| /* Copyright (c) 2019 The Khronos Group Inc. |
| * Copyright (c) 2019 Valve Corporation |
| * Copyright (c) 2019 LunarG, Inc. |
| * Copyright (C) 2019 Google Inc. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| * |
| * John Zulauf <[email protected]> |
| * |
| */ |
| #ifndef SPARSE_CONTAINERS_H_ |
| #define SPARSE_CONTAINERS_H_ |
| #define NOMINMAX |
| #include <cassert> |
| #include <memory> |
| #include <unordered_map> |
| #include <vector> |
| |
| namespace sparse_container { |
| // SparseVector: |
| // |
| // Defines a sparse single-dimensional container which is targeted for three distinct use cases |
| // 1) Large range of indices sparsely populated ("Sparse access" below) |
| // 2) Large range of indices where all values are the same ("Sparse access" below) |
| // 3) Large range of values densely populated (more that 1/4 full) ("Dense access" below) |
| // 4) Small range of values where direct access is most efficient ("Dense access" below) |
| // |
| // To update semantics are supported bases on kSetReplaces: |
| // true -- updates to already set (valid) indices replace current value |
| // false -- updates to already set (valid) indicies are ignored. |
| // |
| // Theory of operation: |
| // |
| // When created, a sparse vector is created (based on size relative to |
| // the kSparseThreshold) in either Sparse or Dense access mode. |
| // |
| // In "Sparse access" mode individual values are stored in a map keyed |
| // by the index. A "full range" value (if set) defines the value of all |
| // entries not present in the map. Setting a full range value via |
| // |
| // SetRange(range_min, range_max, full_range_value ) |
| // |
| // either clears the map (kSetReplaces==true) or prevents further |
| // updates to the vector (kSetReplaces==false). If the map becomes |
| // more than // 1/kConversionThreshold (4) full, the SparseVector is |
| // converted into "Dense access" mode. Entries are copied from map, |
| // with non-present indices set to the default value (kDefaultValue) |
| // or the full range value (if present). |
| // |
| // In "Dense access" mode, values are stored in a vector the size of |
| // the valid range indexed by the incoming index value minus range_min_. |
| // The same upate semantic applies bases on kSetReplaces. |
| // |
| // Note that when kSparseThreshold |
| // |
| // Access: |
| // |
| // NOTE all "end" indices (in construction or access) are *exclusive*. |
| // |
| // Given the variable semantics and effective compression of Sparse |
| // access mode, all access is through Get, Set, and SetRange functions |
| // and a constant iterator. Get return either the value found (using |
| // the current access mode) or the kDefaultValue. Set and SetRange |
| // return whether or not state was updated, in order to support dirty |
| // bit updates for any dependent state. |
| // |
| // The iterator ConstIterator provides basic, "by value" access. The |
| // "by value" nature of the access reflect the compressed nature |
| // operators *, ++, ==, and != are provided, with the latter two only |
| // suitable for comparisons vs. cend. The iterator skips all |
| // kDefaultValue entries in either access mode, returning a std::pair |
| // containing {IndexType, ValueType}. The multiple access modes give |
| // the iterator a bit more complexity than is optimal, but hides the |
| // underlying complexity from the callers. |
| // |
| // TODO: Update iterator to use a reference (likely using |
| // reference_wrapper...) |
| |
| template <typename IndexType_, typename T, bool kSetReplaces, T kDefaultValue = T(), size_t kSparseThreshold = 16> |
| class SparseVector { |
| public: |
| typedef IndexType_ IndexType; |
| typedef T value_type; |
| typedef value_type ValueType; |
| typedef std::unordered_map<IndexType, ValueType> SparseType; |
| typedef std::vector<ValueType> DenseType; |
| |
| SparseVector(IndexType start, IndexType end) |
| : range_min_(start), range_max_(end), threshold_((end - start) / kConversionThreshold) { |
| assert(end > start); |
| Reset(); |
| } |
| |
| // Initial access mode is set based on range size vs. kSparseThreshold. Either sparse_ or dense_ is always set, but only |
| // ever one at a time |
| void Reset() { |
| has_full_range_value_ = false; |
| full_range_value_ = kDefaultValue; |
| size_t count = range_max_ - range_min_; |
| if (kSparseThreshold && (count > kSparseThreshold)) { |
| sparse_.reset(new SparseType()); |
| dense_.reset(); |
| } else { |
| sparse_.reset(); |
| dense_.reset(new DenseType(count, kDefaultValue)); |
| } |
| } |
| |
| const ValueType &Get(const IndexType index) const { |
| // Note that here (and similarly below, the 'IsSparse' clause is |
| // eliminated as dead code in release builds if kSparseThreshold==0 |
| if (IsSparse()) { |
| if (!sparse_->empty()) { // Don't attempt lookup in empty map |
| auto it = sparse_->find(index); |
| if (it != sparse_->cend()) { |
| return it->second; |
| } |
| } |
| // If there is a full_range_value, return it, but there isn't a full_range_value_, it's set to kDefaultValue |
| // so it's still the correct this to return |
| return full_range_value_; |
| } else { |
| // Direct access |
| assert(dense_.get()); |
| const ValueType &value = (*dense_)[index - range_min_]; |
| return value; |
| } |
| } |
| |
| // Set a indexes value, based on the access mode, update semantics are enforced within the access mode specific function |
| bool Set(const IndexType index, const ValueType &value) { |
| bool updated = false; |
| if (IsSparse()) { |
| updated = SetSparse(index, value); |
| } else { |
| assert(dense_.get()); |
| updated = SetDense(index, value); |
| } |
| return updated; |
| } |
| |
| // Set a range of values based on access mode, with some update semantics applied a the range level |
| bool SetRange(const IndexType start, IndexType end, ValueType value) { |
| bool updated = false; |
| if (IsSparse()) { |
| if (!kSetReplaces && HasFullRange()) return false; // We have full coverage, we can change this no more |
| |
| bool is_full_range = IsFullRange(start, end); |
| if (kSetReplaces && is_full_range) { |
| updated = value != full_range_value_; |
| full_range_value_ = value; |
| if (HasSparseSubranges()) { |
| updated = true; |
| sparse_->clear(); // full range replaces all subranges |
| } |
| // has_full_range_value_ state of the full_range_value_ to avoid ValueType comparisons |
| has_full_range_value_ = value != kDefaultValue; |
| } else if (!kSetReplaces && (value != kDefaultValue) && is_full_range && !HasFullRange()) { |
| // With the update only invalid semantics, the value becomes the fallback, and will prevent other updates |
| full_range_value_ = value; |
| has_full_range_value_ = true; |
| updated = true; |
| // Clean up the sparse map a bit |
| for (auto it = sparse_->begin(); it != sparse_->end();) { // no increment clause because of erase below |
| if (it->second == value) { |
| it = sparse_->erase(it); // remove redundant entries |
| } else { |
| ++it; |
| } |
| } |
| } else { |
| for (IndexType index = start; index < end; ++index) { |
| // NOTE: We can't use SetSparse here, because this may be converted to dense access mid update |
| updated |= Set(index, value); |
| } |
| } |
| } else { |
| // Note that "Dense Access" does away with the full_range_value_ logic, storing empty entries using kDefaultValue |
| assert(dense_); |
| for (IndexType index = start; index < end; ++index) { |
| updated = SetDense(index, value); |
| } |
| } |
| return updated; |
| } |
| |
| // Set only the non-default values from another sparse vector |
| bool Merge(const SparseVector &from) { |
| // Must not set from Sparse arracy with larger bounds... |
| assert((range_min_ <= from.range_min_) && (range_max_ >= from.range_max_)); |
| bool updated = false; |
| if (from.IsSparse()) { |
| if (from.HasFullRange() && !from.HasSparseSubranges()) { |
| // Short cut to copy a full range if that's all we have |
| updated |= SetRange(from.range_min_, from.range_max_, from.full_range_value_); |
| } else { |
| // Have to do it the complete (potentially) slow way |
| // TODO add sorted keys to iterator to reduce hash lookups |
| for (auto it = from.cbegin(); it != from.cend(); ++it) { |
| const IndexType index = (*it).first; |
| const ValueType &value = (*it).second; |
| Set(index, value); |
| } |
| } |
| } else { |
| assert(from.dense_); |
| DenseType &ray = *from.dense_; |
| for (IndexType entry = from.range_min_; entry < from.range_max_; ++entry) { |
| IndexType index = entry - from.range_min_; |
| if (ray[index] != kDefaultValue) { |
| updated |= Set(entry, ray[index]); |
| } |
| } |
| } |
| return updated; |
| } |
| |
| friend class ConstIterator; |
| class ConstIterator { |
| public: |
| using SparseType = typename SparseVector::SparseType; |
| using SparseIterator = typename SparseType::const_iterator; |
| using IndexType = typename SparseVector::IndexType; |
| using ValueType = typename SparseVector::ValueType; |
| using IteratorValueType = std::pair<IndexType, ValueType>; |
| const IteratorValueType &operator*() const { return current_value_; } |
| |
| ConstIterator &operator++() { |
| if (delegated_) { // implies sparse |
| ++it_sparse_; |
| if (it_sparse_ == vec_->sparse_->cend()) { |
| the_end_ = true; |
| current_value_.first = vec_->range_max_; |
| current_value_.second = SparseVector::DefaultValue(); |
| } else { |
| current_value_.first = it_sparse_->first; |
| current_value_.second = it_sparse_->second; |
| } |
| } else { |
| index_++; |
| SetCurrentValue(); |
| } |
| return *this; |
| } |
| bool operator!=(const ConstIterator &rhs) const { |
| return (the_end_ != rhs.the_end_); // Just good enough for cend checks |
| } |
| |
| bool operator==(const ConstIterator &rhs) const { |
| return (the_end_ == rhs.the_end_); // Just good enough for cend checks |
| } |
| |
| // The iterator has two modes: |
| // delegated: |
| // where we are in sparse access mode and have no full_range_value |
| // and thus can delegate our iteration to underlying map |
| // non-delegated: |
| // either dense mode or we have a full range value and thus |
| // must iterate over the whole range |
| ConstIterator(const SparseVector &vec) : vec_(&vec) { |
| if (!vec_->IsSparse() || vec_->HasFullRange()) { |
| // Must iterated over entire ranges skipping (in the case of dense access), invalid entries |
| delegated_ = false; |
| index_ = vec_->range_min_; |
| SetCurrentValue(); // Skips invalid and sets the_end_ |
| } else if (vec_->HasSparseSubranges()) { |
| // The subranges store the non-default values... and their is no full range value |
| delegated_ = true; |
| it_sparse_ = vec_->sparse_->cbegin(); |
| current_value_.first = it_sparse_->first; |
| current_value_.second = it_sparse_->second; |
| the_end_ = false; // the sparse map is non-empty (per HasSparseSubranges() above) |
| } else { |
| // Sparse, but with no subranges |
| the_end_ = true; |
| } |
| } |
| |
| ConstIterator() : vec_(nullptr), the_end_(true) {} |
| |
| protected: |
| const SparseVector *vec_; |
| bool the_end_; |
| SparseIterator it_sparse_; |
| bool delegated_; |
| IndexType index_; |
| ValueType value_; |
| |
| IteratorValueType current_value_; |
| |
| // in the non-delegated case we use normal accessors and skip default values. |
| void SetCurrentValue() { |
| the_end_ = true; |
| while (index_ < vec_->range_max_) { |
| value_ = vec_->Get(index_); |
| if (value_ != SparseVector::DefaultValue()) { |
| the_end_ = false; |
| current_value_ = IteratorValueType(index_, value_); |
| break; |
| } |
| index_++; |
| } |
| } |
| }; |
| typedef ConstIterator const_iterator; |
| |
| ConstIterator cbegin() const { return ConstIterator(*this); } |
| ConstIterator cend() const { return ConstIterator(); } |
| |
| IndexType RangeMax() const { return range_max_; } |
| IndexType RangeMin() const { return range_min_; } |
| |
| static const unsigned kConversionThreshold = 4; |
| const IndexType range_min_; // exclusive |
| const IndexType range_max_; // exclusive |
| const IndexType threshold_; // exclusive |
| |
| // Data for sparse mode |
| // We have a short cut for full range values when in sparse mode |
| bool has_full_range_value_; |
| ValueType full_range_value_; |
| std::unique_ptr<SparseType> sparse_; |
| |
| // Data for dense mode |
| std::unique_ptr<DenseType> dense_; |
| |
| static const ValueType &DefaultValue() { |
| static ValueType value = kDefaultValue; |
| return value; |
| } |
| // Note that IsSparse is compile-time reducible if kSparseThreshold is zero... |
| inline bool IsSparse() const { return kSparseThreshold && sparse_.get(); } |
| bool IsFullRange(IndexType start, IndexType end) const { return (start == range_min_) && (end == range_max_); } |
| bool IsFullRangeValue(const ValueType &value) const { return has_full_range_value_ && (value == full_range_value_); } |
| bool HasFullRange() const { return IsSparse() && has_full_range_value_; } |
| bool HasSparseSubranges() const { return IsSparse() && !sparse_->empty(); } |
| |
| // This is called unconditionally, to encapsulate the conversion criteria and logic here |
| void SparseToDenseConversion() { |
| // If we're using more threshold of the sparse range, convert to dense_ |
| if (IsSparse() && (sparse_->size() > threshold_)) { |
| ValueType default_value = HasFullRange() ? full_range_value_ : kDefaultValue; |
| dense_.reset(new DenseType((range_max_ - range_min_), default_value)); |
| DenseType &ray = *dense_; |
| for (auto const &item : *sparse_) { |
| ray[item.first - range_min_] = item.second; |
| } |
| sparse_.reset(); |
| has_full_range_value_ = false; |
| } |
| } |
| |
| // Dense access mode setter with update semantics implemented |
| bool SetDense(IndexType index, const ValueType &value) { |
| bool updated = false; |
| ValueType ¤t_value = (*dense_)[index - range_min_]; |
| if ((kSetReplaces || current_value == kDefaultValue) && (value != current_value)) { |
| current_value = value; |
| updated = true; |
| } |
| return updated; |
| } |
| |
| // Sparse access mode setter with update full range and update semantics implemented |
| bool SetSparse(IndexType index, const ValueType &value) { |
| if (!kSetReplaces && HasFullRange()) { |
| return false; // We have full coverage, we can change this no more |
| } |
| |
| if (kSetReplaces && IsFullRangeValue(value) && HasSparseSubranges()) { |
| auto erasure = sparse_->erase(index); // Remove duplicate record from map |
| return erasure > 0; |
| } |
| |
| // Use insert to reduce the number of hash lookups |
| auto map_pair = std::make_pair(index, value); |
| auto insert_pair = sparse_->insert(map_pair); |
| auto &it = insert_pair.first; // use references to avoid nested pair accesses |
| const bool inserted = insert_pair.second; |
| bool updated = false; |
| if (inserted) { |
| updated = true; |
| SparseToDenseConversion(); |
| } else if (kSetReplaces && value != it->second) { |
| // Only replace value if semantics allow it and it has changed. |
| it->second = value; |
| updated = true; |
| } |
| return updated; |
| } |
| }; |
| |
| } // namespace sparse_container |
| #endif |