| // Copyright 2018, VIXL authors |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of ARM Limited nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND |
| // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifdef VIXL_INCLUDE_SIMULATOR_AARCH64 |
| |
| #include "utils-vixl.h" |
| |
| #include "simulator-aarch64.h" |
| |
| namespace vixl { |
| namespace aarch64 { |
| |
| // Randomly generated example keys for simulating only. |
| const Simulator::PACKey Simulator::kPACKeyIA = {0xc31718727de20f71, |
| 0xab9fd4e14b2fec51, |
| 0}; |
| const Simulator::PACKey Simulator::kPACKeyIB = {0xeebb163b474e04c8, |
| 0x5267ac6fc280fb7c, |
| 1}; |
| const Simulator::PACKey Simulator::kPACKeyDA = {0x5caef808deb8b1e2, |
| 0xd347cbc06b7b0f77, |
| 0}; |
| const Simulator::PACKey Simulator::kPACKeyDB = {0xe06aa1a949ba8cc7, |
| 0xcfde69e3db6d0432, |
| 1}; |
| |
| // The general PAC key isn't intended to be used with AuthPAC so we ensure the |
| // key number is invalid and asserts if used incorrectly. |
| const Simulator::PACKey Simulator::kPACKeyGA = {0xfcd98a44d564b3d5, |
| 0x6c56df1904bf0ddc, |
| -1}; |
| |
| static uint64_t GetNibble(uint64_t in_data, int position) { |
| return (in_data >> position) & 0xf; |
| } |
| |
| static uint64_t ShuffleNibbles(uint64_t in_data) { |
| static int in_positions[16] = |
| {4, 36, 52, 40, 44, 0, 24, 12, 56, 60, 8, 32, 16, 28, 20, 48}; |
| uint64_t out_data = 0; |
| for (int i = 0; i < 16; i++) { |
| out_data |= GetNibble(in_data, in_positions[i]) << (4 * i); |
| } |
| return out_data; |
| } |
| |
| static uint64_t SubstituteNibbles(uint64_t in_data) { |
| // Randomly chosen substitutes. |
| static uint64_t subs[16] = |
| {4, 7, 3, 9, 10, 14, 0, 1, 15, 2, 8, 6, 12, 5, 11, 13}; |
| uint64_t out_data = 0; |
| for (int i = 0; i < 16; i++) { |
| int index = (in_data >> (4 * i)) & 0xf; |
| out_data |= subs[index] << (4 * i); |
| } |
| return out_data; |
| } |
| |
| // Rotate nibble to the left by the amount specified. |
| static uint64_t RotNibble(uint64_t in_cell, int amount) { |
| VIXL_ASSERT((amount >= 0) && (amount <= 3)); |
| |
| in_cell &= 0xf; |
| uint64_t temp = (in_cell << 4) | in_cell; |
| return (temp >> (4 - amount)) & 0xf; |
| } |
| |
| static uint64_t BigShuffle(uint64_t in_data) { |
| uint64_t out_data = 0; |
| for (int i = 0; i < 4; i++) { |
| uint64_t n12 = GetNibble(in_data, 4 * (i + 12)); |
| uint64_t n8 = GetNibble(in_data, 4 * (i + 8)); |
| uint64_t n4 = GetNibble(in_data, 4 * (i + 4)); |
| uint64_t n0 = GetNibble(in_data, 4 * (i + 0)); |
| |
| uint64_t t0 = RotNibble(n8, 2) ^ RotNibble(n4, 1) ^ RotNibble(n0, 1); |
| uint64_t t1 = RotNibble(n12, 1) ^ RotNibble(n4, 2) ^ RotNibble(n0, 1); |
| uint64_t t2 = RotNibble(n12, 2) ^ RotNibble(n8, 1) ^ RotNibble(n0, 1); |
| uint64_t t3 = RotNibble(n12, 1) ^ RotNibble(n8, 1) ^ RotNibble(n4, 2); |
| |
| out_data |= t3 << (4 * (i + 0)); |
| out_data |= t2 << (4 * (i + 4)); |
| out_data |= t1 << (4 * (i + 8)); |
| out_data |= t0 << (4 * (i + 12)); |
| } |
| return out_data; |
| } |
| |
| // A simple, non-standard hash function invented for simulating. It mixes |
| // reasonably well, however it is unlikely to be cryptographically secure and |
| // may have a higher collision chance than other hashing algorithms. |
| uint64_t Simulator::ComputePAC(uint64_t data, uint64_t context, PACKey key) { |
| uint64_t working_value = data ^ key.high; |
| working_value = BigShuffle(working_value); |
| working_value = ShuffleNibbles(working_value); |
| working_value ^= key.low; |
| working_value = ShuffleNibbles(working_value); |
| working_value = BigShuffle(working_value); |
| working_value ^= context; |
| working_value = SubstituteNibbles(working_value); |
| working_value = BigShuffle(working_value); |
| working_value = SubstituteNibbles(working_value); |
| |
| return working_value; |
| } |
| |
| // The TTBR is selected by bit 63 or 55 depending on TBI for pointers without |
| // codes, but is always 55 once a PAC code is added to a pointer. For this |
| // reason, it must be calculated at the call site. |
| uint64_t Simulator::CalculatePACMask(uint64_t ptr, PointerType type, int ttbr) { |
| int bottom_pac_bit = GetBottomPACBit(ptr, ttbr); |
| int top_pac_bit = GetTopPACBit(ptr, type); |
| return ExtractUnsignedBitfield64(top_pac_bit, |
| bottom_pac_bit, |
| 0xffffffffffffffff & ~kTTBRMask) |
| << bottom_pac_bit; |
| } |
| |
| uint64_t Simulator::AuthPAC(uint64_t ptr, |
| uint64_t context, |
| PACKey key, |
| PointerType type) { |
| VIXL_ASSERT((key.number == 0) || (key.number == 1)); |
| |
| uint64_t pac_mask = CalculatePACMask(ptr, type, (ptr >> 55) & 1); |
| uint64_t original_ptr = |
| ((ptr & kTTBRMask) == 0) ? (ptr & ~pac_mask) : (ptr | pac_mask); |
| |
| uint64_t pac = ComputePAC(original_ptr, context, key); |
| |
| uint64_t error_code = uint64_t{1} << key.number; |
| if ((pac & pac_mask) == (ptr & pac_mask)) { |
| return original_ptr; |
| } else { |
| int error_lsb = GetTopPACBit(ptr, type) - 2; |
| uint64_t error_mask = UINT64_C(0x3) << error_lsb; |
| return (original_ptr & ~error_mask) | (error_code << error_lsb); |
| } |
| } |
| |
| uint64_t Simulator::AddPAC(uint64_t ptr, |
| uint64_t context, |
| PACKey key, |
| PointerType type) { |
| int top_pac_bit = GetTopPACBit(ptr, type); |
| |
| // TODO: Properly handle the case where extension bits are bad and TBI is |
| // turned off, and also test me. |
| VIXL_ASSERT(HasTBI(ptr, type)); |
| int ttbr = (ptr >> 55) & 1; |
| uint64_t pac_mask = CalculatePACMask(ptr, type, ttbr); |
| uint64_t ext_ptr = (ttbr == 0) ? (ptr & ~pac_mask) : (ptr | pac_mask); |
| |
| uint64_t pac = ComputePAC(ext_ptr, context, key); |
| |
| // If the pointer isn't all zeroes or all ones in the PAC bitfield, corrupt |
| // the resulting code. |
| if (((ptr & (pac_mask | kTTBRMask)) != 0x0) && |
| ((~ptr & (pac_mask | kTTBRMask)) != 0x0)) { |
| pac ^= UINT64_C(1) << (top_pac_bit - 1); |
| } |
| |
| uint64_t ttbr_shifted = static_cast<uint64_t>(ttbr) << 55; |
| return (pac & pac_mask) | ttbr_shifted | (ptr & ~pac_mask); |
| } |
| |
| uint64_t Simulator::StripPAC(uint64_t ptr, PointerType type) { |
| uint64_t pac_mask = CalculatePACMask(ptr, type, (ptr >> 55) & 1); |
| return ((ptr & kTTBRMask) == 0) ? (ptr & ~pac_mask) : (ptr | pac_mask); |
| } |
| } // namespace aarch64 |
| } // namespace vixl |
| |
| #endif // VIXL_INCLUDE_SIMULATOR_AARCH64 |