blob: d24ffd947a7186b74e1ee62abce40c6930ce7032 [file] [log] [blame]
// Copyright 2023 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file
//#define LOG_NDEBUG 0
#define ATRACE_TAG ATRACE_TAG_VIDEO
#define LOG_TAG "EncodeComponent"
#include <v4l2_codec2/components/EncodeComponent.h>
#include <inttypes.h>
#include <algorithm>
#include <utility>
#include <C2AllocatorGralloc.h>
#include <C2PlatformSupport.h>
#include <C2Work.h>
#include <android/hardware/graphics/common/1.0/types.h>
#include <base/bind.h>
#include <base/bind_helpers.h>
#include <log/log.h>
#include <media/stagefright/MediaDefs.h>
#include <ui/GraphicBuffer.h>
#include <ui/Size.h>
#include <utils/Trace.h>
#include <v4l2_codec2/common/EncodeHelpers.h>
#include <v4l2_codec2/common/FormatConverter.h>
#include <v4l2_codec2/components/BitstreamBuffer.h>
#include <v4l2_codec2/components/EncodeInterface.h>
#include <v4l2_codec2/components/VideoEncoder.h>
using android::hardware::graphics::common::V1_0::BufferUsage;
namespace android {
namespace {
// Create an input frame from the specified graphic block.
std::unique_ptr<VideoEncoder::InputFrame> createInputFrame(
const C2ConstGraphicBlock& block, VideoPixelFormat format,
const std::vector<VideoFramePlane>& planes, uint64_t index, int64_t timestamp) {
std::vector<int> fds;
const C2Handle* const handle = block.handle();
for (int i = 0; i < handle->numFds; i++) {
fds.emplace_back(handle->data[i]);
}
return std::make_unique<VideoEncoder::InputFrame>(std::move(fds), planes, format, index,
timestamp);
}
} // namespace
// Get the video frame layout from the specified |inputBlock|.
// TODO(dstaessens): Clean up code extracting layout from a C2GraphicBlock.
std::optional<std::vector<VideoFramePlane>> getVideoFrameLayout(const C2ConstGraphicBlock& block,
VideoPixelFormat* format) {
ALOGV("%s()", __func__);
// Get the C2PlanarLayout from the graphics block. The C2GraphicView returned by block.map()
// needs to be released before calling getGraphicBlockInfo(), or the lockYCbCr() call will block
// Indefinitely.
C2PlanarLayout layout = block.map().get().layout();
// The above layout() cannot fill layout information and memset 0 instead if the input format is
// IMPLEMENTATION_DEFINED and its backed format is RGB. We fill the layout by using
// ImplDefinedToRGBXMap in the case.
if (layout.type == C2PlanarLayout::TYPE_UNKNOWN) {
std::unique_ptr<ImplDefinedToRGBXMap> idMap = ImplDefinedToRGBXMap::create(block);
if (idMap == nullptr) {
ALOGE("Unable to parse RGBX_8888 from IMPLEMENTATION_DEFINED");
return std::nullopt;
}
layout.type = C2PlanarLayout::TYPE_RGB;
// These parameters would be used in TYPE_GRB case below.
layout.numPlanes = 3; // same value as in C2AllocationGralloc::map()
layout.rootPlanes = 1; // same value as in C2AllocationGralloc::map()
layout.planes[C2PlanarLayout::PLANE_R].offset = idMap->offset();
layout.planes[C2PlanarLayout::PLANE_R].rowInc = idMap->rowInc();
}
std::vector<uint32_t> offsets(layout.numPlanes, 0u);
std::vector<uint32_t> strides(layout.numPlanes, 0u);
switch (layout.type) {
case C2PlanarLayout::TYPE_YUV: {
android_ycbcr ycbcr = getGraphicBlockInfo(block);
offsets[C2PlanarLayout::PLANE_Y] =
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(ycbcr.y));
offsets[C2PlanarLayout::PLANE_U] =
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(ycbcr.cb));
offsets[C2PlanarLayout::PLANE_V] =
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(ycbcr.cr));
strides[C2PlanarLayout::PLANE_Y] = static_cast<uint32_t>(ycbcr.ystride);
strides[C2PlanarLayout::PLANE_U] = static_cast<uint32_t>(ycbcr.cstride);
strides[C2PlanarLayout::PLANE_V] = static_cast<uint32_t>(ycbcr.cstride);
bool crcb = false;
if (offsets[C2PlanarLayout::PLANE_U] > offsets[C2PlanarLayout::PLANE_V]) {
// Swap offsets, no need to swap strides as they are identical for both chroma planes.
std::swap(offsets[C2PlanarLayout::PLANE_U], offsets[C2PlanarLayout::PLANE_V]);
crcb = true;
}
bool semiplanar = false;
if (ycbcr.chroma_step >
offsets[C2PlanarLayout::PLANE_V] - offsets[C2PlanarLayout::PLANE_U]) {
semiplanar = true;
}
if (!crcb && !semiplanar) {
*format = VideoPixelFormat::I420;
} else if (!crcb && semiplanar) {
*format = VideoPixelFormat::NV12;
} else if (crcb && !semiplanar) {
// HACK: pretend YV12 is I420 now since VEA only accepts I420. (YV12 will be used
// for input byte-buffer mode).
// TODO(dstaessens): Is this hack still necessary now we're not using the VEA directly?
//format = VideoPixelFormat::YV12;
*format = VideoPixelFormat::I420;
} else {
*format = VideoPixelFormat::NV21;
}
break;
}
case C2PlanarLayout::TYPE_RGB: {
offsets[C2PlanarLayout::PLANE_R] = layout.planes[C2PlanarLayout::PLANE_R].offset;
strides[C2PlanarLayout::PLANE_R] =
static_cast<uint32_t>(layout.planes[C2PlanarLayout::PLANE_R].rowInc);
*format = VideoPixelFormat::ARGB;
break;
}
default:
ALOGW("Unknown layout type: %u", static_cast<uint32_t>(layout.type));
return std::nullopt;
}
std::vector<VideoFramePlane> planes;
for (uint32_t i = 0; i < layout.rootPlanes; ++i) {
// The mSize field is not used in our case, so we can safely set it to zero.
planes.push_back({strides[i], offsets[i], 0});
}
return planes;
}
// Get the video frame stride for the specified |format| and |size|.
std::optional<uint32_t> getVideoFrameStride(VideoPixelFormat format, ui::Size size) {
// Fetch a graphic block from the pool to determine the stride.
std::shared_ptr<C2BlockPool> pool;
c2_status_t status = GetCodec2BlockPool(C2BlockPool::BASIC_GRAPHIC, nullptr, &pool);
if (status != C2_OK) {
ALOGE("Failed to get basic graphic block pool (err=%d)", status);
return std::nullopt;
}
// Android HAL format doesn't have I420, we use YV12 instead and swap the U and V planes when
// converting to NV12. YCBCR_420_888 will allocate NV12 by minigbm.
HalPixelFormat halFormat = (format == VideoPixelFormat::I420) ? HalPixelFormat::YV12
: HalPixelFormat::YCBCR_420_888;
std::shared_ptr<C2GraphicBlock> block;
status = pool->fetchGraphicBlock(size.width, size.height, static_cast<uint32_t>(halFormat),
C2MemoryUsage(C2MemoryUsage::CPU_READ), &block);
if (status != C2_OK) {
ALOGE("Failed to fetch graphic block (err=%d)", status);
return std::nullopt;
}
const C2ConstGraphicBlock constBlock = block->share(C2Rect(size.width, size.height), C2Fence());
VideoPixelFormat pixelFormat;
std::optional<std::vector<VideoFramePlane>> planes =
getVideoFrameLayout(constBlock, &pixelFormat);
if (!planes || planes.value().empty()) {
ALOGE("Failed to get video frame layout from block");
return std::nullopt;
}
return planes.value()[0].mStride;
}
EncodeComponent::EncodeComponent(C2String name, c2_node_id_t id,
std::shared_ptr<EncodeInterface> interface)
: mName(name),
mId(id),
mInterface(std::move(interface)),
mComponentState(ComponentState::LOADED) {
ALOGV("%s(%s)", __func__, name.c_str());
}
EncodeComponent::~EncodeComponent() {
ALOGV("%s()", __func__);
// Stop encoder thread and invalidate pointers if component wasn't stopped before destroying.
if (mEncoderThread.IsRunning() && !mEncoderTaskRunner->RunsTasksInCurrentSequence()) {
mEncoderTaskRunner->PostTask(
FROM_HERE, ::base::BindOnce(
[](::base::WeakPtrFactory<EncodeComponent>* weakPtrFactory,
std::unique_ptr<VideoEncoder>* encoder) {
weakPtrFactory->InvalidateWeakPtrs();
encoder->reset();
},
&mWeakThisFactory, &mEncoder));
mEncoderThread.Stop();
}
ALOGV("%s(): done", __func__);
}
c2_status_t EncodeComponent::start() {
ALOGV("%s()", __func__);
// Lock while starting, to synchronize start/stop/reset/release calls.
std::lock_guard<std::mutex> lock(mComponentLock);
// According to the specification start() should only be called in the LOADED state.
if (mComponentState != ComponentState::LOADED) {
return C2_BAD_STATE;
}
if (!mEncoderThread.Start()) {
ALOGE("Failed to start encoder thread");
return C2_CORRUPTED;
}
mEncoderTaskRunner = mEncoderThread.task_runner();
mWeakThis = mWeakThisFactory.GetWeakPtr();
// Initialize the encoder on the encoder thread.
::base::WaitableEvent done;
bool success = false;
mEncoderTaskRunner->PostTask(
FROM_HERE, ::base::Bind(&EncodeComponent::startTask, mWeakThis, &success, &done));
done.Wait();
if (!success) {
ALOGE("Failed to initialize encoder");
return C2_CORRUPTED;
}
setComponentState(ComponentState::RUNNING);
return C2_OK;
}
c2_status_t EncodeComponent::stop() {
ALOGV("%s()", __func__);
// Lock while stopping, to synchronize start/stop/reset/release calls.
std::lock_guard<std::mutex> lock(mComponentLock);
if (mComponentState != ComponentState::RUNNING && mComponentState != ComponentState::ERROR) {
return C2_BAD_STATE;
}
// Return immediately if the component is already stopped.
if (!mEncoderThread.IsRunning()) {
return C2_OK;
}
// Wait for the component to stop.
::base::WaitableEvent done;
mEncoderTaskRunner->PostTask(FROM_HERE,
::base::BindOnce(&EncodeComponent::stopTask, mWeakThis, &done));
done.Wait();
mEncoderThread.Stop();
setComponentState(ComponentState::LOADED);
ALOGV("%s() - done", __func__);
return C2_OK;
}
c2_status_t EncodeComponent::reset() {
ALOGV("%s()", __func__);
// The interface specification says: "This method MUST be supported in all (including tripped)
// states other than released".
if (mComponentState == ComponentState::UNLOADED) {
return C2_BAD_STATE;
}
// TODO(dstaessens): Reset the component's interface to default values.
stop();
return C2_OK;
}
c2_status_t EncodeComponent::release() {
ALOGV("%s()", __func__);
// The interface specification says: "This method MUST be supported in stopped state.", but the
// release method seems to be called in other states as well.
reset();
setComponentState(ComponentState::UNLOADED);
return C2_OK;
}
c2_status_t EncodeComponent::queue_nb(std::list<std::unique_ptr<C2Work>>* const items) {
ALOGV("%s()", __func__);
if (mComponentState != ComponentState::RUNNING) {
ALOGE("Trying to queue work item while component is not running");
return C2_BAD_STATE;
}
while (!items->empty()) {
mEncoderTaskRunner->PostTask(FROM_HERE,
::base::BindOnce(&EncodeComponent::queueTask, mWeakThis,
std::move(items->front())));
items->pop_front();
}
return C2_OK;
}
c2_status_t EncodeComponent::drain_nb(drain_mode_t mode) {
ALOGV("%s()", __func__);
if (mode == DRAIN_CHAIN) {
return C2_OMITTED; // Tunneling is not supported for now.
}
if (mComponentState != ComponentState::RUNNING) {
return C2_BAD_STATE;
}
mEncoderTaskRunner->PostTask(FROM_HERE,
::base::BindOnce(&EncodeComponent::drainTask, mWeakThis, mode));
return C2_OK;
}
c2_status_t EncodeComponent::flush_sm(flush_mode_t mode,
std::list<std::unique_ptr<C2Work>>* const flushedWork) {
ALOGV("%s()", __func__);
if (mode != FLUSH_COMPONENT) {
return C2_OMITTED; // Tunneling is not supported by now
}
if (mComponentState != ComponentState::RUNNING) {
return C2_BAD_STATE;
}
// Work that can be immediately discarded should be returned in |flushedWork|. This method may
// be momentarily blocking but must return within 5ms, which should give us enough time to
// immediately abandon all non-started work on the encoder thread. We can return all work that
// can't be immediately discarded using onWorkDone() later.
::base::WaitableEvent done;
mEncoderTaskRunner->PostTask(FROM_HERE, ::base::BindOnce(&EncodeComponent::flushTask, mWeakThis,
&done, flushedWork));
done.Wait();
return C2_OK;
}
c2_status_t EncodeComponent::announce_nb(const std::vector<C2WorkOutline>& items) {
return C2_OMITTED; // Tunneling is not supported by now
}
c2_status_t EncodeComponent::setListener_vb(const std::shared_ptr<Listener>& listener,
c2_blocking_t mayBlock) {
ALOG_ASSERT(mComponentState != ComponentState::UNLOADED);
// Lock so we're sure the component isn't currently starting or stopping.
std::lock_guard<std::mutex> lock(mComponentLock);
// If the encoder thread is not running it's safe to update the listener directly.
if (!mEncoderThread.IsRunning()) {
mListener = listener;
return C2_OK;
}
// The listener should be updated before exiting this function. If called while the component is
// currently running we should be allowed to block, as we can only change the listener on the
// encoder thread.
ALOG_ASSERT(mayBlock == c2_blocking_t::C2_MAY_BLOCK);
::base::WaitableEvent done;
mEncoderTaskRunner->PostTask(FROM_HERE, ::base::BindOnce(&EncodeComponent::setListenerTask,
mWeakThis, listener, &done));
done.Wait();
return C2_OK;
}
std::shared_ptr<C2ComponentInterface> EncodeComponent::intf() {
return std::make_shared<SimpleInterface<EncodeInterface>>(mName.c_str(), mId, mInterface);
}
void EncodeComponent::startTask(bool* success, ::base::WaitableEvent* done) {
ATRACE_CALL();
ALOGV("%s()", __func__);
ALOG_ASSERT(mEncoderTaskRunner->RunsTasksInCurrentSequence());
*success = initializeEncoder();
done->Signal();
}
void EncodeComponent::stopTask(::base::WaitableEvent* done) {
ATRACE_CALL();
ALOGV("%s()", __func__);
ALOG_ASSERT(mEncoderTaskRunner->RunsTasksInCurrentSequence());
// Flushing the encoder will abort all pending work.
flush();
mInputFormatConverter.reset();
mInputPixelFormat = VideoPixelFormat::UNKNOWN;
mInputLayout.clear();
mEncoder.reset();
mOutputBlockPool.reset();
// Invalidate all weak pointers so no more functions will be executed on the encoder thread.
mWeakThisFactory.InvalidateWeakPtrs();
done->Signal();
}
void EncodeComponent::queueTask(std::unique_ptr<C2Work> work) {
ATRACE_CALL();
ALOGV("%s()", __func__);
ALOG_ASSERT(mEncoderTaskRunner->RunsTasksInCurrentSequence());
ALOG_ASSERT(mEncoder);
// Currently only a single worklet per work item is supported. An input buffer should always be
// supplied unless this is a drain or CSD request.
ALOG_ASSERT(work->input.buffers.size() <= 1u && work->worklets.size() == 1u);
// Set the default values for the output worklet.
work->worklets.front()->output.flags = static_cast<C2FrameData::flags_t>(0);
work->worklets.front()->output.buffers.clear();
work->worklets.front()->output.ordinal = work->input.ordinal;
uint64_t index = work->input.ordinal.frameIndex.peeku();
int64_t timestamp = static_cast<int64_t>(work->input.ordinal.timestamp.peeku());
bool endOfStream = work->input.flags & C2FrameData::FLAG_END_OF_STREAM;
ALOGV("Queuing next encode (index: %" PRIu64 ", timestamp: %" PRId64 ", EOS: %d)", index,
timestamp, endOfStream);
// The codec 2.0 framework might queue an empty CSD request, but this is currently not
// supported. We will return the CSD with the first encoded buffer work.
if (work->input.buffers.empty() && !endOfStream) {
ALOGV("Discarding empty CSD request");
reportWork(std::move(work));
return;
}
// By the time we get an input buffer, the output block pool should be configured.
if (!mOutputBlockPool && !getBlockPool()) {
reportError(C2_CORRUPTED);
return;
}
// If this is the first input frame, create an input format converter if the V4L2 device doesn't
// support the requested input format.
if ((mInputPixelFormat == VideoPixelFormat::UNKNOWN) && !work->input.buffers.empty()) {
VideoPixelFormat format = VideoPixelFormat::UNKNOWN;
if (!getVideoFrameLayout(work->input.buffers.front()->data().graphicBlocks().front(),
&format)) {
ALOGE("Failed to get input block's layout");
reportError(C2_CORRUPTED);
return;
}
if (mEncoder->inputFormat() != format) {
ALOG_ASSERT(!mInputFormatConverter);
ALOGV("Creating input format convertor (%s)",
videoPixelFormatToString(mEncoder->inputFormat()).c_str());
mInputFormatConverter =
FormatConverter::create(mEncoder->inputFormat(), mEncoder->visibleSize(),
VideoEncoder::kInputBufferCount, mEncoder->codedSize());
if (!mInputFormatConverter) {
ALOGE("Failed to created input format convertor");
reportError(C2_CORRUPTED);
return;
}
}
}
// If conversion is required but no free buffers are available we queue the work item.
if (mInputFormatConverter && !mInputFormatConverter->isReady()) {
ALOGV("Input format convertor ran out of buffers");
mInputConverterQueue.push(std::move(work));
return;
}
// If we have data to encode send it to the encoder. If conversion is required we will first
// convert the data to the requested pixel format.
if (!work->input.buffers.empty()) {
C2ConstGraphicBlock inputBlock =
work->input.buffers.front()->data().graphicBlocks().front();
if (mInputFormatConverter) {
ALOGV("Converting input block (index: %" PRIu64 ")", index);
c2_status_t status =
mInputFormatConverter->convertBlock(index, inputBlock, &inputBlock);
if (status != C2_OK) {
ALOGE("Failed to convert input block (index: %" PRIu64 ")", index);
reportError(status);
return;
}
} else {
// Android encoder framework reuses the same gpu buffers as
// inputs and doesn't call lock/unlock explicitly between writes.
// If there is format conversion, this is fine since we will
// read back what we've written first and then put it in another
// buffer. Whenever there is no format conversion, this causes
// sync issue on ARCVM since host side buffers never get updated.
// Fix this by explicitly calling lock/unlock before sending buffer
// to encoder.
const C2Handle* handle = inputBlock.handle();
uint32_t width, height, format, stride, generation, igbpSlot;
uint64_t usage, igbpId;
_UnwrapNativeCodec2GrallocMetadata(handle, &width, &height, &format, &usage, &stride,
&generation, &igbpId, &igbpSlot);
do {
if (!(usage & GRALLOC_USAGE_SW_WRITE_MASK)) break;
native_handle_t* gralloc_handle = UnwrapNativeCodec2GrallocHandle(handle);
if (nullptr == gralloc_handle) break;
sp<GraphicBuffer> buffer =
new GraphicBuffer(gralloc_handle, GraphicBuffer::CLONE_HANDLE, width,
height, format, 1, usage, stride);
native_handle_delete(gralloc_handle);
void* pixels;
if (buffer->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, &pixels)) break;
buffer->unlock();
} while (0);
}
if (!encode(inputBlock, index, timestamp)) {
return;
}
}
mWorkQueue.push_back(std::move(work));
if (endOfStream) {
mEncoder->drain();
}
}
void EncodeComponent::drainTask(drain_mode_t /*drainMode*/) {
ALOGV("%s()", __func__);
ALOG_ASSERT(mEncoderTaskRunner->RunsTasksInCurrentSequence());
// We can only start draining if all work has been queued in the encoder, so we mark the last
// item waiting for conversion as EOS if required.
if (!mInputConverterQueue.empty()) {
C2Work* work = mInputConverterQueue.back().get();
work->input.flags = static_cast<C2FrameData::flags_t>(work->input.flags |
C2FrameData::FLAG_END_OF_STREAM);
return;
}
// Mark the last item in the output work queue as EOS, so we will only report it as finished
// after draining has completed.
if (!mWorkQueue.empty()) {
ALOGV("Starting drain and marking last item in output work queue as EOS");
C2Work* work = mWorkQueue.back().get();
work->input.flags = static_cast<C2FrameData::flags_t>(work->input.flags |
C2FrameData::FLAG_END_OF_STREAM);
mEncoder->drain();
}
}
void EncodeComponent::onDrainDone(bool success) {
ALOGV("%s()", __func__);
ALOG_ASSERT(mEncoderTaskRunner->RunsTasksInCurrentSequence());
ALOG_ASSERT(!mWorkQueue.empty());
if (!success) {
ALOGE("draining the encoder failed");
reportError(C2_CORRUPTED);
return;
}
// Find the first work item marked as EOS. This might not be the first item in the queue, as
// previous buffers in the queue might still be waiting for their associated input buffers.
auto it = std::find_if(
mWorkQueue.cbegin(), mWorkQueue.cend(), [](const std::unique_ptr<C2Work>& work) {
return ((work->input.flags & C2FrameData::FLAG_END_OF_STREAM) &&
!(work->worklets.back()->output.flags & C2FrameData::FLAG_END_OF_STREAM));
});
if (it == mWorkQueue.end()) {
ALOGW("No EOS work item found in queue");
return;
}
// Mark the item in the output work queue as EOS done.
C2Work* eosWork = it->get();
eosWork->worklets.back()->output.flags = C2FrameData::FLAG_END_OF_STREAM;
// Draining is done which means all buffers on the device output queue have been returned, but
// not all buffers on the device input queue might have been returned yet.
if ((eosWork != mWorkQueue.front().get()) || !isWorkDone(*eosWork)) {
ALOGV("Draining done, waiting for input buffers to be returned");
return;
}
ALOGV("Draining done");
reportWork(std::move(mWorkQueue.front()));
mWorkQueue.pop_front();
}
void EncodeComponent::flushTask(::base::WaitableEvent* done,
std::list<std::unique_ptr<C2Work>>* const flushedWork) {
ATRACE_CALL();
ALOGV("%s()", __func__);
ALOG_ASSERT(mEncoderTaskRunner->RunsTasksInCurrentSequence());
// Move all work that can immediately be aborted to flushedWork, and notify the caller.
if (flushedWork) {
while (!mInputConverterQueue.empty()) {
std::unique_ptr<C2Work> work = std::move(mInputConverterQueue.front());
work->input.buffers.clear();
flushedWork->push_back(std::move(work));
mInputConverterQueue.pop();
}
}
done->Signal();
flush();
}
void EncodeComponent::setListenerTask(const std::shared_ptr<Listener>& listener,
::base::WaitableEvent* done) {
ALOGV("%s()", __func__);
ALOG_ASSERT(mEncoderTaskRunner->RunsTasksInCurrentSequence());
mListener = listener;
done->Signal();
}
bool EncodeComponent::updateEncodingParameters() {
ATRACE_CALL();
ALOGV("%s()", __func__);
ALOG_ASSERT(mEncoderTaskRunner->RunsTasksInCurrentSequence());
// Ask device to change bitrate if it's different from the currently configured bitrate. The C2
// framework doesn't offer a parameter to configure the peak bitrate, so we'll use a multiple of
// the target bitrate here. The peak bitrate is only used if the bitrate mode is set to VBR.
uint32_t bitrate = mInterface->getBitrate();
if (mBitrate != bitrate) {
ALOG_ASSERT(bitrate > 0u);
ALOGV("Setting bitrate to %u", bitrate);
if (!mEncoder->setBitrate(bitrate)) {
reportError(C2_CORRUPTED);
return false;
}
mBitrate = bitrate;
if (mBitrateMode == C2Config::BITRATE_VARIABLE) {
ALOGV("Setting peak bitrate to %u", bitrate * VideoEncoder::kPeakBitrateMultiplier);
// TODO(b/190336806): Our stack doesn't support dynamic peak bitrate changes yet, ignore
// errors for now.
mEncoder->setPeakBitrate(bitrate * VideoEncoder::kPeakBitrateMultiplier);
}
}
// Ask device to change framerate if it's different from the currently configured framerate.
uint32_t framerate = static_cast<uint32_t>(std::round(mInterface->getFramerate()));
if (mFramerate != framerate) {
ALOG_ASSERT(framerate > 0u);
ALOGV("Setting framerate to %u", framerate);
if (!mEncoder->setFramerate(framerate)) {
ALOGE("Requesting framerate change failed");
reportError(C2_CORRUPTED);
return false;
}
mFramerate = framerate;
}
// Check whether an explicit key frame was requested, if so reset the key frame counter to
// immediately request a key frame.
C2StreamRequestSyncFrameTuning::output requestKeyFrame;
c2_status_t status = mInterface->query({&requestKeyFrame}, {}, C2_DONT_BLOCK, nullptr);
if (status != C2_OK) {
ALOGE("Failed to query interface for key frame request (error code: %d)", status);
reportError(status);
return false;
}
if (requestKeyFrame.value == C2_TRUE) {
mEncoder->requestKeyframe();
requestKeyFrame.value = C2_FALSE;
std::vector<std::unique_ptr<C2SettingResult>> failures;
status = mInterface->config({&requestKeyFrame}, C2_MAY_BLOCK, &failures);
if (status != C2_OK) {
ALOGE("Failed to reset key frame request on interface (error code: %d)", status);
reportError(status);
return false;
}
}
return true;
}
bool EncodeComponent::encode(C2ConstGraphicBlock block, uint64_t index, int64_t timestamp) {
ATRACE_CALL();
ALOGV("%s()", __func__);
ALOG_ASSERT(mEncoderTaskRunner->RunsTasksInCurrentSequence());
ALOG_ASSERT(mEncoder);
ALOGV("Encoding input block (index: %" PRIu64 ", timestamp: %" PRId64 ", size: %dx%d)", index,
timestamp, block.width(), block.height());
// If this is the first input frame, determine the pixel format and layout.
if (mInputPixelFormat == VideoPixelFormat::UNKNOWN) {
ALOG_ASSERT(mInputLayout.empty());
VideoPixelFormat format = VideoPixelFormat::UNKNOWN;
std::optional<std::vector<VideoFramePlane>> inputLayout =
getVideoFrameLayout(block, &format);
if (!inputLayout) {
ALOGE("Failed to get input block's layout");
reportError(C2_CORRUPTED);
return false;
}
mInputPixelFormat = format;
mInputLayout = std::move(*inputLayout);
}
// Dynamically adjust framerate based on the frame's timestamp if required.
constexpr int64_t kMaxFramerateDiff = 5;
if (mLastFrameTime && (timestamp > *mLastFrameTime)) {
int64_t newFramerate = std::max(
static_cast<int64_t>(std::round(1000000.0 / (timestamp - *mLastFrameTime))),
static_cast<int64_t>(1LL));
if (abs(mFramerate - newFramerate) > kMaxFramerateDiff) {
ALOGV("Adjusting framerate to %" PRId64 " based on frame timestamps", newFramerate);
mInterface->setFramerate(static_cast<uint32_t>(newFramerate));
}
}
mLastFrameTime = timestamp;
// Update dynamic encoding parameters (bitrate, framerate, key frame) if requested.
if (!updateEncodingParameters()) return false;
// Create an input frame from the graphic block.
std::unique_ptr<VideoEncoder::InputFrame> frame =
createInputFrame(block, mInputPixelFormat, mInputLayout, index, timestamp);
if (!frame) {
ALOGE("Failed to create video frame from input block (index: %" PRIu64
", timestamp: %" PRId64 ")",
index, timestamp);
reportError(C2_CORRUPTED);
return false;
}
if (!mEncoder->encode(std::move(frame))) {
return false;
}
return true;
}
void EncodeComponent::flush() {
ATRACE_CALL();
ALOGV("%s()", __func__);
ALOG_ASSERT(mEncoderTaskRunner->RunsTasksInCurrentSequence());
mEncoder->flush();
// Report all queued work items as aborted.
std::list<std::unique_ptr<C2Work>> abortedWorkItems;
while (!mInputConverterQueue.empty()) {
std::unique_ptr<C2Work> work = std::move(mInputConverterQueue.front());
work->result = C2_NOT_FOUND;
work->input.buffers.clear();
abortedWorkItems.push_back(std::move(work));
mInputConverterQueue.pop();
}
while (!mWorkQueue.empty()) {
std::unique_ptr<C2Work> work = std::move(mWorkQueue.front());
// Return buffer to the input format convertor if required.
if (mInputFormatConverter && work->input.buffers.empty()) {
mInputFormatConverter->returnBlock(work->input.ordinal.frameIndex.peeku());
}
work->result = C2_NOT_FOUND;
work->input.buffers.clear();
abortedWorkItems.push_back(std::move(work));
mWorkQueue.pop_front();
}
if (!abortedWorkItems.empty()) {
mListener->onWorkDone_nb(weak_from_this(), std::move(abortedWorkItems));
}
}
void EncodeComponent::fetchOutputBlock(uint32_t size, std::unique_ptr<BitstreamBuffer>* buffer) {
ATRACE_CALL();
ALOGV("Fetching linear block (size: %u)", size);
std::shared_ptr<C2LinearBlock> block;
c2_status_t status = mOutputBlockPool->fetchLinearBlock(
size,
C2MemoryUsage(C2MemoryUsage::CPU_READ |
static_cast<uint64_t>(BufferUsage::VIDEO_ENCODER)),
&block);
if (status != C2_OK) {
ALOGE("Failed to fetch linear block (error: %d)", status);
reportError(status);
}
*buffer = std::make_unique<BitstreamBuffer>(std::move(block), 0, size);
}
void EncodeComponent::onInputBufferDone(uint64_t index) {
ALOGV("%s(): Input buffer done (index: %" PRIu64 ")", __func__, index);
ALOG_ASSERT(mEncoderTaskRunner->RunsTasksInCurrentSequence());
ALOG_ASSERT(mEncoder);
// There are no guarantees the input buffers are returned in order, so we need to find the work
// item which this buffer belongs to.
C2Work* work = getWorkByIndex(index);
if (!work) {
ALOGE("Failed to find work associated with input buffer %" PRIu64, index);
reportError(C2_CORRUPTED);
return;
}
// We're done using the input block, release reference to return the block to the client.
LOG_ASSERT(!work->input.buffers.empty());
work->input.buffers.front().reset();
// Return the block to the convertor if required. If we have buffers awaiting conversion, we can
// now attempt to convert and encode them again.
if (mInputFormatConverter) {
c2_status_t status = mInputFormatConverter->returnBlock(index);
if (status != C2_OK) {
reportError(status);
return;
}
while (!mInputConverterQueue.empty() && mInputFormatConverter->isReady()) {
std::unique_ptr<C2Work> work = std::move(mInputConverterQueue.front());
mInputConverterQueue.pop();
queueTask(std::move(work));
}
}
// Return all completed work items. The work item might have been waiting for it's input buffer
// to be returned, in which case we can report it as completed now. As input buffers are not
// necessarily returned in order we might be able to return multiple ready work items now.
while (!mWorkQueue.empty() && isWorkDone(*mWorkQueue.front())) {
reportWork(std::move(mWorkQueue.front()));
mWorkQueue.pop_front();
}
}
void EncodeComponent::onOutputBufferDone(size_t dataSize, int64_t timestamp, bool keyFrame,
std::unique_ptr<BitstreamBuffer> buffer) {
ALOGV("%s(): output buffer done (timestamp: %" PRId64 ", size: %zu, keyframe: %d)", __func__,
timestamp, dataSize, keyFrame);
ALOG_ASSERT(mEncoderTaskRunner->RunsTasksInCurrentSequence());
ALOG_ASSERT(buffer->dmabuf);
C2ConstLinearBlock constBlock =
buffer->dmabuf->share(buffer->dmabuf->offset(), dataSize, C2Fence());
// If no CSD (content-specific-data, e.g. SPS for H.264) has been submitted yet, we expect this
// output block to contain CSD. We only submit the CSD once, even if it's attached to each key
// frame.
if (mExtractCSD) {
ALOGV("No CSD submitted yet, extracting CSD");
std::unique_ptr<C2StreamInitDataInfo::output> csd;
C2ReadView view = constBlock.map().get();
if (!extractCSDInfo(&csd, view.data(), view.capacity())) {
ALOGE("Failed to extract CSD");
reportError(C2_CORRUPTED);
return;
}
// Attach the CSD to the first item in our output work queue.
LOG_ASSERT(!mWorkQueue.empty());
C2Work* work = mWorkQueue.front().get();
work->worklets.front()->output.configUpdate.push_back(std::move(csd));
mExtractCSD = false;
}
// Get the work item associated with the timestamp.
C2Work* work = getWorkByTimestamp(timestamp);
if (!work) {
// It's possible we got an empty CSD request with timestamp 0, which we currently just
// discard.
if (timestamp != 0) {
reportError(C2_CORRUPTED);
}
return;
}
std::shared_ptr<C2Buffer> linearBuffer = C2Buffer::CreateLinearBuffer(std::move(constBlock));
if (!linearBuffer) {
ALOGE("Failed to create linear buffer from block");
reportError(C2_CORRUPTED);
return;
}
if (keyFrame) {
linearBuffer->setInfo(
std::make_shared<C2StreamPictureTypeMaskInfo::output>(0u, C2Config::SYNC_FRAME));
}
work->worklets.front()->output.buffers.emplace_back(std::move(linearBuffer));
// We can report the work item as completed if its associated input buffer has also been
// released. As output buffers are not necessarily returned in order we might be able to return
// multiple ready work items now.
while (!mWorkQueue.empty() && isWorkDone(*mWorkQueue.front())) {
reportWork(std::move(mWorkQueue.front()));
mWorkQueue.pop_front();
}
}
C2Work* EncodeComponent::getWorkByIndex(uint64_t index) {
ALOGV("%s(): getting work item (index: %" PRIu64 ")", __func__, index);
ALOG_ASSERT(mEncoderTaskRunner->RunsTasksInCurrentSequence());
auto it = std::find_if(mWorkQueue.begin(), mWorkQueue.end(),
[index](const std::unique_ptr<C2Work>& w) {
return w->input.ordinal.frameIndex.peeku() == index;
});
if (it == mWorkQueue.end()) {
ALOGE("Failed to find work (index: %" PRIu64 ")", index);
return nullptr;
}
return it->get();
}
C2Work* EncodeComponent::getWorkByTimestamp(int64_t timestamp) {
ALOGV("%s(): getting work item (timestamp: %" PRId64 ")", __func__, timestamp);
ALOG_ASSERT(mEncoderTaskRunner->RunsTasksInCurrentSequence());
ALOG_ASSERT(timestamp >= 0);
// Find the work with specified timestamp by looping over the output work queue. This should be
// very fast as the output work queue will never be longer then a few items. Ignore empty work
// items that are marked as EOS, as their timestamp might clash with other work items.
auto it = std::find_if(
mWorkQueue.begin(), mWorkQueue.end(), [timestamp](const std::unique_ptr<C2Work>& w) {
return !(w->input.flags & C2FrameData::FLAG_END_OF_STREAM) &&
w->input.ordinal.timestamp.peeku() == static_cast<uint64_t>(timestamp);
});
if (it == mWorkQueue.end()) {
ALOGE("Failed to find work (timestamp: %" PRIu64 ")", timestamp);
return nullptr;
}
return it->get();
}
bool EncodeComponent::isWorkDone(const C2Work& work) const {
ALOGV("%s()", __func__);
ALOG_ASSERT(mEncoderTaskRunner->RunsTasksInCurrentSequence());
if ((work.input.flags & C2FrameData::FLAG_END_OF_STREAM) &&
!(work.worklets.front()->output.flags & C2FrameData::FLAG_END_OF_STREAM)) {
ALOGV("Work item %" PRIu64 " is marked as EOS but draining has not finished yet",
work.input.ordinal.frameIndex.peeku());
return false;
}
if (!work.input.buffers.empty() && work.input.buffers.front()) {
ALOGV("Input buffer associated with work item %" PRIu64 " not returned yet",
work.input.ordinal.frameIndex.peeku());
return false;
}
// If the work item had an input buffer to be encoded, it should have an output buffer set.
if (!work.input.buffers.empty() && work.worklets.front()->output.buffers.empty()) {
ALOGV("Output buffer associated with work item %" PRIu64 " not returned yet",
work.input.ordinal.frameIndex.peeku());
return false;
}
return true;
}
void EncodeComponent::reportWork(std::unique_ptr<C2Work> work) {
ATRACE_CALL();
ALOG_ASSERT(work);
ALOGV("%s(): Reporting work item as finished (index: %llu, timestamp: %llu)", __func__,
work->input.ordinal.frameIndex.peekull(), work->input.ordinal.timestamp.peekull());
ALOG_ASSERT(mEncoderTaskRunner->RunsTasksInCurrentSequence());
work->result = C2_OK;
work->workletsProcessed = static_cast<uint32_t>(work->worklets.size());
std::list<std::unique_ptr<C2Work>> finishedWorkList;
finishedWorkList.emplace_back(std::move(work));
mListener->onWorkDone_nb(weak_from_this(), std::move(finishedWorkList));
}
bool EncodeComponent::getBlockPool() {
ALOG_ASSERT(mEncoderTaskRunner->RunsTasksInCurrentSequence());
auto sharedThis = weak_from_this().lock();
if (!sharedThis) {
ALOGI("%s(): V4L2EncodeComponent instance is already destroyed", __func__);
return false;
}
C2BlockPool::local_id_t poolId = mInterface->getBlockPoolId();
if (poolId == C2BlockPool::BASIC_LINEAR) {
ALOGW("Using unoptimized linear block pool");
}
c2_status_t status = GetCodec2BlockPool(poolId, std::move(sharedThis), &mOutputBlockPool);
if (status != C2_OK || !mOutputBlockPool) {
ALOGE("Failed to get output block pool, error: %d", status);
return false;
}
return true;
}
void EncodeComponent::reportError(c2_status_t error) {
ALOGV("%s()", __func__);
ALOG_ASSERT(mEncoderTaskRunner->RunsTasksInCurrentSequence());
// TODO(dstaessens): Report all pending work items as finished upon failure.
std::lock_guard<std::mutex> lock(mComponentLock);
if (mComponentState != ComponentState::ERROR) {
setComponentState(ComponentState::ERROR);
mListener->onError_nb(weak_from_this(), static_cast<uint32_t>(error));
}
}
void EncodeComponent::setComponentState(ComponentState state) {
// Check whether the state change is valid.
switch (state) {
case ComponentState::UNLOADED:
ALOG_ASSERT(mComponentState == ComponentState::LOADED);
break;
case ComponentState::LOADED:
ALOG_ASSERT(mComponentState == ComponentState::UNLOADED ||
mComponentState == ComponentState::RUNNING ||
mComponentState == ComponentState::ERROR);
break;
case ComponentState::RUNNING:
ALOG_ASSERT(mComponentState == ComponentState::LOADED);
break;
case ComponentState::ERROR:
break;
}
ALOGV("Changed component state from %s to %s", componentStateToString(mComponentState),
componentStateToString(state));
mComponentState = state;
}
const char* EncodeComponent::componentStateToString(EncodeComponent::ComponentState state) {
switch (state) {
case ComponentState::UNLOADED:
return "UNLOADED";
case ComponentState::LOADED:
return "LOADED";
case ComponentState::RUNNING:
return "RUNNING";
case ComponentState::ERROR:
return "ERROR";
}
}
} // namespace android