blob: 3e639ea0b0642d64def5f358298c17571c7f65ba [file] [log] [blame]
// This file was extracted from the TCG Published
// Trusted Platform Module Library
// Part 4: Supporting Routines
// Family "2.0"
// Level 00 Revision 01.16
// October 30, 2014
#define NV_C
#include "InternalRoutines.h"
#include "Platform.h"
//
// NV Index/evict object iterator value
//
typedef UINT32 NV_ITER; // type of a NV iterator
#define NV_ITER_INIT 0xFFFFFFFF // initial value to start an
// iterator
//
//
// NV Utility Functions
//
// NvCheckState()
//
// Function to check the NV state by accessing the platform-specific function to get the NV state. The result
// state is registered in s_NvIsAvailable that will be reported by NvIsAvailable().
// This function is called at the beginning of ExecuteCommand() before any potential call to NvIsAvailable().
//
void
NvCheckState(void)
{
int func_return;
func_return = _plat__IsNvAvailable();
if(func_return == 0)
{
s_NvStatus = TPM_RC_SUCCESS;
}
else if(func_return == 1)
{
s_NvStatus = TPM_RC_NV_UNAVAILABLE;
}
else
{
s_NvStatus = TPM_RC_NV_RATE;
}
return;
}
//
//
// NvIsAvailable()
//
// This function returns the NV availability parameter.
//
// Error Returns Meaning
//
// TPM_RC_SUCCESS NV is available
// TPM_RC_NV_RATE NV is unavailable because of rate limit
// TPM_RC_NV_UNAVAILABLE NV is inaccessible
//
TPM_RC
NvIsAvailable(
void
)
{
// Make sure that NV state is still good
if (s_NvStatus == TPM_RC_SUCCESS)
NvCheckState();
return s_NvStatus;
}
//
//
// NvCommit
//
// This is a wrapper for the platform function to commit pending NV writes.
//
BOOL
NvCommit(
void
)
{
BOOL success = (_plat__NvCommit() == 0);
return success;
}
//
//
// NvReadMaxCount()
//
// This function returns the max NV counter value.
//
static UINT64
NvReadMaxCount(
void
)
{
UINT64 countValue;
_plat__NvMemoryRead(s_maxCountAddr, sizeof(UINT64), &countValue);
return countValue;
}
//
//
// NvWriteMaxCount()
//
// This function updates the max counter value to NV memory.
//
static void
NvWriteMaxCount(
UINT64 maxCount
)
{
_plat__NvMemoryWrite(s_maxCountAddr, sizeof(UINT64), &maxCount);
return;
}
//
//
// NV Index and Persistent Object Access Functions
//
// Introduction
//
// These functions are used to access an NV Index and persistent object memory. In this implementation,
// the memory is simulated with RAM. The data in dynamic area is organized as a linked list, starting from
// address s_evictNvStart. The first 4 bytes of a node in this link list is the offset of next node, followed by
// the data entry. A 0-valued offset value indicates the end of the list. If the data entry area of the last node
// happens to reach the end of the dynamic area without space left for an additional 4 byte end marker, the
// end address, s_evictNvEnd, should serve as the mark of list end
//
// NvNext()
//
// This function provides a method to traverse every data entry in NV dynamic area.
// To begin with, parameter iter should be initialized to NV_ITER_INIT indicating the first element. Every
// time this function is called, the value in iter would be adjusted pointing to the next element in traversal. If
// there is no next element, iter value would be 0. This function returns the address of the 'data entry'
// pointed by the iter. If there is no more element in the set, a 0 value is returned indicating the end of
// traversal.
//
static UINT32
NvNext(
NV_ITER *iter
)
{
NV_ITER currentIter;
// If iterator is at the beginning of list
if(*iter == NV_ITER_INIT)
{
// Initialize iterator
*iter = s_evictNvStart;
}
// If iterator reaches the end of NV space, or iterator indicates list end
if(*iter + sizeof(UINT32) > s_evictNvEnd || *iter == 0)
return 0;
// Save the current iter offset
currentIter = *iter;
// Adjust iter pointer pointing to next entity
// Read pointer value
_plat__NvMemoryRead(*iter, sizeof(UINT32), iter);
if(*iter == 0) return 0;
return currentIter + sizeof(UINT32); // entity stores after the pointer
}
//
//
// NvGetEnd()
//
// Function to find the end of the NV dynamic data list
//
static UINT32
NvGetEnd(
void
)
{
NV_ITER iter = NV_ITER_INIT;
UINT32 endAddr = s_evictNvStart;
UINT32 currentAddr;
while((currentAddr = NvNext(&iter)) != 0)
endAddr = currentAddr;
if(endAddr != s_evictNvStart)
{
// Read offset
endAddr -= sizeof(UINT32);
_plat__NvMemoryRead(endAddr, sizeof(UINT32), &endAddr);
}
return endAddr;
}
//
//
// NvGetFreeByte
//
// This function returns the number of free octets in NV space.
//
static UINT32
NvGetFreeByte(
void
)
{
return s_evictNvEnd - NvGetEnd();
}
//
// NvGetEvictObjectSize
//
// This function returns the size of an evict object in NV space
//
static UINT32
NvGetEvictObjectSize(
void
)
{
return sizeof(TPM_HANDLE) + sizeof(OBJECT) + sizeof(UINT32);
}
//
//
// NvGetCounterSize
//
// This function returns the size of a counter index in NV space.
//
static UINT32
NvGetCounterSize(
void
)
{
// It takes an offset field, a handle and the sizeof(NV_INDEX) and
// sizeof(UINT64) for counter data
return sizeof(TPM_HANDLE) + sizeof(NV_INDEX) + sizeof(UINT64) + sizeof(UINT32);
}
//
//
// NvTestSpace()
//
// This function will test if there is enough space to add a new entity.
//
// Return Value Meaning
//
// TRUE space available
// FALSE no enough space
//
static BOOL
NvTestSpace(
UINT32 size, // IN: size of the entity to be added
BOOL isIndex // IN: TRUE if the entity is an index
)
{
UINT32 remainByte = NvGetFreeByte();
// For NV Index, need to make sure that we do not allocate and Index if this
// would mean that the TPM cannot allocate the minimum number of evict
// objects.
if(isIndex)
{
// Get the number of persistent objects allocated
UINT32 persistentNum = NvCapGetPersistentNumber();
// If we have not allocated the requisite number of evict objects, then we
// need to reserve space for them.
// NOTE: some of this is not written as simply as it might seem because
// the values are all unsigned and subtracting needs to be done carefully
// so that an underflow doesn't cause problems.
if(persistentNum < MIN_EVICT_OBJECTS)
{
UINT32 needed = (MIN_EVICT_OBJECTS - persistentNum)
* NvGetEvictObjectSize();
if(needed > remainByte)
remainByte = 0;
else
remainByte -= needed;
}
// if the requisite number of evict objects have been allocated then
// no need to reserve additional space
}
// This checks for the size of the value being added plus the index value.
// NOTE: This does not check to see if the end marker can be placed in
// memory because the end marker will not be written if it will not fit.
return (size + sizeof(UINT32) <= remainByte);
}
//
//
// NvAdd()
//
// This function adds a new entity to NV.
// This function requires that there is enough space to add a new entity (i.e., that NvTestSpace() has been
// called and the available space is at least as large as the required space).
//
static void
NvAdd(
UINT32 totalSize, // IN: total size needed for this entity For
// evict object, totalSize is the same as
// bufferSize. For NV Index, totalSize is
// bufferSize plus index data size
UINT32 bufferSize, // IN: size of initial buffer
BYTE *entity // IN: initial buffer
)
{
UINT32 endAddr;
UINT32 nextAddr;
UINT32 listEnd = 0;
// Get the end of data list
endAddr = NvGetEnd();
// Calculate the value of next pointer, which is the size of a pointer +
// the entity data size
nextAddr = endAddr + sizeof(UINT32) + totalSize;
// Write next pointer
_plat__NvMemoryWrite(endAddr, sizeof(UINT32), &nextAddr);
// Write entity data
_plat__NvMemoryWrite(endAddr + sizeof(UINT32), bufferSize, entity);
// Write the end of list if it is not going to exceed the NV space
if(nextAddr + sizeof(UINT32) <= s_evictNvEnd)
_plat__NvMemoryWrite(nextAddr, sizeof(UINT32), &listEnd);
// Set the flag so that NV changes are committed before the command completes.
g_updateNV = TRUE;
}
//
//
// NvDelete()
//
// This function is used to delete an NV Index or persistent object from NV memory.
//
static void
NvDelete(
UINT32 entityAddr // IN: address of entity to be deleted
)
{
UINT32 next;
UINT32 entrySize;
UINT32 entryAddr = entityAddr - sizeof(UINT32);
UINT32 listEnd = 0;
// Get the offset of the next entry.
_plat__NvMemoryRead(entryAddr, sizeof(UINT32), &next);
// The size of this entry is the difference between the current entry and the
// next entry.
entrySize = next - entryAddr;
// Move each entry after the current one to fill the freed space.
// Stop when we have reached the end of all the indexes. There are two
// ways to detect the end of the list. The first is to notice that there
// is no room for anything else because we are at the end of NV. The other
// indication is that we find an end marker.
// The loop condition checks for the end of NV.
while(next + sizeof(UINT32) <= s_evictNvEnd)
{
UINT32 size, oldAddr, newAddr;
// Now check for the end marker
_plat__NvMemoryRead(next, sizeof(UINT32), &oldAddr);
if(oldAddr == 0)
break;
size = oldAddr - next;
// Move entry
_plat__NvMemoryMove(next, next - entrySize, size);
// Update forward link
newAddr = oldAddr - entrySize;
_plat__NvMemoryWrite(next - entrySize, sizeof(UINT32), &newAddr);
next = oldAddr;
}
// Mark the end of list
_plat__NvMemoryWrite(next - entrySize, sizeof(UINT32), &listEnd);
// Set the flag so that NV changes are committed before the command completes.
g_updateNV = TRUE;
}
//
//
// RAM-based NV Index Data Access Functions
//
// Introduction
//
// The data layout in ram buffer is {size of(NV_handle() + data), NV_handle(), data} for each NV Index data
// stored in RAM.
// NV storage is updated when a NV Index is added or deleted. We do NOT updated NV storage when the
// data is updated/
//
// NvTestRAMSpace()
//
// This function indicates if there is enough RAM space to add a data for a new NV Index.
//
//
//
//
// Return Value Meaning
//
// TRUE space available
// FALSE no enough space
//
static BOOL
NvTestRAMSpace(
UINT32 size // IN: size of the data to be added to RAM
)
{
BOOL success = ( s_ramIndexSize
+ size
+ sizeof(TPM_HANDLE) + sizeof(UINT32)
<= RAM_INDEX_SPACE);
return success;
}
//
//
// NvGetRamIndexOffset
//
// This function returns the offset of NV data in the RAM buffer
// This function requires that NV Index is in RAM. That is, the index must be known to exist.
//
static UINT32
NvGetRAMIndexOffset(
TPMI_RH_NV_INDEX handle // IN: NV handle
)
{
UINT32 currAddr = 0;
while(currAddr < s_ramIndexSize)
{
TPMI_RH_NV_INDEX currHandle;
UINT32 currSize;
memcpy(&currHandle, &s_ramIndex[currAddr + sizeof(UINT32)],
sizeof(currHandle));
// Found a match
if(currHandle == handle)
// data buffer follows the handle and size field
break;
memcpy(&currSize, &s_ramIndex[currAddr], sizeof(currSize));
currAddr += sizeof(UINT32) + currSize;
}
// We assume the index data is existing in RAM space
pAssert(currAddr < s_ramIndexSize);
return currAddr + sizeof(TPMI_RH_NV_INDEX) + sizeof(UINT32);
}
//
//
// NvAddRAM()
//
// This function adds a new data area to RAM.
// This function requires that enough free RAM space is available to add the new data.
//
static void
NvAddRAM(
TPMI_RH_NV_INDEX handle, // IN: NV handle
UINT32 size // IN: size of data
)
{
// Add data space at the end of reserved RAM buffer
UINT32 value = size + sizeof(TPMI_RH_NV_INDEX);
memcpy(&s_ramIndex[s_ramIndexSize], &value,
sizeof(s_ramIndex[s_ramIndexSize]));
memcpy(&s_ramIndex[s_ramIndexSize + sizeof(UINT32)], &handle,
sizeof(s_ramIndex[s_ramIndexSize + sizeof(UINT32)]));
s_ramIndexSize += sizeof(UINT32) + sizeof(TPMI_RH_NV_INDEX) + size;
pAssert(s_ramIndexSize <= RAM_INDEX_SPACE);
// Update NV version of s_ramIndexSize
_plat__NvMemoryWrite(s_ramIndexSizeAddr, sizeof(UINT32), &s_ramIndexSize);
// Write reserved RAM space to NV to reflect the newly added NV Index
_plat__NvMemoryWrite(s_ramIndexAddr, RAM_INDEX_SPACE, s_ramIndex);
return;
}
//
//
// NvDeleteRAM()
//
// This function is used to delete a RAM-backed NV Index data area.
// This function assumes the data of NV Index exists in RAM
//
static void
NvDeleteRAM(
TPMI_RH_NV_INDEX handle // IN: NV handle
)
{
UINT32 nodeOffset;
UINT32 nextNode;
UINT32 size;
nodeOffset = NvGetRAMIndexOffset(handle);
// Move the pointer back to get the size field of this node
nodeOffset -= sizeof(UINT32) + sizeof(TPMI_RH_NV_INDEX);
// Get node size
memcpy(&size, &s_ramIndex[nodeOffset], sizeof(size));
// Get the offset of next node
nextNode = nodeOffset + sizeof(UINT32) + size;
// Move data
MemoryMove(s_ramIndex + nodeOffset, s_ramIndex + nextNode,
s_ramIndexSize - nextNode, s_ramIndexSize - nextNode);
// Update RAM size
s_ramIndexSize -= size + sizeof(UINT32);
// Update NV version of s_ramIndexSize
_plat__NvMemoryWrite(s_ramIndexSizeAddr, sizeof(UINT32), &s_ramIndexSize);
// Write reserved RAM space to NV to reflect the newly delete NV Index
_plat__NvMemoryWrite(s_ramIndexAddr, RAM_INDEX_SPACE, s_ramIndex);
return;
}
//
//
//
// Utility Functions
//
// NvInitStatic()
//
// This function initializes the static variables used in the NV subsystem.
//
static void
NvInitStatic(
void
)
{
UINT16 i;
UINT32 reservedAddr;
s_reservedSize[NV_DISABLE_CLEAR] = sizeof(gp.disableClear);
s_reservedSize[NV_OWNER_ALG] = sizeof(gp.ownerAlg);
s_reservedSize[NV_ENDORSEMENT_ALG] = sizeof(gp.endorsementAlg);
s_reservedSize[NV_LOCKOUT_ALG] = sizeof(gp.lockoutAlg);
s_reservedSize[NV_OWNER_POLICY] = sizeof(gp.ownerPolicy);
s_reservedSize[NV_ENDORSEMENT_POLICY] = sizeof(gp.endorsementPolicy);
s_reservedSize[NV_LOCKOUT_POLICY] = sizeof(gp.lockoutPolicy);
s_reservedSize[NV_OWNER_AUTH] = sizeof(gp.ownerAuth);
s_reservedSize[NV_ENDORSEMENT_AUTH] = sizeof(gp.endorsementAuth);
s_reservedSize[NV_LOCKOUT_AUTH] = sizeof(gp.lockoutAuth);
s_reservedSize[NV_EP_SEED] = sizeof(gp.EPSeed);
s_reservedSize[NV_SP_SEED] = sizeof(gp.SPSeed);
s_reservedSize[NV_PP_SEED] = sizeof(gp.PPSeed);
s_reservedSize[NV_PH_PROOF] = sizeof(gp.phProof);
s_reservedSize[NV_SH_PROOF] = sizeof(gp.shProof);
s_reservedSize[NV_EH_PROOF] = sizeof(gp.ehProof);
s_reservedSize[NV_TOTAL_RESET_COUNT] = sizeof(gp.totalResetCount);
s_reservedSize[NV_RESET_COUNT] = sizeof(gp.resetCount);
s_reservedSize[NV_PCR_POLICIES] = sizeof(gp.pcrPolicies);
s_reservedSize[NV_PCR_ALLOCATED] = sizeof(gp.pcrAllocated);
s_reservedSize[NV_PP_LIST] = sizeof(gp.ppList);
s_reservedSize[NV_FAILED_TRIES] = sizeof(gp.failedTries);
s_reservedSize[NV_MAX_TRIES] = sizeof(gp.maxTries);
s_reservedSize[NV_RECOVERY_TIME] = sizeof(gp.recoveryTime);
s_reservedSize[NV_LOCKOUT_RECOVERY] = sizeof(gp.lockoutRecovery);
s_reservedSize[NV_LOCKOUT_AUTH_ENABLED] = sizeof(gp.lockOutAuthEnabled);
s_reservedSize[NV_ORDERLY] = sizeof(gp.orderlyState);
s_reservedSize[NV_AUDIT_COMMANDS] = sizeof(gp.auditComands);
s_reservedSize[NV_AUDIT_HASH_ALG] = sizeof(gp.auditHashAlg);
s_reservedSize[NV_AUDIT_COUNTER] = sizeof(gp.auditCounter);
s_reservedSize[NV_ALGORITHM_SET] = sizeof(gp.algorithmSet);
s_reservedSize[NV_FIRMWARE_V1] = sizeof(gp.firmwareV1);
s_reservedSize[NV_FIRMWARE_V2] = sizeof(gp.firmwareV2);
s_reservedSize[NV_ORDERLY_DATA] = sizeof(go);
s_reservedSize[NV_STATE_CLEAR] = sizeof(gc);
s_reservedSize[NV_STATE_RESET] = sizeof(gr);
// Initialize reserved data address. In this implementation, reserved data
// is stored at the start of NV memory
reservedAddr = 0;
for(i = 0; i < NV_RESERVE_LAST; i++)
{
s_reservedAddr[i] = reservedAddr;
reservedAddr += s_reservedSize[i];
}
// Initialize auxiliary variable space for index/evict implementation.
// Auxiliary variables are stored after reserved data area
// RAM index copy starts at the beginning
s_ramIndexSizeAddr = reservedAddr;
s_ramIndexAddr = s_ramIndexSizeAddr + sizeof(UINT32);
// Maximum counter value
s_maxCountAddr = s_ramIndexAddr + RAM_INDEX_SPACE;
// dynamic memory start
s_evictNvStart = s_maxCountAddr + sizeof(UINT64);
// dynamic memory ends at the end of NV memory
s_evictNvEnd = NV_MEMORY_SIZE;
return;
}
//
//
// NvInit()
//
// This function initializes the NV system at pre-install time.
// This function should only be called in a manufacturing environment or in a simulation.
// The layout of NV memory space is an implementation choice.
//
void
NvInit(
void
)
{
UINT32 nullPointer = 0;
UINT64 zeroCounter = 0;
// Initialize static variables
NvInitStatic();
// Initialize RAM index space as unused
_plat__NvMemoryWrite(s_ramIndexSizeAddr, sizeof(UINT32), &nullPointer);
// Initialize max counter value to 0
_plat__NvMemoryWrite(s_maxCountAddr, sizeof(UINT64), &zeroCounter);
// Initialize the next offset of the first entry in evict/index list to 0
_plat__NvMemoryWrite(s_evictNvStart, sizeof(TPM_HANDLE), &nullPointer);
return;
}
//
//
// NvReadReserved()
//
// This function is used to move reserved data from NV memory to RAM.
//
void
NvReadReserved(
NV_RESERVE type, // IN: type of reserved data
void *buffer // OUT: buffer receives the data.
)
{
// Input type should be valid
pAssert(type >= 0 && type < NV_RESERVE_LAST);
_plat__NvMemoryRead(s_reservedAddr[type], s_reservedSize[type], buffer);
return;
}
//
//
// NvWriteReserved()
//
// This function is used to post a reserved data for writing to NV memory. Before the TPM completes the
// operation, the value will be written.
//
void
NvWriteReserved(
NV_RESERVE type, // IN: type of reserved data
void *buffer // IN: data buffer
)
{
// Input type should be valid
pAssert(type >= 0 && type < NV_RESERVE_LAST);
_plat__NvMemoryWrite(s_reservedAddr[type], s_reservedSize[type], buffer);
// Set the flag that a NV write happens
g_updateNV = TRUE;
return;
}
//
//
// NvReadPersistent()
//
// This function reads persistent data to the RAM copy of the gp structure.
//
void
NvReadPersistent(
void
)
{
// Hierarchy persistent data
NvReadReserved(NV_DISABLE_CLEAR, &gp.disableClear);
NvReadReserved(NV_OWNER_ALG, &gp.ownerAlg);
NvReadReserved(NV_ENDORSEMENT_ALG, &gp.endorsementAlg);
NvReadReserved(NV_LOCKOUT_ALG, &gp.lockoutAlg);
NvReadReserved(NV_OWNER_POLICY, &gp.ownerPolicy);
NvReadReserved(NV_ENDORSEMENT_POLICY, &gp.endorsementPolicy);
NvReadReserved(NV_LOCKOUT_POLICY, &gp.lockoutPolicy);
NvReadReserved(NV_OWNER_AUTH, &gp.ownerAuth);
NvReadReserved(NV_ENDORSEMENT_AUTH, &gp.endorsementAuth);
NvReadReserved(NV_LOCKOUT_AUTH, &gp.lockoutAuth);
NvReadReserved(NV_EP_SEED, &gp.EPSeed);
NvReadReserved(NV_SP_SEED, &gp.SPSeed);
NvReadReserved(NV_PP_SEED, &gp.PPSeed);
NvReadReserved(NV_PH_PROOF, &gp.phProof);
NvReadReserved(NV_SH_PROOF, &gp.shProof);
NvReadReserved(NV_EH_PROOF, &gp.ehProof);
// Time persistent data
NvReadReserved(NV_TOTAL_RESET_COUNT, &gp.totalResetCount);
NvReadReserved(NV_RESET_COUNT, &gp.resetCount);
// PCR persistent data
NvReadReserved(NV_PCR_POLICIES, &gp.pcrPolicies);
NvReadReserved(NV_PCR_ALLOCATED, &gp.pcrAllocated);
// Physical Presence persistent data
NvReadReserved(NV_PP_LIST, &gp.ppList);
// Dictionary attack values persistent data
NvReadReserved(NV_FAILED_TRIES, &gp.failedTries);
NvReadReserved(NV_MAX_TRIES, &gp.maxTries);
NvReadReserved(NV_RECOVERY_TIME, &gp.recoveryTime);
//
NvReadReserved(NV_LOCKOUT_RECOVERY, &gp.lockoutRecovery);
NvReadReserved(NV_LOCKOUT_AUTH_ENABLED, &gp.lockOutAuthEnabled);
// Orderly State persistent data
NvReadReserved(NV_ORDERLY, &gp.orderlyState);
// Command audit values persistent data
NvReadReserved(NV_AUDIT_COMMANDS, &gp.auditComands);
NvReadReserved(NV_AUDIT_HASH_ALG, &gp.auditHashAlg);
NvReadReserved(NV_AUDIT_COUNTER, &gp.auditCounter);
// Algorithm selection persistent data
NvReadReserved(NV_ALGORITHM_SET, &gp.algorithmSet);
// Firmware version persistent data
#ifdef EMBEDDED_MODE
_plat__GetFwVersion(&gp.firmwareV1, &gp.firmwareV2);
#else
NvReadReserved(NV_FIRMWARE_V1, &gp.firmwareV1);
NvReadReserved(NV_FIRMWARE_V2, &gp.firmwareV2);
#endif
return;
}
//
//
// NvIsPlatformPersistentHandle()
//
// This function indicates if a handle references a persistent object in the range belonging to the platform.
//
// Return Value Meaning
//
// TRUE handle references a platform persistent object
// FALSE handle does not reference platform persistent object and may
// reference an owner persistent object either
//
BOOL
NvIsPlatformPersistentHandle(
TPM_HANDLE handle // IN: handle
)
{
return (handle >= PLATFORM_PERSISTENT && handle <= PERSISTENT_LAST);
}
//
//
// NvIsOwnerPersistentHandle()
//
// This function indicates if a handle references a persistent object in the range belonging to the owner.
//
// Return Value Meaning
//
// TRUE handle is owner persistent handle
// FALSE handle is not owner persistent handle and may not be a persistent
// handle at all
//
BOOL
NvIsOwnerPersistentHandle(
TPM_HANDLE handle // IN: handle
)
{
return (handle >= PERSISTENT_FIRST && handle < PLATFORM_PERSISTENT);
}
//
//
// NvNextIndex()
//
// This function returns the offset in NV of the next NV Index entry. A value of 0 indicates the end of the list.
// Family "2.0" TCG Published Page 131
// Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014
// Trusted Platform Module Library Part 4: Supporting Routines
//
static UINT32
NvNextIndex(
NV_ITER *iter
)
{
UINT32 addr;
TPM_HANDLE handle;
while((addr = NvNext(iter)) != 0)
{
// Read handle
_plat__NvMemoryRead(addr, sizeof(TPM_HANDLE), &handle);
if(HandleGetType(handle) == TPM_HT_NV_INDEX)
return addr;
}
pAssert(addr == 0);
return addr;
}
//
//
// NvNextEvict()
//
// This function returns the offset in NV of the next evict object entry. A value of 0 indicates the end of the
// list.
//
static UINT32
NvNextEvict(
NV_ITER *iter
)
{
UINT32 addr;
TPM_HANDLE handle;
while((addr = NvNext(iter)) != 0)
{
// Read handle
_plat__NvMemoryRead(addr, sizeof(TPM_HANDLE), &handle);
if(HandleGetType(handle) == TPM_HT_PERSISTENT)
return addr;
}
pAssert(addr == 0);
return addr;
}
//
//
// NvFindHandle()
//
// this function returns the offset in NV memory of the entity associated with the input handle. A value of
// zero indicates that handle does not exist reference an existing persistent object or defined NV Index.
//
static UINT32
NvFindHandle(
TPM_HANDLE handle
)
{
UINT32 addr;
NV_ITER iter = NV_ITER_INIT;
while((addr = NvNext(&iter)) != 0)
{
TPM_HANDLE entityHandle;
// Read handle
//
_plat__NvMemoryRead(addr, sizeof(TPM_HANDLE), &entityHandle);
if(entityHandle == handle)
return addr;
}
pAssert(addr == 0);
return addr;
}
//
// NvCheckAndMigrateIfNeeded()
//
// Supported only in EMBEDDED_MODE.
//
// Check if the NVRAM storage format changed, and if so - reinitialize the
// NVRAM. No content migration yet, hopefully it will come one day.
//
// Note that the NV_FIRMWARE_V1 and NV_FIRMWARE_V2 values not used to store
// TPM versoion when in embedded mode are used for NVRAM format version
// instead.
//
//
static void
NvCheckAndMigrateIfNeeded(void)
{
#ifdef EMBEDDED_MODE
UINT32 nv_vers1;
UINT32 nv_vers2;
NvReadReserved(NV_FIRMWARE_V1, &nv_vers1);
NvReadReserved(NV_FIRMWARE_V2, &nv_vers2);
if ((nv_vers1 == ~nv_vers2) && (nv_vers1 == NV_FORMAT_VERSION))
return; // All is well.
// This will reinitialize NVRAM to empty. Migration code will come here
// later.
NvInit();
nv_vers1 = NV_FORMAT_VERSION;
nv_vers2 = ~NV_FORMAT_VERSION;
NvWriteReserved(NV_FIRMWARE_V1, &nv_vers1);
NvWriteReserved(NV_FIRMWARE_V2, &nv_vers2);
NvCommit();
#endif
}
//
//
// NvPowerOn()
//
// This function is called at _TPM_Init() to initialize the NV environment.
//
// Return Value Meaning
//
// TRUE all NV was initialized
// FALSE the NV containing saved state had an error and
// TPM2_Startup(CLEAR) is required
//
BOOL
NvPowerOn(
void
)
{
int nvError = 0;
// If power was lost, need to re-establish the RAM data that is loaded from
// NV and initialize the static variables
if(_plat__WasPowerLost(TRUE))
{
if((nvError = _plat__NVEnable(0)) < 0)
FAIL(FATAL_ERROR_NV_UNRECOVERABLE);
NvInitStatic();
NvCheckAndMigrateIfNeeded();
}
return nvError == 0;
}
//
//
// NvStateSave()
//
// This function is used to cause the memory containing the RAM backed NV Indices to be written to NV.
//
void
NvStateSave(
void
)
{
// Write RAM backed NV Index info to NV
// No need to save s_ramIndexSize because we save it to NV whenever it is
// updated.
_plat__NvMemoryWrite(s_ramIndexAddr, RAM_INDEX_SPACE, s_ramIndex);
// Set the flag so that an NV write happens before the command completes.
g_updateNV = TRUE;
return;
}
//
//
//
// NvEntityStartup()
//
// This function is called at TPM_Startup(). If the startup completes a TPM Resume cycle, no action is
// taken. If the startup is a TPM Reset or a TPM Restart, then this function will:
// a) clear read/write lock;
// b) reset NV Index data that has TPMA_NV_CLEAR_STCLEAR SET; and
// c) set the lower bits in orderly counters to 1 for a non-orderly startup
// It is a prerequisite that NV be available for writing before this function is called.
//
void
NvEntityStartup(
STARTUP_TYPE type // IN: start up type
)
{
NV_ITER iter = NV_ITER_INIT;
UINT32 currentAddr; // offset points to the current entity
// Restore RAM index data
_plat__NvMemoryRead(s_ramIndexSizeAddr, sizeof(UINT32), &s_ramIndexSize);
_plat__NvMemoryRead(s_ramIndexAddr, RAM_INDEX_SPACE, s_ramIndex);
// If recovering from state save, do nothing
if(type == SU_RESUME)
return;
// Iterate all the NV Index to clear the locks
while((currentAddr = NvNextIndex(&iter)) != 0)
{
NV_INDEX nvIndex;
UINT32 indexAddr; // NV address points to index info
TPMA_NV attributes;
UINT32 attributesValue;
UINT32 publicAreaAttributesValue;
indexAddr = currentAddr + sizeof(TPM_HANDLE);
// Read NV Index info structure
_plat__NvMemoryRead(indexAddr, sizeof(NV_INDEX), &nvIndex);
attributes = nvIndex.publicArea.attributes;
// Clear read/write lock
if(attributes.TPMA_NV_READLOCKED == SET)
attributes.TPMA_NV_READLOCKED = CLEAR;
if( attributes.TPMA_NV_WRITELOCKED == SET
&& ( attributes.TPMA_NV_WRITTEN == CLEAR
|| attributes.TPMA_NV_WRITEDEFINE == CLEAR
)
)
attributes.TPMA_NV_WRITELOCKED = CLEAR;
// Reset NV data for TPMA_NV_CLEAR_STCLEAR
if(attributes.TPMA_NV_CLEAR_STCLEAR == SET)
{
attributes.TPMA_NV_WRITTEN = CLEAR;
attributes.TPMA_NV_WRITELOCKED = CLEAR;
}
// Reset NV data for orderly values that are not counters
// NOTE: The function has already exited on a TPM Resume, so the only
// things being processed are TPM Restart and TPM Reset
if( type == SU_RESET
&& attributes.TPMA_NV_ORDERLY == SET
&& attributes.TPMA_NV_COUNTER == CLEAR
)
attributes.TPMA_NV_WRITTEN = CLEAR;
// Write NV Index info back if it has changed
memcpy(&attributesValue, &attributes, sizeof(attributesValue));
memcpy(&publicAreaAttributesValue, &nvIndex.publicArea.attributes,
sizeof(publicAreaAttributesValue));
if(attributesValue != publicAreaAttributesValue)
{
nvIndex.publicArea.attributes = attributes;
_plat__NvMemoryWrite(indexAddr, sizeof(NV_INDEX), &nvIndex);
// Set the flag that a NV write happens
g_updateNV = TRUE;
}
// Set the lower bits in an orderly counter to 1 for a non-orderly startup
if( g_prevOrderlyState == SHUTDOWN_NONE
&& attributes.TPMA_NV_WRITTEN == SET)
{
if( attributes.TPMA_NV_ORDERLY == SET
&& attributes.TPMA_NV_COUNTER == SET)
{
TPMI_RH_NV_INDEX nvHandle;
UINT64 counter;
// Read NV handle
_plat__NvMemoryRead(currentAddr, sizeof(TPM_HANDLE), &nvHandle);
// Read the counter value saved to NV upon the last roll over.
// Do not use RAM backed storage for this once.
nvIndex.publicArea.attributes.TPMA_NV_ORDERLY = CLEAR;
NvGetIntIndexData(nvHandle, &nvIndex, &counter);
nvIndex.publicArea.attributes.TPMA_NV_ORDERLY = SET;
// Set the lower bits of counter to 1's
counter |= MAX_ORDERLY_COUNT;
// Write back to RAM
NvWriteIndexData(nvHandle, &nvIndex, 0, sizeof(counter), &counter);
// No write to NV because an orderly shutdown will update the
// counters.
}
}
}
return;
}
//
//
// NV Access Functions
//
// Introduction
//
// This set of functions provide accessing NV Index and persistent objects based using a handle for
// reference to the entity.
//
// NvIsUndefinedIndex()
//
// This function is used to verify that an NV Index is not defined. This is only used by
// TPM2_NV_DefineSpace().
//
//
//
//
// Return Value Meaning
//
// TRUE the handle points to an existing NV Index
// FALSE the handle points to a non-existent Index
//
BOOL
NvIsUndefinedIndex(
TPMI_RH_NV_INDEX handle // IN: handle
)
{
UINT32 entityAddr; // offset points to the entity
pAssert(HandleGetType(handle) == TPM_HT_NV_INDEX);
// Find the address of index
entityAddr = NvFindHandle(handle);
// If handle is not found, return TPM_RC_SUCCESS
if(entityAddr == 0)
return TPM_RC_SUCCESS;
// NV Index is defined
return TPM_RC_NV_DEFINED;
}
//
//
// NvIndexIsAccessible()
//
// This function validates that a handle references a defined NV Index and that the Index is currently
// accessible.
//
// Error Returns Meaning
//
// TPM_RC_HANDLE the handle points to an undefined NV Index If shEnable is CLEAR,
// this would include an index created using ownerAuth. If phEnableNV
// is CLEAR, this would include and index created using platform auth
// TPM_RC_NV_READLOCKED Index is present but locked for reading and command does not write
// to the index
// TPM_RC_NV_WRITELOCKED Index is present but locked for writing and command writes to the
// index
//
TPM_RC
NvIndexIsAccessible(
TPMI_RH_NV_INDEX handle, // IN: handle
TPM_CC commandCode // IN: the command
)
{
UINT32 entityAddr; // offset points to the entity
NV_INDEX nvIndex; //
pAssert(HandleGetType(handle) == TPM_HT_NV_INDEX);
// Find the address of index
entityAddr = NvFindHandle(handle);
// If handle is not found, return TPM_RC_HANDLE
if(entityAddr == 0)
return TPM_RC_HANDLE;
// Read NV Index info structure
_plat__NvMemoryRead(entityAddr + sizeof(TPM_HANDLE), sizeof(NV_INDEX),
&nvIndex);
if(gc.shEnable == FALSE || gc.phEnableNV == FALSE)
{
// if shEnable is CLEAR, an ownerCreate NV Index should not be
// indicated as present
if(nvIndex.publicArea.attributes.TPMA_NV_PLATFORMCREATE == CLEAR)
{
/*
* FWMP is a Chrome OS specific object saved at address 0x100a, it
* needs to be available for reading even before TPM2_Startup
* command is issued.
*/
UINT32 isFwmpRead = (handle == 0x100100a) &&
IsReadOperation(commandCode);
if((gc.shEnable == FALSE) && !isFwmpRead)
return TPM_RC_HANDLE;
}
// if phEnableNV is CLEAR, a platform created Index should not
// be visible
else if(gc.phEnableNV == FALSE)
return TPM_RC_HANDLE;
}
// If the Index is write locked and this is an NV Write operation...
if( nvIndex.publicArea.attributes.TPMA_NV_WRITELOCKED
&& IsWriteOperation(commandCode))
{
// then return a locked indication unless the command is TPM2_NV_WriteLock
if(commandCode != TPM_CC_NV_WriteLock)
return TPM_RC_NV_LOCKED;
return TPM_RC_SUCCESS;
}
// If the Index is read locked and this is an NV Read operation...
if( nvIndex.publicArea.attributes.TPMA_NV_READLOCKED
&& IsReadOperation(commandCode))
{
// then return a locked indication unless the command is TPM2_NV_ReadLock
if(commandCode != TPM_CC_NV_ReadLock)
return TPM_RC_NV_LOCKED;
return TPM_RC_SUCCESS;
}
// NV Index is accessible
return TPM_RC_SUCCESS;
}
//
//
// NvIsUndefinedEvictHandle()
//
// This function indicates if a handle does not reference an existing persistent object. This function requires
// that the handle be in the proper range for persistent objects.
//
// Return Value Meaning
//
// TRUE handle does not reference an existing persistent object
// FALSE handle does reference an existing persistent object
//
static BOOL
NvIsUndefinedEvictHandle(
TPM_HANDLE handle // IN: handle
)
{
UINT32 entityAddr; // offset points to the entity
pAssert(HandleGetType(handle) == TPM_HT_PERSISTENT);
// Find the address of evict object
entityAddr = NvFindHandle(handle);
// If handle is not found, return TRUE
if(entityAddr == 0)
return TRUE;
else
return FALSE;
}
//
//
// NvUnmarshalObject()
//
// This function accepts a buffer containing a marshaled OBJECT
// structure, a pointer to the area where the input data should be
// unmarshaled, and a pointer to the size of the output area.
//
// No error checking is performed, unmarshaled data is guaranteed not to
// spill over the allocated space.
//
static TPM_RC NvUnmarshalObject(OBJECT *o, BYTE **buf, INT32 *size)
{
TPM_RC result;
// There is no generated function to unmarshal the attributes field, do it
// by hand.
MemoryCopy(&o->attributes, *buf, sizeof(o->attributes), *size);
*buf += sizeof(o->attributes);
*size -= sizeof(o->attributes);
result = TPMT_PUBLIC_Unmarshal(&o->publicArea, buf, size);
if (result != TPM_RC_SUCCESS)
return result;
result = TPMT_SENSITIVE_Unmarshal(&o->sensitive, buf, size);
if (result != TPM_RC_SUCCESS)
return result;
#ifdef TPM_ALG_RSA
result = TPM2B_PUBLIC_KEY_RSA_Unmarshal(&o->privateExponent, buf, size);
if (result != TPM_RC_SUCCESS)
return result;
#endif
result = TPM2B_NAME_Unmarshal(&o->qualifiedName, buf, size);
if (result != TPM_RC_SUCCESS)
return result;
result = TPMI_DH_OBJECT_Unmarshal(&o->evictHandle, buf, size, TRUE);
if (result != TPM_RC_SUCCESS)
return result;
return TPM2B_NAME_Unmarshal(&o->name, buf, size);
}
//
//
// NvGetEvictObject()
//
// This function is used to dereference an evict object handle and get a pointer to the object.
//
// Error Returns Meaning
//
// TPM_RC_HANDLE the handle does not point to an existing persistent object
//
TPM_RC
NvGetEvictObject(
TPM_HANDLE handle, // IN: handle
OBJECT *object // OUT: object data
)
{
UINT32 entityAddr; // offset points to the entity
TPM_RC result = TPM_RC_SUCCESS;
pAssert(HandleGetType(handle) == TPM_HT_PERSISTENT);
// Find the address of evict object
entityAddr = NvFindHandle(handle);
// If handle is not found, return an error
if(entityAddr == 0) {
result = TPM_RC_HANDLE;
} else {
UINT32 storedSize;
UINT32 nextEntryAddr;
// Let's calculate the size of object as stored in NVMEM.
_plat__NvMemoryRead(entityAddr - sizeof(UINT32),
sizeof(UINT32), &nextEntryAddr);
storedSize = nextEntryAddr - entityAddr;
if (storedSize == (sizeof(TPM_HANDLE) + sizeof(OBJECT))) {
// Read evict object stored unmarshaled.
_plat__NvMemoryRead(entityAddr + sizeof(TPM_HANDLE),
sizeof(OBJECT),
object);
} else {
// Must be stored marshaled, let's unmarshal it.
BYTE marshaled[sizeof(OBJECT)];
INT32 max_size = sizeof(marshaled);
BYTE *marshaledPtr = marshaled;
_plat__NvMemoryRead(entityAddr + sizeof(TPM_HANDLE),
storedSize, marshaled);
result = NvUnmarshalObject(object, &marshaledPtr, &max_size);
}
}
// whether there is an error or not, make sure that the evict
// status of the object is set so that the slot will get freed on exit
object->attributes.evict = SET;
return result;
}
//
//
// NvGetIndexInfo()
//
// This function is used to retrieve the contents of an NV Index.
// An implementation is allowed to save the NV Index in a vendor-defined format. If the format is different
// from the default used by the reference code, then this function would be changed to reformat the data into
// the default format.
// A prerequisite to calling this function is that the handle must be known to reference a defined NV Index.
//
void
NvGetIndexInfo(
TPMI_RH_NV_INDEX handle, // IN: handle
NV_INDEX *nvIndex // OUT: NV index structure
)
{
UINT32 entityAddr; // offset points to the entity
pAssert(HandleGetType(handle) == TPM_HT_NV_INDEX);
// Find the address of NV index
entityAddr = NvFindHandle(handle);
pAssert(entityAddr != 0);
// This implementation uses the default format so just
// read the data in
_plat__NvMemoryRead(entityAddr + sizeof(TPM_HANDLE), sizeof(NV_INDEX),
nvIndex);
return;
}
//
//
// NvInitialCounter()
//
// This function returns the value to be used when a counter index is initialized. It will scan the NV counters
// and find the highest value in any active counter. It will use that value as the starting point. If there are no
// active counters, it will use the value of the previous largest counter.
//
UINT64
NvInitialCounter(
void
)
{
UINT64 maxCount;
NV_ITER iter = NV_ITER_INIT;
UINT32 currentAddr;
// Read the maxCount value
maxCount = NvReadMaxCount();
// Iterate all existing counters
while((currentAddr = NvNextIndex(&iter)) != 0)
{
TPMI_RH_NV_INDEX nvHandle;
NV_INDEX nvIndex;
// Read NV handle
_plat__NvMemoryRead(currentAddr, sizeof(TPM_HANDLE), &nvHandle);
// Get NV Index
NvGetIndexInfo(nvHandle, &nvIndex);
if( nvIndex.publicArea.attributes.TPMA_NV_COUNTER == SET
&& nvIndex.publicArea.attributes.TPMA_NV_WRITTEN == SET)
{
UINT64 countValue;
// Read counter value
NvGetIntIndexData(nvHandle, &nvIndex, &countValue);
if(countValue > maxCount)
maxCount = countValue;
}
}
// Initialize the new counter value to be maxCount + 1
// A counter is only initialized the first time it is written. The
// way to write a counter is with TPM2_NV_INCREMENT(). Since the
// "initial" value of a defined counter is the largest count value that
// may have existed in this index previously, then the first use would
// add one to that value.
return maxCount;
}
//
//
// NvGetIndexData()
//
// This function is used to access the data in an NV Index. The data is returned as a byte sequence. Since
// counter values are kept in native format, they are converted to canonical form before being returned.
// Family "2.0" TCG Published Page 139
// Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014
// Trusted Platform Module Library Part 4: Supporting Routines
//
//
// This function requires that the NV Index be defined, and that the required data is within the data range. It
// also requires that TPMA_NV_WRITTEN of the Index is SET.
//
void
NvGetIndexData(
TPMI_RH_NV_INDEX handle, // IN: handle
NV_INDEX *nvIndex, // IN: RAM image of index header
UINT32 offset, // IN: offset of NV data
UINT16 size, // IN: size of NV data
void *data // OUT: data buffer
)
{
pAssert(nvIndex->publicArea.attributes.TPMA_NV_WRITTEN == SET);
if( nvIndex->publicArea.attributes.TPMA_NV_BITS == SET
|| nvIndex->publicArea.attributes.TPMA_NV_COUNTER == SET)
{
// Read bit or counter data in canonical form
UINT64 dataInInt;
NvGetIntIndexData(handle, nvIndex, &dataInInt);
UINT64_TO_BYTE_ARRAY(dataInInt, (BYTE *)data);
}
else
{
if(nvIndex->publicArea.attributes.TPMA_NV_ORDERLY == SET)
{
UINT32 ramAddr;
// Get data from RAM buffer
ramAddr = NvGetRAMIndexOffset(handle);
MemoryCopy(data, s_ramIndex + ramAddr + offset, size, size);
}
else
{
UINT32 entityAddr;
entityAddr = NvFindHandle(handle);
// Get data from NV
// Skip NV Index info, read data buffer
entityAddr += sizeof(TPM_HANDLE) + sizeof(NV_INDEX) + offset;
// Read the data
_plat__NvMemoryRead(entityAddr, size, data);
}
}
return;
}
//
//
// NvGetIntIndexData()
//
// Get data in integer format of a bit or counter NV Index.
// This function requires that the NV Index is defined and that the NV Index previously has been written.
//
void
NvGetIntIndexData(
TPMI_RH_NV_INDEX handle, // IN: handle
NV_INDEX *nvIndex, // IN: RAM image of NV Index header
UINT64 *data // IN: UINT64 pointer for counter or bit
)
{
// Validate that index has been written and is the right type
pAssert( nvIndex->publicArea.attributes.TPMA_NV_WRITTEN == SET
&& ( nvIndex->publicArea.attributes.TPMA_NV_BITS == SET
|| nvIndex->publicArea.attributes.TPMA_NV_COUNTER == SET
)
);
// bit and counter value is store in native format for TPM CPU. So we directly
// copy the contents of NV to output data buffer
if(nvIndex->publicArea.attributes.TPMA_NV_ORDERLY == SET)
{
UINT32 ramAddr;
// Get data from RAM buffer
ramAddr = NvGetRAMIndexOffset(handle);
MemoryCopy(data, s_ramIndex + ramAddr, sizeof(*data), sizeof(*data));
}
else
{
UINT32 entityAddr;
entityAddr = NvFindHandle(handle);
// Get data from NV
// Skip NV Index info, read data buffer
_plat__NvMemoryRead(
entityAddr + sizeof(TPM_HANDLE) + sizeof(NV_INDEX),
sizeof(UINT64), data);
}
return;
}
//
//
// NvWriteIndexInfo()
//
// This function is called to queue the write of NV Index data to persistent memory.
// This function requires that NV Index is defined.
//
// Error Returns Meaning
//
// TPM_RC_NV_RATE NV is rate limiting so retry
// TPM_RC_NV_UNAVAILABLE NV is not available
//
TPM_RC
NvWriteIndexInfo(
TPMI_RH_NV_INDEX handle, // IN: handle
NV_INDEX *nvIndex // IN: NV Index info to be written
)
{
UINT32 entryAddr;
TPM_RC result;
// Get the starting offset for the index in the RAM image of NV
entryAddr = NvFindHandle(handle);
pAssert(entryAddr != 0);
// Step over the link value
entryAddr = entryAddr + sizeof(TPM_HANDLE);
// If the index data is actually changed, then a write to NV is required
if(_plat__NvIsDifferent(entryAddr, sizeof(NV_INDEX),nvIndex))
{
// Make sure that NV is available
result = NvIsAvailable();
if(result != TPM_RC_SUCCESS)
return result;
_plat__NvMemoryWrite(entryAddr, sizeof(NV_INDEX), nvIndex);
g_updateNV = TRUE;
}
return TPM_RC_SUCCESS;
}
//
//
// NvWriteIndexData()
//
// This function is used to write NV index data.
// This function requires that the NV Index is defined, and the data is within the defined data range for the
// index.
//
// Error Returns Meaning
//
// TPM_RC_NV_RATE NV is rate limiting so retry
// TPM_RC_NV_UNAVAILABLE NV is not available
//
TPM_RC
NvWriteIndexData(
TPMI_RH_NV_INDEX handle, // IN: handle
NV_INDEX *nvIndex, // IN: RAM copy of NV Index
UINT32 offset, // IN: offset of NV data
UINT32 size, // IN: size of NV data
void *data // OUT: data buffer
)
{
TPM_RC result;
// Validate that write falls within range of the index
pAssert(nvIndex->publicArea.dataSize >= offset + size);
// Update TPMA_NV_WRITTEN bit if necessary
if(nvIndex->publicArea.attributes.TPMA_NV_WRITTEN == CLEAR)
{
nvIndex->publicArea.attributes.TPMA_NV_WRITTEN = SET;
result = NvWriteIndexInfo(handle, nvIndex);
if(result != TPM_RC_SUCCESS)
return result;
}
// Check to see if process for an orderly index is required.
if(nvIndex->publicArea.attributes.TPMA_NV_ORDERLY == SET)
{
UINT32 ramAddr;
// Write data to RAM buffer
ramAddr = NvGetRAMIndexOffset(handle);
MemoryCopy(s_ramIndex + ramAddr + offset, data, size,
sizeof(s_ramIndex) - ramAddr - offset);
// NV update does not happen for orderly index. Have
// to clear orderlyState to reflect that we have changed the
// NV and an orderly shutdown is required. Only going to do this if we
// are not processing a counter that has just rolled over
if(g_updateNV == FALSE)
g_clearOrderly = TRUE;
}
// Need to process this part if the Index isn't orderly or if it is
// an orderly counter that just rolled over.
if(g_updateNV || nvIndex->publicArea.attributes.TPMA_NV_ORDERLY == CLEAR)
{
// Processing for an index with TPMA_NV_ORDERLY CLEAR
UINT32 entryAddr = NvFindHandle(handle);
pAssert(entryAddr != 0);
//
// Offset into the index to the first byte of the data to be written
entryAddr += sizeof(TPM_HANDLE) + sizeof(NV_INDEX) + offset;
// If the data is actually changed, then a write to NV is required
if(_plat__NvIsDifferent(entryAddr, size, data))
{
// Make sure that NV is available
result = NvIsAvailable();
if(result != TPM_RC_SUCCESS)
return result;
_plat__NvMemoryWrite(entryAddr, size, data);
g_updateNV = TRUE;
}
}
return TPM_RC_SUCCESS;
}
//
//
// NvGetName()
//
// This function is used to compute the Name of an NV Index.
// The name buffer receives the bytes of the Name and the return value is the number of octets in the
// Name.
// This function requires that the NV Index is defined.
//
UINT16
NvGetName(
TPMI_RH_NV_INDEX handle, // IN: handle of the index
NAME *name // OUT: name of the index
)
{
UINT16 dataSize, digestSize;
NV_INDEX nvIndex;
BYTE marshalBuffer[sizeof(TPMS_NV_PUBLIC)];
BYTE *buffer;
INT32 bufferSize;
HASH_STATE hashState;
// Get NV public info
NvGetIndexInfo(handle, &nvIndex);
// Marshal public area
buffer = marshalBuffer;
bufferSize = sizeof(TPMS_NV_PUBLIC);
dataSize = TPMS_NV_PUBLIC_Marshal(&nvIndex.publicArea, &buffer, &bufferSize);
// hash public area
digestSize = CryptStartHash(nvIndex.publicArea.nameAlg, &hashState);
CryptUpdateDigest(&hashState, dataSize, marshalBuffer);
// Complete digest leaving room for the nameAlg
CryptCompleteHash(&hashState, digestSize, &((BYTE *)name)[2]);
// Include the nameAlg
UINT16_TO_BYTE_ARRAY(nvIndex.publicArea.nameAlg, (BYTE *)name);
return digestSize + 2;
}
//
//
// NvDefineIndex()
//
// This function is used to assign NV memory to an NV Index.
//
//
//
// Error Returns Meaning
//
// TPM_RC_NV_SPACE insufficient NV space
//
TPM_RC
NvDefineIndex(
TPMS_NV_PUBLIC *publicArea, // IN: A template for an area to create.
TPM2B_AUTH *authValue // IN: The initial authorization value
)
{
// The buffer to be written to NV memory
BYTE nvBuffer[sizeof(TPM_HANDLE) + sizeof(NV_INDEX)];
NV_INDEX *nvIndex; // a pointer to the NV_INDEX data in
// nvBuffer
UINT16 entrySize; // size of entry
entrySize = sizeof(TPM_HANDLE) + sizeof(NV_INDEX) + publicArea->dataSize;
// Check if we have enough space to create the NV Index
// In this implementation, the only resource limitation is the available NV
// space. Other implementation may have other limitation on counter or on
// NV slot
if(!NvTestSpace(entrySize, TRUE)) return TPM_RC_NV_SPACE;
// if the index to be defined is RAM backed, check RAM space availability
// as well
if(publicArea->attributes.TPMA_NV_ORDERLY == SET
&& !NvTestRAMSpace(publicArea->dataSize))
return TPM_RC_NV_SPACE;
// Copy input value to nvBuffer
// Copy handle
memcpy(nvBuffer, &publicArea->nvIndex, sizeof(TPM_HANDLE));
// Copy NV_INDEX
nvIndex = (NV_INDEX *) (nvBuffer + sizeof(TPM_HANDLE));
nvIndex->publicArea = *publicArea;
nvIndex->authValue = *authValue;
// Add index to NV memory
NvAdd(entrySize, sizeof(TPM_HANDLE) + sizeof(NV_INDEX), nvBuffer);
// If the data of NV Index is RAM backed, add the data area in RAM as well
if(publicArea->attributes.TPMA_NV_ORDERLY == SET)
NvAddRAM(publicArea->nvIndex, publicArea->dataSize);
return TPM_RC_SUCCESS;
}
//
//
// NvMarshalObject()
//
// This function marshals the passed in OBJECT structure into a buffer. A
// pointer to pointer to the buffer and a pointer to the size of the
// buffer are passed in for this function to update as appropriate.
//
// On top of marshaling the object, this function also modifies one of
// the object's properties and sets the evictHandle field of the
// marshaled object to the requested value.
//
// Returns
//
// Marshaled size of the object.
//
static UINT16 NvMarshalObject(OBJECT *o, TPMI_DH_OBJECT evictHandle,
BYTE **buf, INT32 *size)
{
UINT16 marshaledSize;
OBJECT_ATTRIBUTES stored_attributes;
stored_attributes = o->attributes;
stored_attributes.evict = SET;
marshaledSize = sizeof(stored_attributes);
MemoryCopy(*buf, &stored_attributes, marshaledSize, *size);
*buf += marshaledSize;
*size -= marshaledSize;
marshaledSize += TPMT_PUBLIC_Marshal(&o->publicArea, buf, size);
marshaledSize += TPMT_SENSITIVE_Marshal(&o->sensitive, buf, size);
#ifdef TPM_ALG_RSA
marshaledSize += TPM2B_PUBLIC_KEY_RSA_Marshal(&o->privateExponent,
buf, size);
#endif
marshaledSize += TPM2B_NAME_Marshal(&o->qualifiedName, buf, size);
// Use the supplied handle instead of the object contents.
marshaledSize += TPMI_DH_OBJECT_Marshal(&evictHandle, buf, size);
marshaledSize += TPM2B_NAME_Marshal(&o->name, buf, size);
return marshaledSize;
}
//
//
// NvAddEvictObject()
//
// This function is used to assign NV memory to a persistent object.
//
// Error Returns Meaning
//
// TPM_RC_NV_HANDLE the requested handle is already in use
// TPM_RC_NV_SPACE insufficient NV space
//
TPM_RC
NvAddEvictObject(
TPMI_DH_OBJECT evictHandle, // IN: new evict handle
//
OBJECT *object // IN: object to be added
)
{
// The buffer to be written to NV memory
BYTE nvBuffer[sizeof(TPM_HANDLE) + sizeof(OBJECT)];
UINT16 entrySize; // size of entry
BYTE *marshalSpace;
INT32 marshalRoom;
// evict handle type should match the object hierarchy
pAssert( ( NvIsPlatformPersistentHandle(evictHandle)
&& object->attributes.ppsHierarchy == SET)
|| ( NvIsOwnerPersistentHandle(evictHandle)
&& ( object->attributes.spsHierarchy == SET
|| object->attributes.epsHierarchy == SET)));
// Do not attemp storing a duplicate handle.
if(!NvIsUndefinedEvictHandle(evictHandle))
return TPM_RC_NV_DEFINED;
// Copy handle
entrySize = sizeof(TPM_HANDLE);
memcpy(nvBuffer, &evictHandle, entrySize);
// Let's serialize the object before storing it in NVMEM
marshalSpace = nvBuffer + entrySize;
marshalRoom = sizeof(nvBuffer) - entrySize;
entrySize += NvMarshalObject(object, evictHandle,
&marshalSpace, &marshalRoom);
// Check if we have enough space to add this evict object
if(!NvTestSpace(entrySize, FALSE)) return TPM_RC_NV_SPACE;
// Add evict to NV memory
NvAdd(entrySize, entrySize, nvBuffer);
return TPM_RC_SUCCESS;
}
//
//
// NvDeleteEntity()
//
// This function will delete a NV Index or an evict object.
// This function requires that the index/evict object has been defined.
//
void
NvDeleteEntity(
TPM_HANDLE handle // IN: handle of entity to be deleted
)
{
UINT32 entityAddr; // pointer to entity
entityAddr = NvFindHandle(handle);
pAssert(entityAddr != 0);
if(HandleGetType(handle) == TPM_HT_NV_INDEX)
{
NV_INDEX nvIndex;
// Read the NV Index info
_plat__NvMemoryRead(entityAddr + sizeof(TPM_HANDLE), sizeof(NV_INDEX),
&nvIndex);
// If the entity to be deleted is a counter with the maximum counter
// value, record it in NV memory
if(nvIndex.publicArea.attributes.TPMA_NV_COUNTER == SET
&& nvIndex.publicArea.attributes.TPMA_NV_WRITTEN == SET)
{
UINT64 countValue;
UINT64 maxCount;
NvGetIntIndexData(handle, &nvIndex, &countValue);
maxCount = NvReadMaxCount();
if(countValue > maxCount)
NvWriteMaxCount(countValue);
}
// If the NV Index is RAM back, delete the RAM data as well
if(nvIndex.publicArea.attributes.TPMA_NV_ORDERLY == SET)
NvDeleteRAM(handle);
}
NvDelete(entityAddr);
return;
}
//
//
// NvFlushHierarchy()
//
// This function will delete persistent objects belonging to the indicated If the storage hierarchy is selected,
// the function will also delete any NV Index define using ownerAuth.
//
void
NvFlushHierarchy(
TPMI_RH_HIERARCHY hierarchy // IN: hierarchy to be flushed.
)
{
NV_ITER iter = NV_ITER_INIT;
UINT32 currentAddr;
while((currentAddr = NvNext(&iter)) != 0)
{
TPM_HANDLE entityHandle;
// Read handle information.
_plat__NvMemoryRead(currentAddr, sizeof(TPM_HANDLE), &entityHandle);
if(HandleGetType(entityHandle) == TPM_HT_NV_INDEX)
{
// Handle NV Index
NV_INDEX nvIndex;
// If flush endorsement or platform hierarchy, no NV Index would be
// flushed
if(hierarchy == TPM_RH_ENDORSEMENT || hierarchy == TPM_RH_PLATFORM)
continue;
_plat__NvMemoryRead(currentAddr + sizeof(TPM_HANDLE),
sizeof(NV_INDEX), &nvIndex);
// For storage hierarchy, flush OwnerCreated index
if( nvIndex.publicArea.attributes.TPMA_NV_PLATFORMCREATE == CLEAR)
{
// Delete the NV Index
NvDelete(currentAddr);
// Re-iterate from beginning after a delete
iter = NV_ITER_INIT;
// If the NV Index is RAM back, delete the RAM data as well
if(nvIndex.publicArea.attributes.TPMA_NV_ORDERLY == SET)
NvDeleteRAM(entityHandle);
}
}
else if(HandleGetType(entityHandle) == TPM_HT_PERSISTENT)
{
OBJECT object;
// Get evict object
NvGetEvictObject(entityHandle, &object);
// If the evict object belongs to the hierarchy to be flushed
if( ( hierarchy == TPM_RH_PLATFORM
&& object.attributes.ppsHierarchy == SET)
|| ( hierarchy == TPM_RH_OWNER
&& object.attributes.spsHierarchy == SET)
|| ( hierarchy == TPM_RH_ENDORSEMENT
&& object.attributes.epsHierarchy == SET)
)
{
// Delete the evict object
NvDelete(currentAddr);
// Re-iterate from beginning after a delete
iter = NV_ITER_INIT;
}
}
else
{
pAssert(FALSE);
}
}
return;
}
//
//
// NvSetGlobalLock()
//
// This function is used to SET the TPMA_NV_WRITELOCKED attribute for all NV Indices that have
// TPMA_NV_GLOBALLOCK SET. This function is use by TPM2_NV_GlobalWriteLock().
//
void
NvSetGlobalLock(
void
)
{
NV_ITER iter = NV_ITER_INIT;
UINT32 currentAddr;
// Check all Indices
while((currentAddr = NvNextIndex(&iter)) != 0)
{
NV_INDEX nvIndex;
// Read the index data
_plat__NvMemoryRead(currentAddr + sizeof(TPM_HANDLE),
sizeof(NV_INDEX), &nvIndex);
// See if it should be locked
if(nvIndex.publicArea.attributes.TPMA_NV_GLOBALLOCK == SET)
{
// if so, lock it
nvIndex.publicArea.attributes.TPMA_NV_WRITELOCKED = SET;
_plat__NvMemoryWrite(currentAddr + sizeof(TPM_HANDLE),
sizeof(NV_INDEX), &nvIndex);
// Set the flag that a NV write happens
g_updateNV = TRUE;
}
}
return;
}
//
//
// InsertSort()
//
// Sort a handle into handle list in ascending order. The total handle number in the list should not exceed
// MAX_CAP_HANDLES
//
static void
InsertSort(
TPML_HANDLE *handleList, // IN/OUT: sorted handle list
UINT32 count, // IN: maximum count in the handle list
TPM_HANDLE entityHandle // IN: handle to be inserted
)
{
UINT32 i, j;
UINT32 originalCount;
// For a corner case that the maximum count is 0, do nothing
if(count == 0) return;
// For empty list, add the handle at the beginning and return
if(handleList->count == 0)
{
handleList->handle[0] = entityHandle;
handleList->count++;
return;
}
// Check if the maximum of the list has been reached
originalCount = handleList->count;
if(originalCount < count)
handleList->count++;
// Insert the handle to the list
for(i = 0; i < originalCount; i++)
{
if(handleList->handle[i] > entityHandle)
{
for(j = handleList->count - 1; j > i; j--)
{
handleList->handle[j] = handleList->handle[j-1];
}
break;
}
}
// If a slot was found, insert the handle in this position
if(i < originalCount || handleList->count > originalCount)
handleList->handle[i] = entityHandle;
return;
}
//
//
// NvCapGetPersistent()
//
// This function is used to get a list of handles of the persistent objects, starting at handle.
// Handle must be in valid persistent object handle range, but does not have to reference an existing
// persistent object.
//
// Return Value Meaning
//
// YES if there are more handles available
// NO all the available handles has been returned
//
TPMI_YES_NO
NvCapGetPersistent(
TPMI_DH_OBJECT handle, // IN: start handle
UINT32 count, // IN: maximum number of returned handle
TPML_HANDLE *handleList // OUT: list of handle
)
{
TPMI_YES_NO more = NO;
NV_ITER iter = NV_ITER_INIT;
UINT32 currentAddr;
pAssert(HandleGetType(handle) == TPM_HT_PERSISTENT);
// Initialize output handle list
handleList->count = 0;
// The maximum count of handles we may return is MAX_CAP_HANDLES
if(count > MAX_CAP_HANDLES) count = MAX_CAP_HANDLES;
while((currentAddr = NvNextEvict(&iter)) != 0)
{
TPM_HANDLE entityHandle;
// Read handle information.
_plat__NvMemoryRead(currentAddr, sizeof(TPM_HANDLE), &entityHandle);
// Ignore persistent handles that have values less than the input handle
if(entityHandle < handle)
continue;
// if the handles in the list have reached the requested count, and there
// are still handles need to be inserted, indicate that there are more.
if(handleList->count == count)
more = YES;
// A handle with a value larger than start handle is a candidate
// for return. Insert sort it to the return list. Insert sort algorithm
// is chosen here for simplicity based on the assumption that the total
// number of NV Indices is small. For an implementation that may allow
// large number of NV Indices, a more efficient sorting algorithm may be
// used here.
InsertSort(handleList, count, entityHandle);
//
}
return more;
}
//
//
// NvCapGetIndex()
//
// This function returns a list of handles of NV Indices, starting from handle. Handle must be in the range of
// NV Indices, but does not have to reference an existing NV Index.
//
// Return Value Meaning
//
// YES if there are more handles to report
// NO all the available handles has been reported
//
TPMI_YES_NO
NvCapGetIndex(
TPMI_DH_OBJECT handle, // IN: start handle
UINT32 count, // IN: maximum number of returned handle
TPML_HANDLE *handleList // OUT: list of handle
)
{
TPMI_YES_NO more = NO;
NV_ITER iter = NV_ITER_INIT;
UINT32 currentAddr;
pAssert(HandleGetType(handle) == TPM_HT_NV_INDEX);
// Initialize output handle list
handleList->count = 0;
// The maximum count of handles we may return is MAX_CAP_HANDLES
if(count > MAX_CAP_HANDLES) count = MAX_CAP_HANDLES;
while((currentAddr = NvNextIndex(&iter)) != 0)
{
TPM_HANDLE entityHandle;
// Read handle information.
_plat__NvMemoryRead(currentAddr, sizeof(TPM_HANDLE), &entityHandle);
// Ignore index handles that have values less than the 'handle'
if(entityHandle < handle)
continue;
// if the count of handles in the list has reached the requested count,
// and there are still handles to report, set more.
if(handleList->count == count)
more = YES;
// A handle with a value larger than start handle is a candidate
// for return. Insert sort it to the return list. Insert sort algorithm
// is chosen here for simplicity based on the assumption that the total
// number of NV Indices is small. For an implementation that may allow
// large number of NV Indices, a more efficient sorting algorithm may be
// used here.
InsertSort(handleList, count, entityHandle);
}
return more;
}
//
//
//
// NvCapGetIndexNumber()
//
// This function returns the count of NV Indexes currently defined.
//
UINT32
NvCapGetIndexNumber(
void
)
{
UINT32 num = 0;
NV_ITER iter = NV_ITER_INIT;
while(NvNextIndex(&iter) != 0) num++;
return num;
}
//
//
// NvCapGetPersistentNumber()
//
// Function returns the count of persistent objects currently in NV memory.
//
UINT32
NvCapGetPersistentNumber(
void
)
{
UINT32 num = 0;
NV_ITER iter = NV_ITER_INIT;
while(NvNextEvict(&iter) != 0) num++;
return num;
}
//
//
// NvCapGetPersistentAvail()
//
// This function returns an estimate of the number of additional persistent objects that could be loaded into
// NV memory.
//
UINT32
NvCapGetPersistentAvail(
void
)
{
UINT32 availSpace;
UINT32 objectSpace;
// Compute the available space in NV storage
availSpace = NvGetFreeByte();
// Get the space needed to add a persistent object to NV storage
objectSpace = NvGetEvictObjectSize();
return availSpace / objectSpace;
}
//
//
// NvCapGetCounterNumber()
//
// Get the number of defined NV Indexes that have NV TPMA_NV_COUNTER attribute SET.
//
//
UINT32
NvCapGetCounterNumber(
void
)
{
NV_ITER iter = NV_ITER_INIT;
UINT32 currentAddr;
UINT32 num = 0;
while((currentAddr = NvNextIndex(&iter)) != 0)
{
NV_INDEX nvIndex;
// Get NV Index info
_plat__NvMemoryRead(currentAddr + sizeof(TPM_HANDLE),
sizeof(NV_INDEX), &nvIndex);
if(nvIndex.publicArea.attributes.TPMA_NV_COUNTER == SET) num++;
}
return num;
}
//
//
// NvCapGetCounterAvail()
//
// This function returns an estimate of the number of additional counter type NV Indices that can be defined.
//
UINT32
NvCapGetCounterAvail(
void
)
{
UINT32 availNVSpace;
UINT32 availRAMSpace;
UINT32 counterNVSpace;
UINT32 counterRAMSpace;
UINT32 persistentNum = NvCapGetPersistentNumber();
// Get the available space in NV storage
availNVSpace = NvGetFreeByte();
if (persistentNum < MIN_EVICT_OBJECTS)
{
// Some space have to be reserved for evict object. Adjust availNVSpace.
UINT32 reserved = (MIN_EVICT_OBJECTS - persistentNum)
* NvGetEvictObjectSize();
if (reserved > availNVSpace)
availNVSpace = 0;
else
availNVSpace -= reserved;
}
// Get the space needed to add a counter index to NV storage
counterNVSpace = NvGetCounterSize();
// Compute the available space in RAM
availRAMSpace = RAM_INDEX_SPACE - s_ramIndexSize;
// Compute the space needed to add a counter index to RAM storage
// It takes an size field, a handle and sizeof(UINT64) for counter data
counterRAMSpace = sizeof(UINT32) + sizeof(TPM_HANDLE) + sizeof(UINT64);
// Return the min of counter number in NV and in RAM
if(availNVSpace / counterNVSpace > availRAMSpace / counterRAMSpace)
return availRAMSpace / counterRAMSpace;
else
return availNVSpace / counterNVSpace;
}