blob: 456f3c465c554e2d4610826d1fde554d50991dbe [file] [log] [blame]
// Copyright 2020 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//#define LOG_NDEBUG 0
#define LOG_TAG "V4L2DecodeComponent"
#include <v4l2_codec2/components/V4L2DecodeComponent.h>
#include <inttypes.h>
#include <linux/videodev2.h>
#include <stdint.h>
#include <memory>
#include <C2.h>
#include <C2PlatformSupport.h>
#include <Codec2Mapper.h>
#include <SimpleC2Interface.h>
#include <base/bind.h>
#include <base/callback_helpers.h>
#include <base/time/time.h>
#include <cutils/properties.h>
#include <log/log.h>
#include <media/stagefright/foundation/ColorUtils.h>
#include <v4l2_codec2/common/Common.h>
#include <v4l2_codec2/common/NalParser.h>
#include <v4l2_codec2/common/VideoTypes.h>
#include <v4l2_codec2/components/BitstreamBuffer.h>
#include <v4l2_codec2/components/V4L2Decoder.h>
#include <v4l2_codec2/components/VideoFramePool.h>
#include <v4l2_codec2/plugin_store/C2VdaBqBlockPool.h>
namespace android {
namespace {
// CCBC pauses sending input buffers to the component when all the output slots are filled by
// pending decoded buffers. If the available output buffers are exhausted before CCBC pauses sending
// input buffers, CCodec may timeout due to waiting for a available output buffer.
// This function returns the minimum number of output buffers to prevent the buffers from being
// exhausted before CCBC pauses sending input buffers.
size_t getMinNumOutputBuffers(VideoCodec codec) {
// The constant values copied from CCodecBufferChannel.cpp.
// (b/184020290): Check the value still sync when seeing error message from CCodec:
// "previous call to queue exceeded timeout".
constexpr size_t kSmoothnessFactor = 4;
constexpr size_t kRenderingDepth = 3;
// Extra number of needed output buffers for V4L2Decoder.
constexpr size_t kExtraNumOutputBuffersForDecoder = 2;
// The total needed number of output buffers at pipeline are:
// - MediaCodec output slots: output delay + kSmoothnessFactor
// - Surface: kRenderingDepth
// - Component: kExtraNumOutputBuffersForDecoder
return V4L2DecodeInterface::getOutputDelay(codec) + kSmoothnessFactor + kRenderingDepth +
kExtraNumOutputBuffersForDecoder;
}
// Mask against 30 bits to avoid (undefined) wraparound on signed integer.
int32_t frameIndexToBitstreamId(c2_cntr64_t frameIndex) {
return static_cast<int32_t>(frameIndex.peeku() & 0x3FFFFFFF);
}
bool parseCodedColorAspects(const C2ConstLinearBlock& input,
C2StreamColorAspectsInfo::input* codedAspects) {
C2ReadView view = input.map().get();
NalParser parser(view.data(), view.capacity());
if (!parser.locateSPS()) {
ALOGV("Couldn't find SPS");
return false;
}
NalParser::ColorAspects aspects;
if (!parser.findCodedColorAspects(&aspects)) {
ALOGV("Couldn't find color description in SPS");
return false;
}
// Convert ISO color aspects to ColorUtils::ColorAspects.
ColorAspects colorAspects;
ColorUtils::convertIsoColorAspectsToCodecAspects(
aspects.primaries, aspects.transfer, aspects.coeffs, aspects.fullRange, colorAspects);
ALOGV("Parsed ColorAspects from bitstream: (R:%d, P:%d, M:%d, T:%d)", colorAspects.mRange,
colorAspects.mPrimaries, colorAspects.mMatrixCoeffs, colorAspects.mTransfer);
// Map ColorUtils::ColorAspects to C2StreamColorAspectsInfo::input parameter.
if (!C2Mapper::map(colorAspects.mPrimaries, &codedAspects->primaries)) {
codedAspects->primaries = C2Color::PRIMARIES_UNSPECIFIED;
}
if (!C2Mapper::map(colorAspects.mRange, &codedAspects->range)) {
codedAspects->range = C2Color::RANGE_UNSPECIFIED;
}
if (!C2Mapper::map(colorAspects.mMatrixCoeffs, &codedAspects->matrix)) {
codedAspects->matrix = C2Color::MATRIX_UNSPECIFIED;
}
if (!C2Mapper::map(colorAspects.mTransfer, &codedAspects->transfer)) {
codedAspects->transfer = C2Color::TRANSFER_UNSPECIFIED;
}
return true;
}
bool isWorkDone(const C2Work& work) {
const int32_t bitstreamId = frameIndexToBitstreamId(work.input.ordinal.frameIndex);
// Exception: EOS work should be processed by reportEOSWork().
// Always return false here no matter the work is actually done.
if (work.input.flags & C2FrameData::FLAG_END_OF_STREAM) return false;
// Work is done when all conditions meet:
// 1. mDecoder has released the work's input buffer.
// 2. mDecoder has returned the work's output buffer in normal case,
// or the input buffer is CSD, or we decide to drop the frame.
bool inputReleased = (work.input.buffers.front() == nullptr);
bool outputReturned = !work.worklets.front()->output.buffers.empty();
bool ignoreOutput = (work.input.flags & C2FrameData::FLAG_CODEC_CONFIG) ||
(work.worklets.front()->output.flags & C2FrameData::FLAG_DROP_FRAME);
ALOGV("work(%d): inputReleased: %d, outputReturned: %d, ignoreOutput: %d", bitstreamId,
inputReleased, outputReturned, ignoreOutput);
return inputReleased && (outputReturned || ignoreOutput);
}
bool isNoShowFrameWork(const C2Work& work, const C2WorkOrdinalStruct& currOrdinal) {
// We consider Work contains no-show frame when all conditions meet:
// 1. Work's ordinal is smaller than current ordinal.
// 2. Work's output buffer is not returned.
// 3. Work is not EOS, CSD, or marked with dropped frame.
bool smallOrdinal = (work.input.ordinal.timestamp < currOrdinal.timestamp) &&
(work.input.ordinal.frameIndex < currOrdinal.frameIndex);
bool outputReturned = !work.worklets.front()->output.buffers.empty();
bool specialWork = (work.input.flags & C2FrameData::FLAG_END_OF_STREAM) ||
(work.input.flags & C2FrameData::FLAG_CODEC_CONFIG) ||
(work.worklets.front()->output.flags & C2FrameData::FLAG_DROP_FRAME);
return smallOrdinal && !outputReturned && !specialWork;
}
} // namespace
// static
std::atomic<int32_t> V4L2DecodeComponent::sConcurrentInstances = 0;
// static
std::shared_ptr<C2Component> V4L2DecodeComponent::create(
const std::string& name, c2_node_id_t id, const std::shared_ptr<C2ReflectorHelper>& helper,
C2ComponentFactory::ComponentDeleter deleter) {
static const int32_t kMaxConcurrentInstances =
property_get_int32("ro.vendor.v4l2_codec2.decode_concurrent_instances", -1);
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (kMaxConcurrentInstances >= 0 && sConcurrentInstances.load() >= kMaxConcurrentInstances) {
ALOGW("Reject to Initialize() due to too many instances: %d", sConcurrentInstances.load());
return nullptr;
}
auto intfImpl = std::make_shared<V4L2DecodeInterface>(name, helper);
if (intfImpl->status() != C2_OK) {
ALOGE("Failed to initialize V4L2DecodeInterface.");
return nullptr;
}
return std::shared_ptr<C2Component>(new V4L2DecodeComponent(name, id, helper, intfImpl),
deleter);
}
V4L2DecodeComponent::V4L2DecodeComponent(const std::string& name, c2_node_id_t id,
const std::shared_ptr<C2ReflectorHelper>& helper,
const std::shared_ptr<V4L2DecodeInterface>& intfImpl)
: mIntfImpl(intfImpl),
mIntf(std::make_shared<SimpleInterface<V4L2DecodeInterface>>(name.c_str(), id, mIntfImpl)) {
ALOGV("%s(%s)", __func__, name.c_str());
sConcurrentInstances.fetch_add(1, std::memory_order_relaxed);
mIsSecure = name.find(".secure") != std::string::npos;
}
V4L2DecodeComponent::~V4L2DecodeComponent() {
ALOGV("%s()", __func__);
release();
sConcurrentInstances.fetch_sub(1, std::memory_order_relaxed);
ALOGV("%s() done", __func__);
}
c2_status_t V4L2DecodeComponent::start() {
ALOGV("%s()", __func__);
std::lock_guard<std::mutex> lock(mStartStopLock);
auto currentState = mComponentState.load();
if (currentState != ComponentState::STOPPED) {
ALOGE("Could not start at %s state", ComponentStateToString(currentState));
return C2_BAD_STATE;
}
if (!mDecoderThread.Start()) {
ALOGE("Decoder thread failed to start.");
return C2_CORRUPTED;
}
mDecoderTaskRunner = mDecoderThread.task_runner();
mWeakThis = mWeakThisFactory.GetWeakPtr();
c2_status_t status = C2_CORRUPTED;
::base::WaitableEvent done;
mDecoderTaskRunner->PostTask(
FROM_HERE, ::base::BindOnce(&V4L2DecodeComponent::startTask, mWeakThis,
::base::Unretained(&status), ::base::Unretained(&done)));
done.Wait();
if (status == C2_OK) mComponentState.store(ComponentState::RUNNING);
return status;
}
void V4L2DecodeComponent::startTask(c2_status_t* status, ::base::WaitableEvent* done) {
ALOGV("%s()", __func__);
ALOG_ASSERT(mDecoderTaskRunner->RunsTasksInCurrentSequence());
::base::ScopedClosureRunner done_caller(
::base::BindOnce(&::base::WaitableEvent::Signal, ::base::Unretained(done)));
*status = C2_CORRUPTED;
const auto codec = mIntfImpl->getVideoCodec();
if (!codec) {
ALOGE("Failed to get video codec.");
return;
}
const size_t inputBufferSize = mIntfImpl->getInputBufferSize();
const size_t minNumOutputBuffers = getMinNumOutputBuffers(*codec);
// ::base::Unretained(this) is safe here because |mDecoder| is always destroyed before
// |mDecoderThread| is stopped, so |*this| is always valid during |mDecoder|'s lifetime.
mDecoder = V4L2Decoder::Create(*codec, inputBufferSize, minNumOutputBuffers,
::base::BindRepeating(&V4L2DecodeComponent::getVideoFramePool,
::base::Unretained(this)),
::base::BindRepeating(&V4L2DecodeComponent::onOutputFrameReady,
::base::Unretained(this)),
::base::BindRepeating(&V4L2DecodeComponent::reportError,
::base::Unretained(this), C2_CORRUPTED),
mDecoderTaskRunner);
if (!mDecoder) {
ALOGE("Failed to create V4L2Decoder for %s", VideoCodecToString(*codec));
return;
}
// Get default color aspects on start.
if (!mIsSecure && *codec == VideoCodec::H264) {
if (mIntfImpl->queryColorAspects(&mCurrentColorAspects) != C2_OK) return;
mPendingColorAspectsChange = false;
}
*status = C2_OK;
}
std::unique_ptr<VideoFramePool> V4L2DecodeComponent::getVideoFramePool(const ui::Size& size,
HalPixelFormat pixelFormat,
size_t numBuffers) {
ALOGV("%s()", __func__);
ALOG_ASSERT(mDecoderTaskRunner->RunsTasksInCurrentSequence());
auto sharedThis = weak_from_this().lock();
if (sharedThis == nullptr) {
ALOGE("%s(): V4L2DecodeComponent instance is destroyed.", __func__);
return nullptr;
}
// (b/157113946): Prevent malicious dynamic resolution change exhausts system memory.
constexpr int kMaximumSupportedArea = 4096 * 4096;
if (getArea(size).value_or(INT_MAX) > kMaximumSupportedArea) {
ALOGE("The output size (%dx%d) is larger than supported size (4096x4096)", size.width,
size.height);
reportError(C2_BAD_VALUE);
return nullptr;
}
// Get block pool ID configured from the client.
auto poolId = mIntfImpl->getBlockPoolId();
ALOGI("Using C2BlockPool ID = %" PRIu64 " for allocating output buffers", poolId);
std::shared_ptr<C2BlockPool> blockPool;
auto status = GetCodec2BlockPool(poolId, std::move(sharedThis), &blockPool);
if (status != C2_OK) {
ALOGE("Graphic block allocator is invalid: %d", status);
reportError(status);
return nullptr;
}
return VideoFramePool::Create(std::move(blockPool), numBuffers, size, pixelFormat, mIsSecure,
mDecoderTaskRunner);
}
c2_status_t V4L2DecodeComponent::stop() {
ALOGV("%s()", __func__);
std::lock_guard<std::mutex> lock(mStartStopLock);
auto currentState = mComponentState.load();
if (currentState != ComponentState::RUNNING && currentState != ComponentState::ERROR) {
ALOGE("Could not stop at %s state", ComponentStateToString(currentState));
return C2_BAD_STATE;
}
if (mDecoderThread.IsRunning()) {
mDecoderTaskRunner->PostTask(FROM_HERE,
::base::BindOnce(&V4L2DecodeComponent::stopTask, mWeakThis));
mDecoderThread.Stop();
mDecoderTaskRunner = nullptr;
}
mComponentState.store(ComponentState::STOPPED);
return C2_OK;
}
void V4L2DecodeComponent::stopTask() {
ALOGV("%s()", __func__);
ALOG_ASSERT(mDecoderTaskRunner->RunsTasksInCurrentSequence());
reportAbandonedWorks();
mIsDraining = false;
releaseTask();
}
c2_status_t V4L2DecodeComponent::reset() {
ALOGV("%s()", __func__);
return stop();
}
c2_status_t V4L2DecodeComponent::release() {
ALOGV("%s()", __func__);
std::lock_guard<std::mutex> lock(mStartStopLock);
if (mDecoderThread.IsRunning()) {
mDecoderTaskRunner->PostTask(
FROM_HERE, ::base::BindOnce(&V4L2DecodeComponent::releaseTask, mWeakThis));
mDecoderThread.Stop();
mDecoderTaskRunner = nullptr;
}
mComponentState.store(ComponentState::RELEASED);
return C2_OK;
}
void V4L2DecodeComponent::releaseTask() {
ALOGV("%s()", __func__);
ALOG_ASSERT(mDecoderTaskRunner->RunsTasksInCurrentSequence());
mWeakThisFactory.InvalidateWeakPtrs();
mDecoder = nullptr;
}
c2_status_t V4L2DecodeComponent::setListener_vb(
const std::shared_ptr<C2Component::Listener>& listener, c2_blocking_t mayBlock) {
ALOGV("%s()", __func__);
auto currentState = mComponentState.load();
if (currentState == ComponentState::RELEASED ||
(currentState == ComponentState::RUNNING && listener)) {
ALOGE("Could not set listener at %s state", ComponentStateToString(currentState));
return C2_BAD_STATE;
}
if (currentState == ComponentState::RUNNING && mayBlock != C2_MAY_BLOCK) {
ALOGE("Could not set listener at %s state non-blocking",
ComponentStateToString(currentState));
return C2_BLOCKING;
}
// If the decoder thread is not running it's safe to update the listener directly.
if (!mDecoderThread.IsRunning()) {
mListener = listener;
return C2_OK;
}
::base::WaitableEvent done;
mDecoderTaskRunner->PostTask(FROM_HERE, ::base::Bind(&V4L2DecodeComponent::setListenerTask,
mWeakThis, listener, &done));
done.Wait();
return C2_OK;
}
void V4L2DecodeComponent::setListenerTask(const std::shared_ptr<Listener>& listener,
::base::WaitableEvent* done) {
ALOGV("%s()", __func__);
ALOG_ASSERT(mDecoderTaskRunner->RunsTasksInCurrentSequence());
mListener = listener;
done->Signal();
}
c2_status_t V4L2DecodeComponent::queue_nb(std::list<std::unique_ptr<C2Work>>* const items) {
ALOGV("%s()", __func__);
auto currentState = mComponentState.load();
if (currentState != ComponentState::RUNNING) {
ALOGE("Could not queue at state: %s", ComponentStateToString(currentState));
return C2_BAD_STATE;
}
while (!items->empty()) {
mDecoderTaskRunner->PostTask(FROM_HERE,
::base::BindOnce(&V4L2DecodeComponent::queueTask, mWeakThis,
std::move(items->front())));
items->pop_front();
}
return C2_OK;
}
void V4L2DecodeComponent::queueTask(std::unique_ptr<C2Work> work) {
ALOGV("%s(): flags=0x%x, index=%llu, timestamp=%llu", __func__, work->input.flags,
work->input.ordinal.frameIndex.peekull(), work->input.ordinal.timestamp.peekull());
ALOG_ASSERT(mDecoderTaskRunner->RunsTasksInCurrentSequence());
if (work->worklets.size() != 1u || work->input.buffers.size() > 1u) {
ALOGE("Invalid work: worklets.size()=%zu, input.buffers.size()=%zu", work->worklets.size(),
work->input.buffers.size());
work->result = C2_CORRUPTED;
reportWork(std::move(work));
return;
}
work->worklets.front()->output.flags = static_cast<C2FrameData::flags_t>(0);
work->worklets.front()->output.buffers.clear();
work->worklets.front()->output.ordinal = work->input.ordinal;
if (work->input.buffers.empty()) {
// Client may queue a work with no input buffer for either it's EOS or empty CSD, otherwise
// every work must have one input buffer.
if ((work->input.flags & C2FrameData::FLAG_END_OF_STREAM) == 0 &&
(work->input.flags & C2FrameData::FLAG_CODEC_CONFIG) == 0) {
ALOGE("Invalid work: work with no input buffer should be EOS or CSD.");
reportError(C2_BAD_VALUE);
return;
}
// Emplace a nullptr to unify the check for work done.
ALOGV("Got a work with no input buffer! Emplace a nullptr inside.");
work->input.buffers.emplace_back(nullptr);
}
mPendingWorks.push(std::move(work));
pumpPendingWorks();
}
void V4L2DecodeComponent::pumpPendingWorks() {
ALOGV("%s()", __func__);
ALOG_ASSERT(mDecoderTaskRunner->RunsTasksInCurrentSequence());
auto currentState = mComponentState.load();
if (currentState != ComponentState::RUNNING) {
ALOGW("Could not pump C2Work at state: %s", ComponentStateToString(currentState));
return;
}
while (!mPendingWorks.empty() && !mIsDraining) {
std::unique_ptr<C2Work> pendingWork(std::move(mPendingWorks.front()));
mPendingWorks.pop();
const int32_t bitstreamId = frameIndexToBitstreamId(pendingWork->input.ordinal.frameIndex);
const bool isCSDWork = pendingWork->input.flags & C2FrameData::FLAG_CODEC_CONFIG;
const bool isEmptyWork = pendingWork->input.buffers.front() == nullptr;
const bool isEOSWork = pendingWork->input.flags & C2FrameData::FLAG_END_OF_STREAM;
const C2Work* work = pendingWork.get();
ALOGV("Process C2Work bitstreamId=%d isCSDWork=%d, isEmptyWork=%d", bitstreamId, isCSDWork,
isEmptyWork);
auto res = mWorksAtDecoder.insert(std::make_pair(bitstreamId, std::move(pendingWork)));
ALOGW_IF(!res.second, "We already inserted bitstreamId %d to decoder?", bitstreamId);
if (!isEmptyWork) {
// If input.buffers is not empty, the buffer should have meaningful content inside.
C2ConstLinearBlock linearBlock =
work->input.buffers.front()->data().linearBlocks().front();
ALOG_ASSERT(linearBlock.size() > 0u, "Input buffer of work(%d) is empty.", bitstreamId);
// Try to parse color aspects from bitstream for CSD work of non-secure H264 codec.
if (isCSDWork && !mIsSecure && (mIntfImpl->getVideoCodec() == VideoCodec::H264)) {
C2StreamColorAspectsInfo::input codedAspects = {0u};
if (parseCodedColorAspects(linearBlock, &codedAspects)) {
std::vector<std::unique_ptr<C2SettingResult>> failures;
c2_status_t status =
mIntfImpl->config({&codedAspects}, C2_MAY_BLOCK, &failures);
if (status != C2_OK) {
ALOGE("Failed to config color aspects to interface: %d", status);
reportError(status);
return;
}
// Record current frame index, color aspects should be updated only for output
// buffers whose frame indices are not less than this one.
mPendingColorAspectsChange = true;
mPendingColorAspectsChangeFrameIndex = work->input.ordinal.frameIndex.peeku();
}
}
std::unique_ptr<ConstBitstreamBuffer> buffer = std::make_unique<ConstBitstreamBuffer>(
bitstreamId, linearBlock, linearBlock.offset(), linearBlock.size());
if (!buffer) {
reportError(C2_CORRUPTED);
return;
}
mDecoder->decode(std::move(buffer), ::base::BindOnce(&V4L2DecodeComponent::onDecodeDone,
mWeakThis, bitstreamId));
}
if (isEOSWork) {
mDecoder->drain(::base::BindOnce(&V4L2DecodeComponent::onDrainDone, mWeakThis));
mIsDraining = true;
}
// Directly report the empty CSD work as finished.
if (isCSDWork && isEmptyWork) reportWorkIfFinished(bitstreamId);
}
}
void V4L2DecodeComponent::onDecodeDone(int32_t bitstreamId, VideoDecoder::DecodeStatus status) {
ALOGV("%s(bitstreamId=%d, status=%s)", __func__, bitstreamId,
VideoDecoder::DecodeStatusToString(status));
ALOG_ASSERT(mDecoderTaskRunner->RunsTasksInCurrentSequence());
auto it = mWorksAtDecoder.find(bitstreamId);
ALOG_ASSERT(it != mWorksAtDecoder.end());
C2Work* work = it->second.get();
switch (status) {
case VideoDecoder::DecodeStatus::kAborted:
work->input.buffers.front().reset();
work->worklets.front()->output.flags = static_cast<C2FrameData::flags_t>(
work->worklets.front()->output.flags & C2FrameData::FLAG_DROP_FRAME);
mOutputBitstreamIds.push(bitstreamId);
pumpReportWork();
return;
case VideoDecoder::DecodeStatus::kError:
reportError(C2_CORRUPTED);
return;
case VideoDecoder::DecodeStatus::kOk:
// Release the input buffer.
work->input.buffers.front().reset();
// CSD Work doesn't have output buffer, the corresponding onOutputFrameReady() won't be
// called. Push the bitstreamId here.
if (work->input.flags & C2FrameData::FLAG_CODEC_CONFIG)
mOutputBitstreamIds.push(bitstreamId);
pumpReportWork();
return;
}
}
void V4L2DecodeComponent::onOutputFrameReady(std::unique_ptr<VideoFrame> frame) {
ALOGV("%s(bitstreamId=%d)", __func__, frame->getBitstreamId());
ALOG_ASSERT(mDecoderTaskRunner->RunsTasksInCurrentSequence());
const int32_t bitstreamId = frame->getBitstreamId();
auto it = mWorksAtDecoder.find(bitstreamId);
if (it == mWorksAtDecoder.end()) {
ALOGE("Work with bitstreamId=%d not found, already abandoned?", bitstreamId);
reportError(C2_CORRUPTED);
return;
}
C2Work* work = it->second.get();
C2ConstGraphicBlock constBlock = std::move(frame)->getGraphicBlock();
std::shared_ptr<C2Buffer> buffer = C2Buffer::CreateGraphicBuffer(std::move(constBlock));
if (mPendingColorAspectsChange &&
work->input.ordinal.frameIndex.peeku() >= mPendingColorAspectsChangeFrameIndex) {
mIntfImpl->queryColorAspects(&mCurrentColorAspects);
mPendingColorAspectsChange = false;
}
if (mCurrentColorAspects) {
buffer->setInfo(mCurrentColorAspects);
}
work->worklets.front()->output.buffers.emplace_back(std::move(buffer));
// Check no-show frame by timestamps for VP8/VP9 cases before reporting the current work.
if (mIntfImpl->getVideoCodec() == VideoCodec::VP8 ||
mIntfImpl->getVideoCodec() == VideoCodec::VP9) {
detectNoShowFrameWorksAndReportIfFinished(work->input.ordinal);
}
mOutputBitstreamIds.push(bitstreamId);
pumpReportWork();
}
void V4L2DecodeComponent::detectNoShowFrameWorksAndReportIfFinished(
const C2WorkOrdinalStruct& currOrdinal) {
ALOGV("%s()", __func__);
ALOG_ASSERT(mDecoderTaskRunner->RunsTasksInCurrentSequence());
std::vector<int32_t> noShowFrameBitstreamIds;
for (auto& kv : mWorksAtDecoder) {
const int32_t bitstreamId = kv.first;
const C2Work* work = kv.second.get();
// A work in mWorksAtDecoder would be considered to have no-show frame if there is no
// corresponding output buffer returned while the one of the work with latter timestamp is
// already returned. (VD is outputted in display order.)
if (isNoShowFrameWork(*work, currOrdinal)) {
work->worklets.front()->output.flags = C2FrameData::FLAG_DROP_FRAME;
// We need to call reportWorkIfFinished() for all detected no-show frame works. However,
// we should do it after the detection loop since reportWorkIfFinished() may erase
// entries in |mWorksAtDecoder|.
noShowFrameBitstreamIds.push_back(bitstreamId);
ALOGV("Detected no-show frame work index=%llu timestamp=%llu",
work->input.ordinal.frameIndex.peekull(),
work->input.ordinal.timestamp.peekull());
}
}
// Try to report works with no-show frame.
for (const int32_t bitstreamId : noShowFrameBitstreamIds) reportWorkIfFinished(bitstreamId);
}
void V4L2DecodeComponent::pumpReportWork() {
ALOGV("%s()", __func__);
ALOG_ASSERT(mDecoderTaskRunner->RunsTasksInCurrentSequence());
while (!mOutputBitstreamIds.empty()) {
if (!reportWorkIfFinished(mOutputBitstreamIds.front())) break;
mOutputBitstreamIds.pop();
}
}
bool V4L2DecodeComponent::reportWorkIfFinished(int32_t bitstreamId) {
ALOGV("%s(bitstreamId = %d)", __func__, bitstreamId);
ALOG_ASSERT(mDecoderTaskRunner->RunsTasksInCurrentSequence());
// EOS work will not be reported here. reportEOSWork() does it.
if (mIsDraining && mWorksAtDecoder.size() == 1u) {
ALOGV("work(bitstreamId = %d) is EOS Work.", bitstreamId);
return false;
}
auto it = mWorksAtDecoder.find(bitstreamId);
if (it == mWorksAtDecoder.end()) {
ALOGI("work(bitstreamId = %d) is dropped, skip.", bitstreamId);
return true;
}
if (!isWorkDone(*(it->second))) {
ALOGV("work(bitstreamId = %d) is not done yet.", bitstreamId);
return false;
}
std::unique_ptr<C2Work> work = std::move(it->second);
mWorksAtDecoder.erase(it);
work->result = C2_OK;
work->workletsProcessed = static_cast<uint32_t>(work->worklets.size());
// A work with neither flags nor output buffer would be treated as no-corresponding
// output by C2 framework, and regain pipeline capacity immediately.
if (work->worklets.front()->output.flags & C2FrameData::FLAG_DROP_FRAME)
work->worklets.front()->output.flags = static_cast<C2FrameData::flags_t>(0);
return reportWork(std::move(work));
}
bool V4L2DecodeComponent::reportEOSWork() {
ALOGV("%s()", __func__);
ALOG_ASSERT(mDecoderTaskRunner->RunsTasksInCurrentSequence());
const auto it =
std::find_if(mWorksAtDecoder.begin(), mWorksAtDecoder.end(), [](const auto& kv) {
return kv.second->input.flags & C2FrameData::FLAG_END_OF_STREAM;
});
if (it == mWorksAtDecoder.end()) {
ALOGE("Failed to find EOS work.");
return false;
}
std::unique_ptr<C2Work> eosWork(std::move(it->second));
mWorksAtDecoder.erase(it);
eosWork->result = C2_OK;
eosWork->workletsProcessed = static_cast<uint32_t>(eosWork->worklets.size());
eosWork->worklets.front()->output.flags = C2FrameData::FLAG_END_OF_STREAM;
if (!eosWork->input.buffers.empty()) eosWork->input.buffers.front().reset();
if (!mWorksAtDecoder.empty()) {
ALOGW("There are remaining works except EOS work. abandon them.");
for (const auto& kv : mWorksAtDecoder) {
ALOGW("bitstreamId(%d) => Work index=%llu, timestamp=%llu", kv.first,
kv.second->input.ordinal.frameIndex.peekull(),
kv.second->input.ordinal.timestamp.peekull());
}
reportAbandonedWorks();
}
return reportWork(std::move(eosWork));
}
bool V4L2DecodeComponent::reportWork(std::unique_ptr<C2Work> work) {
ALOGV("%s(work=%llu)", __func__, work->input.ordinal.frameIndex.peekull());
ALOG_ASSERT(mDecoderTaskRunner->RunsTasksInCurrentSequence());
if (!mListener) {
ALOGE("mListener is nullptr, setListener_vb() not called?");
return false;
}
std::list<std::unique_ptr<C2Work>> finishedWorks;
finishedWorks.emplace_back(std::move(work));
mListener->onWorkDone_nb(weak_from_this(), std::move(finishedWorks));
return true;
}
c2_status_t V4L2DecodeComponent::flush_sm(
flush_mode_t mode, std::list<std::unique_ptr<C2Work>>* const /* flushedWork */) {
ALOGV("%s()", __func__);
auto currentState = mComponentState.load();
if (currentState != ComponentState::RUNNING) {
ALOGE("Could not flush at state: %s", ComponentStateToString(currentState));
return C2_BAD_STATE;
}
if (mode != FLUSH_COMPONENT) {
return C2_OMITTED; // Tunneling is not supported by now
}
mDecoderTaskRunner->PostTask(FROM_HERE,
::base::BindOnce(&V4L2DecodeComponent::flushTask, mWeakThis));
return C2_OK;
}
void V4L2DecodeComponent::flushTask() {
ALOGV("%s()", __func__);
ALOG_ASSERT(mDecoderTaskRunner->RunsTasksInCurrentSequence());
mDecoder->flush();
reportAbandonedWorks();
// Pending EOS work will be abandoned here due to component flush if any.
mIsDraining = false;
}
void V4L2DecodeComponent::reportAbandonedWorks() {
ALOGV("%s()", __func__);
ALOG_ASSERT(mDecoderTaskRunner->RunsTasksInCurrentSequence());
std::list<std::unique_ptr<C2Work>> abandonedWorks;
while (!mPendingWorks.empty()) {
abandonedWorks.emplace_back(std::move(mPendingWorks.front()));
mPendingWorks.pop();
}
for (auto& kv : mWorksAtDecoder) {
abandonedWorks.emplace_back(std::move(kv.second));
}
mWorksAtDecoder.clear();
for (auto& work : abandonedWorks) {
// TODO: correlate the definition of flushed work result to framework.
work->result = C2_NOT_FOUND;
// When the work is abandoned, buffer in input.buffers shall reset by component.
if (!work->input.buffers.empty()) {
work->input.buffers.front().reset();
}
}
if (!abandonedWorks.empty()) {
if (!mListener) {
ALOGE("mListener is nullptr, setListener_vb() not called?");
return;
}
mListener->onWorkDone_nb(weak_from_this(), std::move(abandonedWorks));
}
}
c2_status_t V4L2DecodeComponent::drain_nb(drain_mode_t mode) {
ALOGV("%s(mode=%u)", __func__, mode);
auto currentState = mComponentState.load();
if (currentState != ComponentState::RUNNING) {
ALOGE("Could not drain at state: %s", ComponentStateToString(currentState));
return C2_BAD_STATE;
}
switch (mode) {
case DRAIN_CHAIN:
return C2_OMITTED; // Tunneling is not supported.
case DRAIN_COMPONENT_NO_EOS:
return C2_OK; // Do nothing special.
case DRAIN_COMPONENT_WITH_EOS:
mDecoderTaskRunner->PostTask(FROM_HERE,
::base::BindOnce(&V4L2DecodeComponent::drainTask, mWeakThis));
return C2_OK;
}
}
void V4L2DecodeComponent::drainTask() {
ALOGV("%s()", __func__);
ALOG_ASSERT(mDecoderTaskRunner->RunsTasksInCurrentSequence());
if (!mPendingWorks.empty()) {
ALOGV("Set EOS flag at last queued work.");
auto& flags = mPendingWorks.back()->input.flags;
flags = static_cast<C2FrameData::flags_t>(flags | C2FrameData::FLAG_END_OF_STREAM);
return;
}
if (!mWorksAtDecoder.empty()) {
ALOGV("Drain the pending works at the decoder.");
mDecoder->drain(::base::BindOnce(&V4L2DecodeComponent::onDrainDone, mWeakThis));
mIsDraining = true;
}
}
void V4L2DecodeComponent::onDrainDone(VideoDecoder::DecodeStatus status) {
ALOGV("%s(status=%s)", __func__, VideoDecoder::DecodeStatusToString(status));
ALOG_ASSERT(mDecoderTaskRunner->RunsTasksInCurrentSequence());
switch (status) {
case VideoDecoder::DecodeStatus::kAborted:
return;
case VideoDecoder::DecodeStatus::kError:
reportError(C2_CORRUPTED);
return;
case VideoDecoder::DecodeStatus::kOk:
mIsDraining = false;
if (!reportEOSWork()) {
reportError(C2_CORRUPTED);
return;
}
mDecoderTaskRunner->PostTask(
FROM_HERE, ::base::BindOnce(&V4L2DecodeComponent::pumpPendingWorks, mWeakThis));
return;
}
}
void V4L2DecodeComponent::reportError(c2_status_t error) {
ALOGE("%s(error=%u)", __func__, static_cast<uint32_t>(error));
ALOG_ASSERT(mDecoderTaskRunner->RunsTasksInCurrentSequence());
if (mComponentState.load() == ComponentState::ERROR) return;
mComponentState.store(ComponentState::ERROR);
if (!mListener) {
ALOGE("mListener is nullptr, setListener_vb() not called?");
return;
}
mListener->onError_nb(weak_from_this(), static_cast<uint32_t>(error));
}
c2_status_t V4L2DecodeComponent::announce_nb(const std::vector<C2WorkOutline>& /* items */) {
return C2_OMITTED; // Tunneling is not supported by now
}
std::shared_ptr<C2ComponentInterface> V4L2DecodeComponent::intf() {
return mIntf;
}
// static
const char* V4L2DecodeComponent::ComponentStateToString(ComponentState state) {
switch (state) {
case ComponentState::STOPPED:
return "STOPPED";
case ComponentState::RUNNING:
return "RUNNING";
case ComponentState::RELEASED:
return "RELEASED";
case ComponentState::ERROR:
return "ERROR";
}
}
} // namespace android