |
| } |
| // |
| // |
| // NvCapGetPersistentNumber() |
| // |
| // Function returns the count of persistent objects currently in NV memory. |
| // |
| UINT32 |
| NvCapGetPersistentNumber( |
| void |
| ) |
| { |
| UINT32 num = 0; |
| NV_ITER iter = NV_ITER_INIT; |
| while(NvNextEvict(&iter) != 0) num++; |
| return num; |
| } |
| // |
| // |
| // NvCapGetPersistentAvail() |
| // |
| // This function returns an estimate of the number of additional persistent objects that could be loaded into |
| // NV memory. |
| // |
| UINT32 |
| NvCapGetPersistentAvail( |
| void |
| ) |
| { |
| UINT32 availSpace; |
| UINT32 objectSpace; |
| // Compute the available space in NV storage |
| availSpace = NvGetFreeByte(); |
| // Get the space needed to add a persistent object to NV storage |
| objectSpace = NvGetEvictObjectSize(); |
| return availSpace / objectSpace; |
| } |
| // |
| // |
| // NvCapGetCounterNumber() |
| // |
| // Get the number of defined NV Indexes that have NV TPMA_NV_COUNTER attribute SET. |
| // |
| // |
| UINT32 |
| NvCapGetCounterNumber( |
| void |
| ) |
| { |
| NV_ITER iter = NV_ITER_INIT; |
| UINT32 currentAddr; |
| UINT32 num = 0; |
| while((currentAddr = NvNextIndex(&iter)) != 0) |
| { |
| NV_INDEX nvIndex; |
| // Get NV Index info |
| _plat__NvMemoryRead(currentAddr + sizeof(TPM_HANDLE), |
| sizeof(NV_INDEX), &nvIndex); |
| if(nvIndex.publicArea.attributes.TPMA_NV_COUNTER == SET) num++; |
| } |
| return num; |
| } |
| // |
| // |
| // NvCapGetCounterAvail() |
| // |
| // This function returns an estimate of the number of additional counter type NV Indices that can be defined. |
| // |
| UINT32 |
| NvCapGetCounterAvail( |
| void |
| ) |
| { |
| UINT32 availNVSpace; |
| UINT32 availRAMSpace; |
| UINT32 counterNVSpace; |
| UINT32 counterRAMSpace; |
| UINT32 persistentNum = NvCapGetPersistentNumber(); |
| // Get the available space in NV storage |
| availNVSpace = NvGetFreeByte(); |
| if (persistentNum < MIN_EVICT_OBJECTS) |
| { |
| // Some space have to be reserved for evict object. Adjust availNVSpace. |
| UINT32 reserved = (MIN_EVICT_OBJECTS - persistentNum) |
| * NvGetEvictObjectSize(); |
| if (reserved > availNVSpace) |
| availNVSpace = 0; |
| else |
| availNVSpace -= reserved; |
| } |
| // Get the space needed to add a counter index to NV storage |
| counterNVSpace = NvGetCounterSize(); |
| // Compute the available space in RAM |
| availRAMSpace = RAM_INDEX_SPACE - s_ramIndexSize; |
| // Compute the space needed to add a counter index to RAM storage |
| // It takes an size field, a handle and sizeof(UINT64) for counter data |
| counterRAMSpace = sizeof(UINT32) + sizeof(TPM_HANDLE) + sizeof(UINT64); |
| // Return the min of counter number in NV and in RAM |
| if(availNVSpace / counterNVSpace > availRAMSpace / counterRAMSpace) |
| return availRAMSpace / counterRAMSpace; |
| else |
| return availNVSpace / counterNVSpace; |
| } |