| /* |
| * Copyright (c) 2015-2019 The Khronos Group Inc. |
| * Copyright (c) 2015-2019 Valve Corporation |
| * Copyright (c) 2015-2019 LunarG, Inc. |
| * Copyright (c) 2015-2019 Google, Inc. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| * |
| * Author: Courtney Goeltzenleuchter <[email protected]> |
| * Author: Tony Barbour <[email protected]> |
| * Author: Dave Houlton <[email protected]> |
| */ |
| |
| #include "vkrenderframework.h" |
| #include "vk_format_utils.h" |
| |
| #define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0])) |
| #define GET_DEVICE_PROC_ADDR(dev, entrypoint) \ |
| { \ |
| fp##entrypoint = (PFN_vk##entrypoint)vkGetDeviceProcAddr(dev, "vk" #entrypoint); \ |
| assert(fp##entrypoint != NULL); \ |
| } |
| |
| VkRenderFramework::VkRenderFramework() |
| : inst(VK_NULL_HANDLE), |
| m_device(NULL), |
| m_commandPool(VK_NULL_HANDLE), |
| m_commandBuffer(NULL), |
| m_renderPass(VK_NULL_HANDLE), |
| m_framebuffer(VK_NULL_HANDLE), |
| m_surface(VK_NULL_HANDLE), |
| m_swapchain(VK_NULL_HANDLE), |
| m_addRenderPassSelfDependency(false), |
| m_width(256.0), // default window width |
| m_height(256.0), // default window height |
| m_render_target_fmt(VK_FORMAT_R8G8B8A8_UNORM), |
| m_depth_stencil_fmt(VK_FORMAT_UNDEFINED), |
| m_clear_via_load_op(true), |
| m_depth_clear_color(1.0), |
| m_stencil_clear_color(0), |
| m_depthStencil(NULL), |
| m_CreateDebugReportCallback(VK_NULL_HANDLE), |
| m_DestroyDebugReportCallback(VK_NULL_HANDLE), |
| m_globalMsgCallback(VK_NULL_HANDLE), |
| m_devMsgCallback(VK_NULL_HANDLE) { |
| memset(&m_renderPassBeginInfo, 0, sizeof(m_renderPassBeginInfo)); |
| m_renderPassBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; |
| |
| // clear the back buffer to dark grey |
| m_clear_color.float32[0] = 0.25f; |
| m_clear_color.float32[1] = 0.25f; |
| m_clear_color.float32[2] = 0.25f; |
| m_clear_color.float32[3] = 0.0f; |
| } |
| |
| VkRenderFramework::~VkRenderFramework() { ShutdownFramework(); } |
| |
| VkPhysicalDevice VkRenderFramework::gpu() { |
| EXPECT_NE((VkInstance)0, inst); // Invalid to request gpu before instance exists |
| return objs[0]; |
| } |
| |
| // Return true if layer name is found and spec+implementation values are >= requested values |
| bool VkRenderFramework::InstanceLayerSupported(const char *name, uint32_t spec, uint32_t implementation) { |
| uint32_t layer_count = 0; |
| std::vector<VkLayerProperties> layer_props; |
| |
| VkResult res = vkEnumerateInstanceLayerProperties(&layer_count, NULL); |
| if (VK_SUCCESS != res) return false; |
| if (0 == layer_count) return false; |
| |
| layer_props.resize(layer_count); |
| res = vkEnumerateInstanceLayerProperties(&layer_count, layer_props.data()); |
| if (VK_SUCCESS != res) return false; |
| |
| for (auto &it : layer_props) { |
| if (0 == strncmp(name, it.layerName, VK_MAX_EXTENSION_NAME_SIZE)) { |
| return ((it.specVersion >= spec) && (it.implementationVersion >= implementation)); |
| } |
| } |
| return false; |
| } |
| |
| // Enable device profile as last layer on stack overriding devsim if there, or return if not available |
| bool VkRenderFramework::EnableDeviceProfileLayer() { |
| if (InstanceLayerSupported("VK_LAYER_LUNARG_device_profile_api")) { |
| if (VkTestFramework::m_devsim_layer) { |
| assert(0 == strcmp(m_instance_layer_names.back(), "VK_LAYER_LUNARG_device_simulation")); |
| m_instance_layer_names.pop_back(); |
| m_instance_layer_names.push_back("VK_LAYER_LUNARG_device_profile_api"); |
| } else { |
| m_instance_layer_names.push_back("VK_LAYER_LUNARG_device_profile_api"); |
| } |
| } else { |
| printf(" Did not find VK_LAYER_LUNARG_device_profile_api layer; skipped.\n"); |
| return false; |
| } |
| return true; |
| } |
| |
| // Return true if extension name is found and spec value is >= requested spec value |
| bool VkRenderFramework::InstanceExtensionSupported(const char *ext_name, uint32_t spec) { |
| uint32_t ext_count = 0; |
| std::vector<VkExtensionProperties> ext_props; |
| VkResult res = vkEnumerateInstanceExtensionProperties(nullptr, &ext_count, nullptr); |
| if (VK_SUCCESS != res) return false; |
| if (0 == ext_count) return false; |
| |
| ext_props.resize(ext_count); |
| res = vkEnumerateInstanceExtensionProperties(nullptr, &ext_count, ext_props.data()); |
| if (VK_SUCCESS != res) return false; |
| |
| for (auto &it : ext_props) { |
| if (0 == strncmp(ext_name, it.extensionName, VK_MAX_EXTENSION_NAME_SIZE)) { |
| return (it.specVersion >= spec); |
| } |
| } |
| return false; |
| } |
| |
| // Return true if instance exists and extension name is in the list |
| bool VkRenderFramework::InstanceExtensionEnabled(const char *ext_name) { |
| if (!inst) return false; |
| |
| bool ext_found = false; |
| for (auto ext : m_instance_extension_names) { |
| if (!strcmp(ext, ext_name)) { |
| ext_found = true; |
| break; |
| } |
| } |
| return ext_found; |
| } |
| |
| // Return true if extension name is found and spec value is >= requested spec value |
| bool VkRenderFramework::DeviceExtensionSupported(VkPhysicalDevice dev, const char *layer, const char *ext_name, uint32_t spec) { |
| if (!inst) { |
| EXPECT_NE((VkInstance)0, inst); // Complain, not cool without an instance |
| return false; |
| } |
| uint32_t ext_count = 0; |
| std::vector<VkExtensionProperties> ext_props; |
| VkResult res = vkEnumerateDeviceExtensionProperties(dev, layer, &ext_count, nullptr); |
| if (VK_SUCCESS != res) return false; |
| if (0 == ext_count) return false; |
| |
| ext_props.resize(ext_count); |
| res = vkEnumerateDeviceExtensionProperties(dev, layer, &ext_count, ext_props.data()); |
| if (VK_SUCCESS != res) return false; |
| |
| for (auto &it : ext_props) { |
| if (0 == strncmp(ext_name, it.extensionName, VK_MAX_EXTENSION_NAME_SIZE)) { |
| return (it.specVersion >= spec); |
| } |
| } |
| return false; |
| } |
| |
| // Return true if device is created and extension name is found in the list |
| bool VkRenderFramework::DeviceExtensionEnabled(const char *ext_name) { |
| if (NULL == m_device) return false; |
| |
| bool ext_found = false; |
| for (auto ext : m_device_extension_names) { |
| if (!strcmp(ext, ext_name)) { |
| ext_found = true; |
| break; |
| } |
| } |
| return ext_found; |
| } |
| |
| // WARNING: The DevSim layer can override the properties that are tested here, making the result of |
| // this function dubious when DevSim is active. |
| bool VkRenderFramework::DeviceIsMockICD() { |
| VkPhysicalDeviceProperties props = vk_testing::PhysicalDevice(gpu()).properties(); |
| if ((props.vendorID == 0xba5eba11) && (props.deviceID == 0xf005ba11) && (0 == strcmp("Vulkan Mock Device", props.deviceName))) { |
| return true; |
| } |
| return false; |
| } |
| |
| // Some tests may need to be skipped if the devsim layer is in use. |
| bool VkRenderFramework::DeviceSimulation() { return m_devsim_layer; } |
| |
| // Render into a RenderTarget and read the pixels back to see if the device can really draw. |
| // Note: This cannot be called from inside an initialized VkRenderFramework because frameworks cannot be "nested". |
| // It is best to call it before "Init()". |
| bool VkRenderFramework::DeviceCanDraw() { |
| InitFramework(NULL, NULL); |
| InitState(NULL, NULL, 0); |
| InitViewport(); |
| InitRenderTarget(); |
| |
| // Draw a triangle that covers the entire viewport. |
| char const *vsSource = |
| "#version 450\n" |
| "\n" |
| "vec2 vertices[3];\n" |
| "void main() { \n" |
| " vertices[0] = vec2(-10.0, -10.0);\n" |
| " vertices[1] = vec2( 10.0, -10.0);\n" |
| " vertices[2] = vec2( 0.0, 10.0);\n" |
| " gl_Position = vec4(vertices[gl_VertexIndex % 3], 0.0, 1.0);\n" |
| "}\n"; |
| // Draw with a solid color. |
| char const *fsSource = |
| "#version 450\n" |
| "\n" |
| "layout(location=0) out vec4 color;\n" |
| "void main() {\n" |
| " color = vec4(32.0/255.0);\n" |
| "}\n"; |
| VkShaderObj *vs = new VkShaderObj(m_device, vsSource, VK_SHADER_STAGE_VERTEX_BIT, this); |
| VkShaderObj *fs = new VkShaderObj(m_device, fsSource, VK_SHADER_STAGE_FRAGMENT_BIT, this); |
| |
| VkPipelineObj *pipe = new VkPipelineObj(m_device); |
| pipe->AddShader(vs); |
| pipe->AddShader(fs); |
| pipe->AddDefaultColorAttachment(); |
| |
| VkDescriptorSetObj *descriptorSet = new VkDescriptorSetObj(m_device); |
| descriptorSet->CreateVKDescriptorSet(m_commandBuffer); |
| |
| pipe->CreateVKPipeline(descriptorSet->GetPipelineLayout(), renderPass()); |
| |
| m_commandBuffer->begin(); |
| m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo); |
| |
| vkCmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe->handle()); |
| m_commandBuffer->BindDescriptorSet(*descriptorSet); |
| |
| VkViewport viewport = m_viewports[0]; |
| VkRect2D scissors = m_scissors[0]; |
| |
| vkCmdSetViewport(m_commandBuffer->handle(), 0, 1, &viewport); |
| vkCmdSetScissor(m_commandBuffer->handle(), 0, 1, &scissors); |
| |
| vkCmdDraw(m_commandBuffer->handle(), 3, 1, 0, 0); |
| |
| m_commandBuffer->EndRenderPass(); |
| m_commandBuffer->end(); |
| |
| VkSubmitInfo submit_info = {}; |
| submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; |
| submit_info.commandBufferCount = 1; |
| submit_info.pCommandBuffers = &m_commandBuffer->handle(); |
| |
| vkQueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE); |
| vkQueueWaitIdle(m_device->m_queue); |
| |
| auto pixels = m_renderTargets[0]->Read(); |
| |
| delete descriptorSet; |
| delete pipe; |
| delete fs; |
| delete vs; |
| ShutdownFramework(); |
| return pixels[0][0] == 0x20202020; |
| } |
| |
| void VkRenderFramework::InitFramework(PFN_vkDebugReportCallbackEXT dbgFunction, void *userData, void *instance_pnext) { |
| // Only enable device profile layer by default if devsim is not enabled |
| if (!VkTestFramework::m_devsim_layer && InstanceLayerSupported("VK_LAYER_LUNARG_device_profile_api")) { |
| m_instance_layer_names.push_back("VK_LAYER_LUNARG_device_profile_api"); |
| } |
| |
| // Assert not already initialized |
| ASSERT_EQ((VkInstance)0, inst); |
| |
| // Remove any unsupported layer names from list |
| for (auto layer = m_instance_layer_names.begin(); layer != m_instance_layer_names.end();) { |
| if (!InstanceLayerSupported(*layer)) { |
| ADD_FAILURE() << "InitFramework(): Requested layer " << *layer << " was not found. Disabled."; |
| layer = m_instance_layer_names.erase(layer); |
| } else { |
| ++layer; |
| } |
| } |
| |
| // Remove any unsupported instance extension names from list |
| for (auto ext = m_instance_extension_names.begin(); ext != m_instance_extension_names.end();) { |
| if (!InstanceExtensionSupported(*ext)) { |
| ADD_FAILURE() << "InitFramework(): Requested extension " << *ext << " was not found. Disabled."; |
| ext = m_instance_extension_names.erase(ext); |
| } else { |
| ++ext; |
| } |
| } |
| |
| VkInstanceCreateInfo instInfo = {}; |
| VkResult U_ASSERT_ONLY err; |
| |
| instInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; |
| instInfo.pNext = instance_pnext; |
| instInfo.pApplicationInfo = &app_info; |
| instInfo.enabledLayerCount = m_instance_layer_names.size(); |
| instInfo.ppEnabledLayerNames = m_instance_layer_names.data(); |
| instInfo.enabledExtensionCount = m_instance_extension_names.size(); |
| instInfo.ppEnabledExtensionNames = m_instance_extension_names.data(); |
| |
| VkDebugReportCallbackCreateInfoEXT dbgCreateInfo; |
| if (dbgFunction) { |
| // Enable create time debug messages |
| memset(&dbgCreateInfo, 0, sizeof(dbgCreateInfo)); |
| dbgCreateInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT; |
| dbgCreateInfo.flags = |
| VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT | VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT; |
| dbgCreateInfo.pfnCallback = dbgFunction; |
| dbgCreateInfo.pUserData = userData; |
| |
| dbgCreateInfo.pNext = instInfo.pNext; |
| instInfo.pNext = &dbgCreateInfo; |
| } |
| |
| err = vkCreateInstance(&instInfo, NULL, &this->inst); |
| ASSERT_VK_SUCCESS(err); |
| |
| err = vkEnumeratePhysicalDevices(inst, &this->gpu_count, NULL); |
| ASSERT_LE(this->gpu_count, ARRAY_SIZE(objs)) << "Too many gpus"; |
| ASSERT_VK_SUCCESS(err); |
| err = vkEnumeratePhysicalDevices(inst, &this->gpu_count, objs); |
| ASSERT_VK_SUCCESS(err); |
| ASSERT_GE(this->gpu_count, (uint32_t)1) << "No GPU available"; |
| if (dbgFunction) { |
| m_CreateDebugReportCallback = |
| (PFN_vkCreateDebugReportCallbackEXT)vkGetInstanceProcAddr(this->inst, "vkCreateDebugReportCallbackEXT"); |
| ASSERT_NE(m_CreateDebugReportCallback, (PFN_vkCreateDebugReportCallbackEXT)NULL) |
| << "Did not get function pointer for CreateDebugReportCallback"; |
| if (m_CreateDebugReportCallback) { |
| dbgCreateInfo.pNext = nullptr; // clean up from usage in CreateInstance above |
| err = m_CreateDebugReportCallback(this->inst, &dbgCreateInfo, NULL, &m_globalMsgCallback); |
| ASSERT_VK_SUCCESS(err); |
| |
| m_DestroyDebugReportCallback = |
| (PFN_vkDestroyDebugReportCallbackEXT)vkGetInstanceProcAddr(this->inst, "vkDestroyDebugReportCallbackEXT"); |
| ASSERT_NE(m_DestroyDebugReportCallback, (PFN_vkDestroyDebugReportCallbackEXT)NULL) |
| << "Did not get function pointer for DestroyDebugReportCallback"; |
| m_DebugReportMessage = (PFN_vkDebugReportMessageEXT)vkGetInstanceProcAddr(this->inst, "vkDebugReportMessageEXT"); |
| ASSERT_NE(m_DebugReportMessage, (PFN_vkDebugReportMessageEXT)NULL) |
| << "Did not get function pointer for DebugReportMessage"; |
| } |
| } |
| } |
| |
| void VkRenderFramework::ShutdownFramework() { |
| // Nothing to shut down without a VkInstance |
| if (!this->inst) return; |
| |
| delete m_commandBuffer; |
| m_commandBuffer = nullptr; |
| delete m_commandPool; |
| m_commandPool = nullptr; |
| if (m_framebuffer) vkDestroyFramebuffer(device(), m_framebuffer, NULL); |
| m_framebuffer = VK_NULL_HANDLE; |
| if (m_renderPass) vkDestroyRenderPass(device(), m_renderPass, NULL); |
| m_renderPass = VK_NULL_HANDLE; |
| |
| if (m_globalMsgCallback) m_DestroyDebugReportCallback(this->inst, m_globalMsgCallback, NULL); |
| m_globalMsgCallback = VK_NULL_HANDLE; |
| if (m_devMsgCallback) m_DestroyDebugReportCallback(this->inst, m_devMsgCallback, NULL); |
| m_devMsgCallback = VK_NULL_HANDLE; |
| |
| m_renderTargets.clear(); |
| |
| delete m_depthStencil; |
| m_depthStencil = nullptr; |
| |
| // reset the driver |
| delete m_device; |
| m_device = nullptr; |
| |
| if (this->inst) vkDestroyInstance(this->inst, NULL); |
| this->inst = (VkInstance)0; // In case we want to re-initialize |
| } |
| |
| void VkRenderFramework::GetPhysicalDeviceFeatures(VkPhysicalDeviceFeatures *features) { |
| if (NULL == m_device) { |
| VkDeviceObj *temp_device = new VkDeviceObj(0, objs[0], m_device_extension_names); |
| *features = temp_device->phy().features(); |
| delete (temp_device); |
| } else { |
| *features = m_device->phy().features(); |
| } |
| } |
| |
| void VkRenderFramework::GetPhysicalDeviceProperties(VkPhysicalDeviceProperties *props) { |
| *props = vk_testing::PhysicalDevice(gpu()).properties(); |
| } |
| |
| void VkRenderFramework::InitState(VkPhysicalDeviceFeatures *features, void *create_device_pnext, |
| const VkCommandPoolCreateFlags flags) { |
| // Remove any unsupported device extension names from list |
| for (auto ext = m_device_extension_names.begin(); ext != m_device_extension_names.end();) { |
| if (!DeviceExtensionSupported(objs[0], nullptr, *ext)) { |
| bool found = false; |
| for (auto layer = m_instance_layer_names.begin(); layer != m_instance_layer_names.end(); ++layer) { |
| if (DeviceExtensionSupported(objs[0], *layer, *ext)) { |
| found = true; |
| break; |
| } |
| } |
| if (!found) { |
| ADD_FAILURE() << "InitState(): The requested device extension " << *ext << " was not found. Disabled."; |
| ext = m_device_extension_names.erase(ext); |
| } else { |
| ++ext; |
| } |
| } else { |
| ++ext; |
| } |
| } |
| |
| m_device = new VkDeviceObj(0, objs[0], m_device_extension_names, features, create_device_pnext); |
| m_device->SetDeviceQueue(); |
| |
| m_depthStencil = new VkDepthStencilObj(m_device); |
| |
| m_render_target_fmt = VkTestFramework::GetFormat(inst, m_device); |
| |
| m_lineWidth = 1.0f; |
| |
| m_depthBiasConstantFactor = 0.0f; |
| m_depthBiasClamp = 0.0f; |
| m_depthBiasSlopeFactor = 0.0f; |
| |
| m_blendConstants[0] = 1.0f; |
| m_blendConstants[1] = 1.0f; |
| m_blendConstants[2] = 1.0f; |
| m_blendConstants[3] = 1.0f; |
| |
| m_minDepthBounds = 0.f; |
| m_maxDepthBounds = 1.f; |
| |
| m_compareMask = 0xff; |
| m_writeMask = 0xff; |
| m_reference = 0; |
| |
| m_commandPool = new VkCommandPoolObj(m_device, m_device->graphics_queue_node_index_, flags); |
| |
| m_commandBuffer = new VkCommandBufferObj(m_device, m_commandPool); |
| } |
| |
| void VkRenderFramework::InitViewport(float width, float height) { |
| VkViewport viewport; |
| VkRect2D scissor; |
| viewport.x = 0; |
| viewport.y = 0; |
| viewport.width = 1.f * width; |
| viewport.height = 1.f * height; |
| viewport.minDepth = 0.f; |
| viewport.maxDepth = 1.f; |
| m_viewports.push_back(viewport); |
| |
| scissor.extent.width = (int32_t)width; |
| scissor.extent.height = (int32_t)height; |
| scissor.offset.x = 0; |
| scissor.offset.y = 0; |
| m_scissors.push_back(scissor); |
| |
| m_width = width; |
| m_height = height; |
| } |
| |
| void VkRenderFramework::InitViewport() { InitViewport(m_width, m_height); } |
| |
| bool VkRenderFramework::InitSurface() { return InitSurface(m_width, m_height); } |
| |
| #ifdef VK_USE_PLATFORM_WIN32_KHR |
| LRESULT CALLBACK WindowProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { |
| return DefWindowProc(hwnd, uMsg, wParam, lParam); |
| } |
| #endif // VK_USE_PLATFORM_WIN32_KHR |
| |
| bool VkRenderFramework::InitSurface(float width, float height) { |
| #if defined(VK_USE_PLATFORM_WIN32_KHR) |
| HINSTANCE window_instance = GetModuleHandle(nullptr); |
| const char class_name[] = "test"; |
| WNDCLASS wc = {}; |
| wc.lpfnWndProc = WindowProc; |
| wc.hInstance = window_instance; |
| wc.lpszClassName = class_name; |
| RegisterClass(&wc); |
| HWND window = CreateWindowEx(0, class_name, 0, 0, 0, 0, (int)m_width, (int)m_height, NULL, NULL, window_instance, NULL); |
| ShowWindow(window, SW_HIDE); |
| |
| VkWin32SurfaceCreateInfoKHR surface_create_info = {}; |
| surface_create_info.sType = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR; |
| surface_create_info.hinstance = window_instance; |
| surface_create_info.hwnd = window; |
| VkResult err = vkCreateWin32SurfaceKHR(instance(), &surface_create_info, nullptr, &m_surface); |
| if (err != VK_SUCCESS) return false; |
| #endif |
| |
| #if defined(VK_USE_PLATFORM_ANDROID_KHR) && defined(VALIDATION_APK) |
| VkAndroidSurfaceCreateInfoKHR surface_create_info = {}; |
| surface_create_info.sType = VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR; |
| surface_create_info.window = VkTestFramework::window; |
| VkResult err = vkCreateAndroidSurfaceKHR(instance(), &surface_create_info, nullptr, &m_surface); |
| if (err != VK_SUCCESS) return false; |
| #endif |
| |
| #if defined(VK_USE_PLATFORM_XLIB_KHR) |
| Display *dpy = XOpenDisplay(NULL); |
| if (dpy) { |
| int s = DefaultScreen(dpy); |
| Window window = XCreateSimpleWindow(dpy, RootWindow(dpy, s), 0, 0, (int)m_width, (int)m_height, 1, BlackPixel(dpy, s), |
| WhitePixel(dpy, s)); |
| VkXlibSurfaceCreateInfoKHR surface_create_info = {}; |
| surface_create_info.sType = VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR; |
| surface_create_info.dpy = dpy; |
| surface_create_info.window = window; |
| VkResult err = vkCreateXlibSurfaceKHR(instance(), &surface_create_info, nullptr, &m_surface); |
| if (err != VK_SUCCESS) return false; |
| } |
| #endif |
| |
| #if defined(VK_USE_PLATFORM_XCB_KHR) |
| if (m_surface == VK_NULL_HANDLE) { |
| xcb_connection_t *connection = xcb_connect(NULL, NULL); |
| if (connection) { |
| xcb_window_t window = xcb_generate_id(connection); |
| VkXcbSurfaceCreateInfoKHR surface_create_info = {}; |
| surface_create_info.sType = VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR; |
| surface_create_info.connection = connection; |
| surface_create_info.window = window; |
| VkResult err = vkCreateXcbSurfaceKHR(instance(), &surface_create_info, nullptr, &m_surface); |
| if (err != VK_SUCCESS) return false; |
| } |
| } |
| #endif |
| |
| return (m_surface == VK_NULL_HANDLE) ? false : true; |
| } |
| |
| bool VkRenderFramework::InitSwapchain(VkImageUsageFlags imageUsage, VkSurfaceTransformFlagBitsKHR preTransform) { |
| if (InitSurface()) { |
| return InitSwapchain(m_surface, imageUsage, preTransform); |
| } |
| return false; |
| } |
| |
| bool VkRenderFramework::InitSwapchain(VkSurfaceKHR &surface, VkImageUsageFlags imageUsage, |
| VkSurfaceTransformFlagBitsKHR preTransform) { |
| for (size_t i = 0; i < m_device->queue_props.size(); ++i) { |
| VkBool32 presentSupport = false; |
| vkGetPhysicalDeviceSurfaceSupportKHR(m_device->phy().handle(), i, surface, &presentSupport); |
| } |
| |
| VkSurfaceCapabilitiesKHR capabilities; |
| vkGetPhysicalDeviceSurfaceCapabilitiesKHR(m_device->phy().handle(), surface, &capabilities); |
| |
| uint32_t format_count; |
| vkGetPhysicalDeviceSurfaceFormatsKHR(m_device->phy().handle(), surface, &format_count, nullptr); |
| std::vector<VkSurfaceFormatKHR> formats; |
| if (format_count != 0) { |
| formats.resize(format_count); |
| vkGetPhysicalDeviceSurfaceFormatsKHR(m_device->phy().handle(), surface, &format_count, formats.data()); |
| } |
| |
| uint32_t present_mode_count; |
| vkGetPhysicalDeviceSurfacePresentModesKHR(m_device->phy().handle(), surface, &present_mode_count, nullptr); |
| std::vector<VkPresentModeKHR> present_modes; |
| if (present_mode_count != 0) { |
| present_modes.resize(present_mode_count); |
| vkGetPhysicalDeviceSurfacePresentModesKHR(m_device->phy().handle(), surface, &present_mode_count, present_modes.data()); |
| } |
| |
| VkSwapchainCreateInfoKHR swapchain_create_info = {}; |
| swapchain_create_info.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR; |
| swapchain_create_info.pNext = 0; |
| swapchain_create_info.surface = surface; |
| swapchain_create_info.minImageCount = capabilities.minImageCount; |
| swapchain_create_info.imageFormat = formats[0].format; |
| swapchain_create_info.imageColorSpace = formats[0].colorSpace; |
| swapchain_create_info.imageExtent = {capabilities.minImageExtent.width, capabilities.minImageExtent.height}; |
| swapchain_create_info.imageArrayLayers = capabilities.maxImageArrayLayers; |
| swapchain_create_info.imageUsage = imageUsage; |
| swapchain_create_info.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; |
| swapchain_create_info.preTransform = preTransform; |
| #ifdef VK_USE_PLATFORM_ANDROID_KHR |
| swapchain_create_info.compositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR; |
| #else |
| swapchain_create_info.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; |
| #endif |
| swapchain_create_info.presentMode = present_modes[0]; |
| swapchain_create_info.clipped = VK_FALSE; |
| swapchain_create_info.oldSwapchain = 0; |
| |
| VkResult err = vkCreateSwapchainKHR(device(), &swapchain_create_info, nullptr, &m_swapchain); |
| if (err != VK_SUCCESS) { |
| return false; |
| } |
| uint32_t imageCount = 0; |
| vkGetSwapchainImagesKHR(device(), m_swapchain, &imageCount, nullptr); |
| std::vector<VkImage> swapchainImages; |
| swapchainImages.resize(imageCount); |
| vkGetSwapchainImagesKHR(device(), m_swapchain, &imageCount, swapchainImages.data()); |
| return true; |
| } |
| |
| void VkRenderFramework::DestroySwapchain() { |
| if (m_swapchain != VK_NULL_HANDLE) { |
| vkDestroySwapchainKHR(device(), m_swapchain, nullptr); |
| m_swapchain = VK_NULL_HANDLE; |
| } |
| if (m_surface != VK_NULL_HANDLE) { |
| vkDestroySurfaceKHR(instance(), m_surface, nullptr); |
| m_surface = VK_NULL_HANDLE; |
| } |
| } |
| |
| void VkRenderFramework::InitRenderTarget() { InitRenderTarget(1); } |
| |
| void VkRenderFramework::InitRenderTarget(uint32_t targets) { InitRenderTarget(targets, NULL); } |
| |
| void VkRenderFramework::InitRenderTarget(VkImageView *dsBinding) { InitRenderTarget(1, dsBinding); } |
| |
| void VkRenderFramework::InitRenderTarget(uint32_t targets, VkImageView *dsBinding) { |
| std::vector<VkAttachmentDescription> attachments; |
| std::vector<VkAttachmentReference> color_references; |
| std::vector<VkImageView> bindings; |
| attachments.reserve(targets + 1); // +1 for dsBinding |
| color_references.reserve(targets); |
| bindings.reserve(targets + 1); // +1 for dsBinding |
| |
| VkAttachmentDescription att = {}; |
| att.format = m_render_target_fmt; |
| att.samples = VK_SAMPLE_COUNT_1_BIT; |
| att.loadOp = (m_clear_via_load_op) ? VK_ATTACHMENT_LOAD_OP_CLEAR : VK_ATTACHMENT_LOAD_OP_LOAD; |
| att.storeOp = VK_ATTACHMENT_STORE_OP_STORE; |
| att.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; |
| att.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; |
| att.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
| att.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; |
| |
| VkAttachmentReference ref = {}; |
| ref.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; |
| |
| m_renderPassClearValues.clear(); |
| VkClearValue clear = {}; |
| clear.color = m_clear_color; |
| |
| for (uint32_t i = 0; i < targets; i++) { |
| attachments.push_back(att); |
| |
| ref.attachment = i; |
| color_references.push_back(ref); |
| |
| m_renderPassClearValues.push_back(clear); |
| |
| std::unique_ptr<VkImageObj> img(new VkImageObj(m_device)); |
| |
| VkFormatProperties props; |
| |
| vkGetPhysicalDeviceFormatProperties(m_device->phy().handle(), m_render_target_fmt, &props); |
| |
| if (props.linearTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) { |
| img->Init((uint32_t)m_width, (uint32_t)m_height, 1, m_render_target_fmt, |
| VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT, |
| VK_IMAGE_TILING_LINEAR); |
| } else if (props.optimalTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) { |
| img->Init((uint32_t)m_width, (uint32_t)m_height, 1, m_render_target_fmt, |
| VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT, |
| VK_IMAGE_TILING_OPTIMAL); |
| } else { |
| FAIL() << "Neither Linear nor Optimal allowed for render target"; |
| } |
| |
| bindings.push_back(img->targetView(m_render_target_fmt)); |
| m_renderTargets.push_back(std::move(img)); |
| } |
| |
| VkSubpassDescription subpass = {}; |
| subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; |
| subpass.flags = 0; |
| subpass.inputAttachmentCount = 0; |
| subpass.pInputAttachments = NULL; |
| subpass.colorAttachmentCount = targets; |
| subpass.pColorAttachments = color_references.data(); |
| subpass.pResolveAttachments = NULL; |
| |
| VkAttachmentReference ds_reference; |
| if (dsBinding) { |
| att.format = m_depth_stencil_fmt; |
| att.loadOp = (m_clear_via_load_op) ? VK_ATTACHMENT_LOAD_OP_CLEAR : VK_ATTACHMENT_LOAD_OP_LOAD; |
| ; |
| att.storeOp = VK_ATTACHMENT_STORE_OP_STORE; |
| att.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD; |
| att.stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE; |
| att.initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; |
| att.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; |
| attachments.push_back(att); |
| |
| clear.depthStencil.depth = m_depth_clear_color; |
| clear.depthStencil.stencil = m_stencil_clear_color; |
| m_renderPassClearValues.push_back(clear); |
| |
| bindings.push_back(*dsBinding); |
| |
| ds_reference.attachment = targets; |
| ds_reference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; |
| subpass.pDepthStencilAttachment = &ds_reference; |
| } else { |
| subpass.pDepthStencilAttachment = NULL; |
| } |
| |
| subpass.preserveAttachmentCount = 0; |
| subpass.pPreserveAttachments = NULL; |
| |
| VkRenderPassCreateInfo rp_info = {}; |
| rp_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; |
| rp_info.attachmentCount = attachments.size(); |
| rp_info.pAttachments = attachments.data(); |
| rp_info.subpassCount = 1; |
| rp_info.pSubpasses = &subpass; |
| VkSubpassDependency subpass_dep = {}; |
| if (m_addRenderPassSelfDependency) { |
| // Add a subpass self-dependency to subpass 0 of default renderPass |
| subpass_dep.srcSubpass = 0; |
| subpass_dep.dstSubpass = 0; |
| // Just using all framebuffer-space pipeline stages in order to get a reasonably large |
| // set of bits that can be used for both src & dst |
| subpass_dep.srcStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | |
| VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; |
| subpass_dep.dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | |
| VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; |
| // Add all of the gfx mem access bits that correlate to the fb-space pipeline stages |
| subpass_dep.srcAccessMask = VK_ACCESS_UNIFORM_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | VK_ACCESS_SHADER_READ_BIT | |
| VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | |
| VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | |
| VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; |
| subpass_dep.dstAccessMask = VK_ACCESS_UNIFORM_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | VK_ACCESS_SHADER_READ_BIT | |
| VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | |
| VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | |
| VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; |
| // Must include dep_by_region bit when src & dst both include framebuffer-space stages |
| subpass_dep.dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; |
| rp_info.dependencyCount = 1; |
| rp_info.pDependencies = &subpass_dep; |
| } |
| |
| vkCreateRenderPass(device(), &rp_info, NULL, &m_renderPass); |
| renderPass_info_ = rp_info; // Save away a copy for tests that need access to the render pass state |
| // Create Framebuffer and RenderPass with color attachments and any |
| // depth/stencil attachment |
| VkFramebufferCreateInfo fb_info = {}; |
| fb_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; |
| fb_info.pNext = NULL; |
| fb_info.renderPass = m_renderPass; |
| fb_info.attachmentCount = bindings.size(); |
| fb_info.pAttachments = bindings.data(); |
| fb_info.width = (uint32_t)m_width; |
| fb_info.height = (uint32_t)m_height; |
| fb_info.layers = 1; |
| |
| vkCreateFramebuffer(device(), &fb_info, NULL, &m_framebuffer); |
| |
| m_renderPassBeginInfo.renderPass = m_renderPass; |
| m_renderPassBeginInfo.framebuffer = m_framebuffer; |
| m_renderPassBeginInfo.renderArea.extent.width = (int32_t)m_width; |
| m_renderPassBeginInfo.renderArea.extent.height = (int32_t)m_height; |
| m_renderPassBeginInfo.clearValueCount = m_renderPassClearValues.size(); |
| m_renderPassBeginInfo.pClearValues = m_renderPassClearValues.data(); |
| } |
| |
| void VkRenderFramework::DestroyRenderTarget() { |
| vkDestroyRenderPass(device(), m_renderPass, nullptr); |
| m_renderPass = VK_NULL_HANDLE; |
| vkDestroyFramebuffer(device(), m_framebuffer, nullptr); |
| m_framebuffer = VK_NULL_HANDLE; |
| } |
| |
| VkDeviceObj::VkDeviceObj(uint32_t id, VkPhysicalDevice obj) : vk_testing::Device(obj), id(id) { |
| init(); |
| |
| props = phy().properties(); |
| queue_props = phy().queue_properties(); |
| } |
| |
| VkDeviceObj::VkDeviceObj(uint32_t id, VkPhysicalDevice obj, std::vector<const char *> &extension_names, |
| VkPhysicalDeviceFeatures *features, void *create_device_pnext) |
| : vk_testing::Device(obj), id(id) { |
| init(extension_names, features, create_device_pnext); |
| |
| props = phy().properties(); |
| queue_props = phy().queue_properties(); |
| } |
| |
| uint32_t VkDeviceObj::QueueFamilyMatching(VkQueueFlags with, VkQueueFlags without, bool all_bits) { |
| // Find a queue family with and without desired capabilities |
| for (uint32_t i = 0; i < queue_props.size(); i++) { |
| auto flags = queue_props[i].queueFlags; |
| bool matches = all_bits ? (flags & with) == with : (flags & with) != 0; |
| if (matches && ((flags & without) == 0) && (queue_props[i].queueCount > 0)) { |
| return i; |
| } |
| } |
| return UINT32_MAX; |
| } |
| |
| void VkDeviceObj::SetDeviceQueue() { |
| ASSERT_NE(true, graphics_queues().empty()); |
| m_queue = graphics_queues()[0]->handle(); |
| } |
| |
| VkQueueObj *VkDeviceObj::GetDefaultQueue() { |
| if (graphics_queues().empty()) return nullptr; |
| return graphics_queues()[0]; |
| } |
| |
| VkQueueObj *VkDeviceObj::GetDefaultComputeQueue() { |
| if (compute_queues().empty()) return nullptr; |
| return compute_queues()[0]; |
| } |
| |
| VkDescriptorSetLayoutObj::VkDescriptorSetLayoutObj(const VkDeviceObj *device, |
| const std::vector<VkDescriptorSetLayoutBinding> &descriptor_set_bindings, |
| VkDescriptorSetLayoutCreateFlags flags, void *pNext) { |
| VkDescriptorSetLayoutCreateInfo dsl_ci = {}; |
| dsl_ci.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; |
| dsl_ci.pNext = pNext; |
| dsl_ci.flags = flags; |
| dsl_ci.bindingCount = static_cast<uint32_t>(descriptor_set_bindings.size()); |
| dsl_ci.pBindings = descriptor_set_bindings.data(); |
| |
| init(*device, dsl_ci); |
| } |
| |
| VkDescriptorSetObj::VkDescriptorSetObj(VkDeviceObj *device) : m_device(device), m_nextSlot(0) {} |
| |
| VkDescriptorSetObj::~VkDescriptorSetObj() { |
| if (m_set) { |
| delete m_set; |
| } |
| } |
| |
| int VkDescriptorSetObj::AppendDummy() { |
| /* request a descriptor but do not update it */ |
| VkDescriptorSetLayoutBinding binding = {}; |
| binding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; |
| binding.descriptorCount = 1; |
| binding.binding = m_layout_bindings.size(); |
| binding.stageFlags = VK_SHADER_STAGE_ALL; |
| binding.pImmutableSamplers = NULL; |
| |
| m_layout_bindings.push_back(binding); |
| m_type_counts[VK_DESCRIPTOR_TYPE_STORAGE_BUFFER] += binding.descriptorCount; |
| |
| return m_nextSlot++; |
| } |
| |
| int VkDescriptorSetObj::AppendBuffer(VkDescriptorType type, VkConstantBufferObj &constantBuffer) { |
| assert(type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER || type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC || |
| type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER || type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC); |
| VkDescriptorSetLayoutBinding binding = {}; |
| binding.descriptorType = type; |
| binding.descriptorCount = 1; |
| binding.binding = m_layout_bindings.size(); |
| binding.stageFlags = VK_SHADER_STAGE_ALL; |
| binding.pImmutableSamplers = NULL; |
| |
| m_layout_bindings.push_back(binding); |
| m_type_counts[type] += binding.descriptorCount; |
| |
| m_writes.push_back(vk_testing::Device::write_descriptor_set(vk_testing::DescriptorSet(), m_nextSlot, 0, type, 1, |
| &constantBuffer.m_descriptorBufferInfo)); |
| |
| return m_nextSlot++; |
| } |
| |
| int VkDescriptorSetObj::AppendSamplerTexture(VkSamplerObj *sampler, VkTextureObj *texture) { |
| VkDescriptorSetLayoutBinding binding = {}; |
| binding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; |
| binding.descriptorCount = 1; |
| binding.binding = m_layout_bindings.size(); |
| binding.stageFlags = VK_SHADER_STAGE_ALL; |
| binding.pImmutableSamplers = NULL; |
| |
| m_layout_bindings.push_back(binding); |
| m_type_counts[VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER] += binding.descriptorCount; |
| VkDescriptorImageInfo tmp = texture->DescriptorImageInfo(); |
| tmp.sampler = sampler->handle(); |
| m_imageSamplerDescriptors.push_back(tmp); |
| |
| m_writes.push_back(vk_testing::Device::write_descriptor_set(vk_testing::DescriptorSet(), m_nextSlot, 0, |
| VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &tmp)); |
| |
| return m_nextSlot++; |
| } |
| |
| VkPipelineLayout VkDescriptorSetObj::GetPipelineLayout() const { return m_pipeline_layout.handle(); } |
| |
| VkDescriptorSet VkDescriptorSetObj::GetDescriptorSetHandle() const { |
| if (m_set) |
| return m_set->handle(); |
| else |
| return VK_NULL_HANDLE; |
| } |
| |
| void VkDescriptorSetObj::CreateVKDescriptorSet(VkCommandBufferObj *commandBuffer) { |
| if (m_type_counts.size()) { |
| // create VkDescriptorPool |
| VkDescriptorPoolSize poolSize; |
| vector<VkDescriptorPoolSize> sizes; |
| for (auto it = m_type_counts.begin(); it != m_type_counts.end(); ++it) { |
| poolSize.descriptorCount = it->second; |
| poolSize.type = it->first; |
| sizes.push_back(poolSize); |
| } |
| VkDescriptorPoolCreateInfo pool = {}; |
| pool.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; |
| pool.poolSizeCount = sizes.size(); |
| pool.maxSets = 1; |
| pool.pPoolSizes = sizes.data(); |
| init(*m_device, pool); |
| } |
| |
| // create VkDescriptorSetLayout |
| VkDescriptorSetLayoutCreateInfo layout = {}; |
| layout.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; |
| layout.bindingCount = m_layout_bindings.size(); |
| layout.pBindings = m_layout_bindings.data(); |
| |
| m_layout.init(*m_device, layout); |
| vector<const vk_testing::DescriptorSetLayout *> layouts; |
| layouts.push_back(&m_layout); |
| |
| // create VkPipelineLayout |
| VkPipelineLayoutCreateInfo pipeline_layout = {}; |
| pipeline_layout.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; |
| pipeline_layout.setLayoutCount = layouts.size(); |
| pipeline_layout.pSetLayouts = NULL; |
| |
| m_pipeline_layout.init(*m_device, pipeline_layout, layouts); |
| |
| if (m_type_counts.size()) { |
| // create VkDescriptorSet |
| m_set = alloc_sets(*m_device, m_layout); |
| |
| // build the update array |
| size_t imageSamplerCount = 0; |
| for (std::vector<VkWriteDescriptorSet>::iterator it = m_writes.begin(); it != m_writes.end(); it++) { |
| it->dstSet = m_set->handle(); |
| if (it->descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) |
| it->pImageInfo = &m_imageSamplerDescriptors[imageSamplerCount++]; |
| } |
| |
| // do the updates |
| m_device->update_descriptor_sets(m_writes); |
| } |
| } |
| |
| VkRenderpassObj::VkRenderpassObj(VkDeviceObj *dev) { |
| // Create a renderPass with a single color attachment |
| VkAttachmentReference attach = {}; |
| attach.layout = VK_IMAGE_LAYOUT_GENERAL; |
| |
| VkSubpassDescription subpass = {}; |
| subpass.pColorAttachments = &attach; |
| subpass.colorAttachmentCount = 1; |
| |
| VkRenderPassCreateInfo rpci = {}; |
| rpci.subpassCount = 1; |
| rpci.pSubpasses = &subpass; |
| rpci.attachmentCount = 1; |
| |
| VkAttachmentDescription attach_desc = {}; |
| attach_desc.format = VK_FORMAT_B8G8R8A8_UNORM; |
| attach_desc.samples = VK_SAMPLE_COUNT_1_BIT; |
| attach_desc.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
| attach_desc.finalLayout = VK_IMAGE_LAYOUT_GENERAL; |
| |
| rpci.pAttachments = &attach_desc; |
| rpci.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; |
| |
| device = dev->device(); |
| vkCreateRenderPass(device, &rpci, NULL, &m_renderpass); |
| } |
| |
| VkRenderpassObj::~VkRenderpassObj() { vkDestroyRenderPass(device, m_renderpass, NULL); } |
| |
| VkImageObj::VkImageObj(VkDeviceObj *dev) { |
| m_device = dev; |
| m_descriptorImageInfo.imageView = VK_NULL_HANDLE; |
| m_descriptorImageInfo.imageLayout = VK_IMAGE_LAYOUT_GENERAL; |
| } |
| |
| // clang-format off |
| void VkImageObj::ImageMemoryBarrier(VkCommandBufferObj *cmd_buf, VkImageAspectFlags aspect, |
| VkFlags output_mask /*= |
| VK_ACCESS_HOST_WRITE_BIT | |
| VK_ACCESS_SHADER_WRITE_BIT | |
| VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | |
| VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | |
| VK_MEMORY_OUTPUT_COPY_BIT*/, |
| VkFlags input_mask /*= |
| VK_ACCESS_HOST_READ_BIT | |
| VK_ACCESS_INDIRECT_COMMAND_READ_BIT | |
| VK_ACCESS_INDEX_READ_BIT | |
| VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | |
| VK_ACCESS_UNIFORM_READ_BIT | |
| VK_ACCESS_SHADER_READ_BIT | |
| VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | |
| VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | |
| VK_MEMORY_INPUT_COPY_BIT*/, VkImageLayout image_layout, |
| VkPipelineStageFlags src_stages, VkPipelineStageFlags dest_stages, |
| uint32_t srcQueueFamilyIndex, uint32_t dstQueueFamilyIndex) { |
| // clang-format on |
| // TODO: Mali device crashing with VK_REMAINING_MIP_LEVELS |
| const VkImageSubresourceRange subresourceRange = |
| subresource_range(aspect, 0, /*VK_REMAINING_MIP_LEVELS*/ 1, 0, 1 /*VK_REMAINING_ARRAY_LAYERS*/); |
| VkImageMemoryBarrier barrier; |
| barrier = image_memory_barrier(output_mask, input_mask, Layout(), image_layout, subresourceRange, srcQueueFamilyIndex, |
| dstQueueFamilyIndex); |
| |
| VkImageMemoryBarrier *pmemory_barrier = &barrier; |
| |
| // write barrier to the command buffer |
| vkCmdPipelineBarrier(cmd_buf->handle(), src_stages, dest_stages, VK_DEPENDENCY_BY_REGION_BIT, 0, NULL, 0, NULL, 1, |
| pmemory_barrier); |
| } |
| |
| void VkImageObj::SetLayout(VkCommandBufferObj *cmd_buf, VkImageAspectFlags aspect, VkImageLayout image_layout) { |
| VkFlags src_mask, dst_mask; |
| const VkFlags all_cache_outputs = VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | |
| VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT; |
| const VkFlags all_cache_inputs = VK_ACCESS_HOST_READ_BIT | VK_ACCESS_INDIRECT_COMMAND_READ_BIT | VK_ACCESS_INDEX_READ_BIT | |
| VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | VK_ACCESS_UNIFORM_READ_BIT | VK_ACCESS_SHADER_READ_BIT | |
| VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | |
| VK_ACCESS_MEMORY_READ_BIT; |
| |
| if (image_layout == m_descriptorImageInfo.imageLayout) { |
| return; |
| } |
| |
| switch (image_layout) { |
| case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: |
| if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) |
| src_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; |
| else |
| src_mask = VK_ACCESS_TRANSFER_WRITE_BIT; |
| dst_mask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_TRANSFER_READ_BIT; |
| break; |
| |
| case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: |
| if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) |
| src_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; |
| else if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) |
| src_mask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT; |
| else |
| src_mask = VK_ACCESS_TRANSFER_WRITE_BIT; |
| dst_mask = VK_ACCESS_TRANSFER_WRITE_BIT; |
| break; |
| |
| case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: |
| if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) |
| src_mask = VK_ACCESS_TRANSFER_WRITE_BIT; |
| else |
| src_mask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT; |
| dst_mask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_MEMORY_READ_BIT; |
| break; |
| |
| case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: |
| if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) |
| src_mask = VK_ACCESS_TRANSFER_READ_BIT; |
| else |
| src_mask = 0; |
| dst_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; |
| break; |
| |
| case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL: |
| dst_mask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; |
| src_mask = all_cache_outputs; |
| break; |
| |
| default: |
| src_mask = all_cache_outputs; |
| dst_mask = all_cache_inputs; |
| break; |
| } |
| |
| if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_UNDEFINED) src_mask = 0; |
| |
| ImageMemoryBarrier(cmd_buf, aspect, src_mask, dst_mask, image_layout); |
| m_descriptorImageInfo.imageLayout = image_layout; |
| } |
| |
| void VkImageObj::SetLayout(VkImageAspectFlags aspect, VkImageLayout image_layout) { |
| if (image_layout == m_descriptorImageInfo.imageLayout) { |
| return; |
| } |
| |
| VkCommandPoolObj pool(m_device, m_device->graphics_queue_node_index_); |
| VkCommandBufferObj cmd_buf(m_device, &pool); |
| |
| /* Build command buffer to set image layout in the driver */ |
| cmd_buf.begin(); |
| SetLayout(&cmd_buf, aspect, image_layout); |
| cmd_buf.end(); |
| |
| cmd_buf.QueueCommandBuffer(); |
| } |
| |
| bool VkImageObj::IsCompatible(const VkImageUsageFlags usages, const VkFormatFeatureFlags features) { |
| VkFormatFeatureFlags all_feature_flags = |
| VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT | VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT | VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT | |
| VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT | VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT | |
| VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT | VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT | |
| VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT | VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT | |
| VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_FORMAT_FEATURE_BLIT_SRC_BIT | VK_FORMAT_FEATURE_BLIT_DST_BIT | |
| VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT; |
| if (m_device->IsEnabledExtension(VK_IMG_FILTER_CUBIC_EXTENSION_NAME)) { |
| all_feature_flags |= VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_IMG; |
| } |
| |
| if (m_device->IsEnabledExtension(VK_KHR_MAINTENANCE1_EXTENSION_NAME)) { |
| all_feature_flags |= VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR | VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR; |
| } |
| |
| if (m_device->IsEnabledExtension(VK_EXT_SAMPLER_FILTER_MINMAX_EXTENSION_NAME)) { |
| all_feature_flags |= VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT_EXT; |
| } |
| |
| if (m_device->IsEnabledExtension(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME)) { |
| all_feature_flags |= VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT_KHR | |
| VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT_KHR | |
| VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT_KHR | |
| VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT_KHR | |
| VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_BIT_KHR | |
| VK_FORMAT_FEATURE_DISJOINT_BIT_KHR | VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT_KHR; |
| } |
| |
| if ((features & all_feature_flags) == 0) return false; // whole format unsupported |
| |
| if ((usages & VK_IMAGE_USAGE_SAMPLED_BIT) && !(features & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT)) return false; |
| if ((usages & VK_IMAGE_USAGE_STORAGE_BIT) && !(features & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT)) return false; |
| if ((usages & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) && !(features & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT)) return false; |
| if ((usages & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) && !(features & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT)) |
| return false; |
| |
| if (m_device->IsEnabledExtension(VK_KHR_MAINTENANCE1_EXTENSION_NAME)) { |
| // WORKAROUND: for DevSim not reporting extended enums, and possibly some drivers too |
| const auto all_nontransfer_feature_flags = |
| all_feature_flags ^ (VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR | VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR); |
| const bool transfer_probably_supported_anyway = (features & all_nontransfer_feature_flags) > 0; |
| if (!transfer_probably_supported_anyway) { |
| if ((usages & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) && !(features & VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR)) return false; |
| if ((usages & VK_IMAGE_USAGE_TRANSFER_DST_BIT) && !(features & VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR)) return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| void VkImageObj::InitNoLayout(uint32_t const width, uint32_t const height, uint32_t const mipLevels, VkFormat const format, |
| VkFlags const usage, VkImageTiling const requested_tiling, VkMemoryPropertyFlags const reqs, |
| const std::vector<uint32_t> *queue_families, bool memory) { |
| VkFormatProperties image_fmt; |
| VkImageTiling tiling = VK_IMAGE_TILING_OPTIMAL; |
| |
| vkGetPhysicalDeviceFormatProperties(m_device->phy().handle(), format, &image_fmt); |
| |
| if (requested_tiling == VK_IMAGE_TILING_LINEAR) { |
| if (IsCompatible(usage, image_fmt.linearTilingFeatures)) { |
| tiling = VK_IMAGE_TILING_LINEAR; |
| } else if (IsCompatible(usage, image_fmt.optimalTilingFeatures)) { |
| tiling = VK_IMAGE_TILING_OPTIMAL; |
| } else { |
| FAIL() << "VkImageObj::init() error: unsupported tiling configuration. Usage: " << std::hex << std::showbase << usage |
| << ", supported linear features: " << image_fmt.linearTilingFeatures; |
| } |
| } else if (IsCompatible(usage, image_fmt.optimalTilingFeatures)) { |
| tiling = VK_IMAGE_TILING_OPTIMAL; |
| } else if (IsCompatible(usage, image_fmt.linearTilingFeatures)) { |
| tiling = VK_IMAGE_TILING_LINEAR; |
| } else { |
| FAIL() << "VkImageObj::init() error: unsupported tiling configuration. Usage: " << std::hex << std::showbase << usage |
| << ", supported optimal features: " << image_fmt.optimalTilingFeatures; |
| } |
| |
| VkImageCreateInfo imageCreateInfo = vk_testing::Image::create_info(); |
| imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; |
| imageCreateInfo.format = format; |
| imageCreateInfo.extent.width = width; |
| imageCreateInfo.extent.height = height; |
| imageCreateInfo.mipLevels = mipLevels; |
| imageCreateInfo.tiling = tiling; |
| imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
| |
| // Automatically set sharing mode etc. based on queue family information |
| if (queue_families && (queue_families->size() > 1)) { |
| imageCreateInfo.sharingMode = VK_SHARING_MODE_CONCURRENT; |
| imageCreateInfo.queueFamilyIndexCount = static_cast<uint32_t>(queue_families->size()); |
| imageCreateInfo.pQueueFamilyIndices = queue_families->data(); |
| } |
| |
| Layout(imageCreateInfo.initialLayout); |
| imageCreateInfo.usage = usage; |
| if (memory) |
| vk_testing::Image::init(*m_device, imageCreateInfo, reqs); |
| else |
| vk_testing::Image::init_no_mem(*m_device, imageCreateInfo); |
| } |
| |
| void VkImageObj::Init(uint32_t const width, uint32_t const height, uint32_t const mipLevels, VkFormat const format, |
| VkFlags const usage, VkImageTiling const requested_tiling, VkMemoryPropertyFlags const reqs, |
| const std::vector<uint32_t> *queue_families, bool memory) { |
| InitNoLayout(width, height, mipLevels, format, usage, requested_tiling, reqs, queue_families, memory); |
| |
| if (!initialized() || !memory) return; // We don't have a valid handle from early stage init, and thus SetLayout will fail |
| |
| VkImageLayout newLayout; |
| if (usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) |
| newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; |
| else if (usage & VK_IMAGE_USAGE_SAMPLED_BIT) |
| newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; |
| else |
| newLayout = m_descriptorImageInfo.imageLayout; |
| |
| VkImageAspectFlags image_aspect = 0; |
| if (FormatIsDepthAndStencil(format)) { |
| image_aspect = VK_IMAGE_ASPECT_STENCIL_BIT | VK_IMAGE_ASPECT_DEPTH_BIT; |
| } else if (FormatIsDepthOnly(format)) { |
| image_aspect = VK_IMAGE_ASPECT_DEPTH_BIT; |
| } else if (FormatIsStencilOnly(format)) { |
| image_aspect = VK_IMAGE_ASPECT_STENCIL_BIT; |
| } else { // color |
| image_aspect = VK_IMAGE_ASPECT_COLOR_BIT; |
| } |
| SetLayout(image_aspect, newLayout); |
| } |
| |
| void VkImageObj::init(const VkImageCreateInfo *create_info) { |
| VkFormatProperties image_fmt; |
| vkGetPhysicalDeviceFormatProperties(m_device->phy().handle(), create_info->format, &image_fmt); |
| |
| switch (create_info->tiling) { |
| case VK_IMAGE_TILING_OPTIMAL: |
| if (!IsCompatible(create_info->usage, image_fmt.optimalTilingFeatures)) { |
| FAIL() << "VkImageObj::init() error: unsupported tiling configuration. Usage: " << std::hex << std::showbase |
| << create_info->usage << ", supported optimal features: " << image_fmt.optimalTilingFeatures; |
| } |
| break; |
| case VK_IMAGE_TILING_LINEAR: |
| if (!IsCompatible(create_info->usage, image_fmt.linearTilingFeatures)) { |
| FAIL() << "VkImageObj::init() error: unsupported tiling configuration. Usage: " << std::hex << std::showbase |
| << create_info->usage << ", supported linear features: " << image_fmt.linearTilingFeatures; |
| } |
| break; |
| default: |
| break; |
| } |
| Layout(create_info->initialLayout); |
| |
| vk_testing::Image::init(*m_device, *create_info, 0); |
| |
| VkImageAspectFlags image_aspect = 0; |
| if (FormatIsDepthAndStencil(create_info->format)) { |
| image_aspect = VK_IMAGE_ASPECT_STENCIL_BIT | VK_IMAGE_ASPECT_DEPTH_BIT; |
| } else if (FormatIsDepthOnly(create_info->format)) { |
| image_aspect = VK_IMAGE_ASPECT_DEPTH_BIT; |
| } else if (FormatIsStencilOnly(create_info->format)) { |
| image_aspect = VK_IMAGE_ASPECT_STENCIL_BIT; |
| } else { // color |
| image_aspect = VK_IMAGE_ASPECT_COLOR_BIT; |
| } |
| SetLayout(image_aspect, VK_IMAGE_LAYOUT_GENERAL); |
| } |
| |
| VkResult VkImageObj::CopyImage(VkImageObj &src_image) { |
| VkImageLayout src_image_layout, dest_image_layout; |
| |
| VkCommandPoolObj pool(m_device, m_device->graphics_queue_node_index_); |
| VkCommandBufferObj cmd_buf(m_device, &pool); |
| |
| /* Build command buffer to copy staging texture to usable texture */ |
| cmd_buf.begin(); |
| |
| /* TODO: Can we determine image aspect from image object? */ |
| src_image_layout = src_image.Layout(); |
| src_image.SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); |
| |
| dest_image_layout = (this->Layout() == VK_IMAGE_LAYOUT_UNDEFINED) ? VK_IMAGE_LAYOUT_GENERAL : this->Layout(); |
| this->SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); |
| |
| VkImageCopy copy_region = {}; |
| copy_region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
| copy_region.srcSubresource.baseArrayLayer = 0; |
| copy_region.srcSubresource.mipLevel = 0; |
| copy_region.srcSubresource.layerCount = 1; |
| copy_region.srcOffset.x = 0; |
| copy_region.srcOffset.y = 0; |
| copy_region.srcOffset.z = 0; |
| copy_region.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
| copy_region.dstSubresource.baseArrayLayer = 0; |
| copy_region.dstSubresource.mipLevel = 0; |
| copy_region.dstSubresource.layerCount = 1; |
| copy_region.dstOffset.x = 0; |
| copy_region.dstOffset.y = 0; |
| copy_region.dstOffset.z = 0; |
| copy_region.extent = src_image.extent(); |
| |
| vkCmdCopyImage(cmd_buf.handle(), src_image.handle(), src_image.Layout(), handle(), Layout(), 1, ©_region); |
| |
| src_image.SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, src_image_layout); |
| |
| this->SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, dest_image_layout); |
| |
| cmd_buf.end(); |
| |
| cmd_buf.QueueCommandBuffer(); |
| |
| return VK_SUCCESS; |
| } |
| |
| // Same as CopyImage, but in the opposite direction |
| VkResult VkImageObj::CopyImageOut(VkImageObj &dst_image) { |
| VkImageLayout src_image_layout, dest_image_layout; |
| |
| VkCommandPoolObj pool(m_device, m_device->graphics_queue_node_index_); |
| VkCommandBufferObj cmd_buf(m_device, &pool); |
| |
| cmd_buf.begin(); |
| |
| src_image_layout = this->Layout(); |
| this->SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); |
| |
| dest_image_layout = (dst_image.Layout() == VK_IMAGE_LAYOUT_UNDEFINED) ? VK_IMAGE_LAYOUT_GENERAL : dst_image.Layout(); |
| dst_image.SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); |
| |
| VkImageCopy copy_region = {}; |
| copy_region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
| copy_region.srcSubresource.baseArrayLayer = 0; |
| copy_region.srcSubresource.mipLevel = 0; |
| copy_region.srcSubresource.layerCount = 1; |
| copy_region.srcOffset.x = 0; |
| copy_region.srcOffset.y = 0; |
| copy_region.srcOffset.z = 0; |
| copy_region.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
| copy_region.dstSubresource.baseArrayLayer = 0; |
| copy_region.dstSubresource.mipLevel = 0; |
| copy_region.dstSubresource.layerCount = 1; |
| copy_region.dstOffset.x = 0; |
| copy_region.dstOffset.y = 0; |
| copy_region.dstOffset.z = 0; |
| copy_region.extent = dst_image.extent(); |
| |
| vkCmdCopyImage(cmd_buf.handle(), handle(), Layout(), dst_image.handle(), dst_image.Layout(), 1, ©_region); |
| |
| this->SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, src_image_layout); |
| |
| dst_image.SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, dest_image_layout); |
| |
| cmd_buf.end(); |
| |
| cmd_buf.QueueCommandBuffer(); |
| |
| return VK_SUCCESS; |
| } |
| |
| // Return 16x16 pixel block |
| std::array<std::array<uint32_t, 16>, 16> VkImageObj::Read() { |
| VkImageObj stagingImage(m_device); |
| VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; |
| |
| stagingImage.Init(16, 16, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT, |
| VK_IMAGE_TILING_LINEAR, reqs); |
| stagingImage.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_GENERAL); |
| VkSubresourceLayout layout = stagingImage.subresource_layout(subresource(VK_IMAGE_ASPECT_COLOR_BIT, 0, 0)); |
| CopyImageOut(stagingImage); |
| void *data = stagingImage.MapMemory(); |
| std::array<std::array<uint32_t, 16>, 16> m = {}; |
| if (data) { |
| for (uint32_t y = 0; y < stagingImage.extent().height; y++) { |
| uint32_t *row = (uint32_t *)((char *)data + layout.rowPitch * y); |
| for (uint32_t x = 0; x < stagingImage.extent().width; x++) m[y][x] = row[x]; |
| } |
| } |
| stagingImage.UnmapMemory(); |
| return m; |
| } |
| |
| VkTextureObj::VkTextureObj(VkDeviceObj *device, uint32_t *colors) : VkImageObj(device) { |
| m_device = device; |
| const VkFormat tex_format = VK_FORMAT_B8G8R8A8_UNORM; |
| uint32_t tex_colors[2] = {0xffff0000, 0xff00ff00}; |
| void *data; |
| uint32_t x, y; |
| VkImageObj stagingImage(device); |
| VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; |
| |
| stagingImage.Init(16, 16, 1, tex_format, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT, |
| VK_IMAGE_TILING_LINEAR, reqs); |
| VkSubresourceLayout layout = stagingImage.subresource_layout(subresource(VK_IMAGE_ASPECT_COLOR_BIT, 0, 0)); |
| |
| if (colors == NULL) colors = tex_colors; |
| |
| VkImageViewCreateInfo view = {}; |
| view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; |
| view.pNext = NULL; |
| view.image = VK_NULL_HANDLE; |
| view.viewType = VK_IMAGE_VIEW_TYPE_2D; |
| view.format = tex_format; |
| view.components.r = VK_COMPONENT_SWIZZLE_R; |
| view.components.g = VK_COMPONENT_SWIZZLE_G; |
| view.components.b = VK_COMPONENT_SWIZZLE_B; |
| view.components.a = VK_COMPONENT_SWIZZLE_A; |
| view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
| view.subresourceRange.baseMipLevel = 0; |
| view.subresourceRange.levelCount = 1; |
| view.subresourceRange.baseArrayLayer = 0; |
| view.subresourceRange.layerCount = 1; |
| |
| /* create image */ |
| Init(16, 16, 1, tex_format, VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT, VK_IMAGE_TILING_OPTIMAL); |
| stagingImage.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_GENERAL); |
| |
| /* create image view */ |
| view.image = handle(); |
| m_textureView.init(*m_device, view); |
| m_descriptorImageInfo.imageView = m_textureView.handle(); |
| |
| data = stagingImage.MapMemory(); |
| |
| for (y = 0; y < extent().height; y++) { |
| uint32_t *row = (uint32_t *)((char *)data + layout.rowPitch * y); |
| for (x = 0; x < extent().width; x++) row[x] = colors[(x & 1) ^ (y & 1)]; |
| } |
| stagingImage.UnmapMemory(); |
| stagingImage.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); |
| VkImageObj::CopyImage(stagingImage); |
| } |
| |
| VkSamplerObj::VkSamplerObj(VkDeviceObj *device) { |
| m_device = device; |
| |
| VkSamplerCreateInfo samplerCreateInfo; |
| memset(&samplerCreateInfo, 0, sizeof(samplerCreateInfo)); |
| samplerCreateInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO; |
| samplerCreateInfo.magFilter = VK_FILTER_NEAREST; |
| samplerCreateInfo.minFilter = VK_FILTER_NEAREST; |
| samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST; |
| samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; |
| samplerCreateInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT; |
| samplerCreateInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; |
| samplerCreateInfo.mipLodBias = 0.0; |
| samplerCreateInfo.anisotropyEnable = VK_FALSE; |
| samplerCreateInfo.maxAnisotropy = 1; |
| samplerCreateInfo.compareOp = VK_COMPARE_OP_NEVER; |
| samplerCreateInfo.minLod = 0.0; |
| samplerCreateInfo.maxLod = 0.0; |
| samplerCreateInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; |
| samplerCreateInfo.unnormalizedCoordinates = VK_FALSE; |
| |
| init(*m_device, samplerCreateInfo); |
| } |
| |
| /* |
| * Basic ConstantBuffer constructor. Then use create methods to fill in the |
| * details. |
| */ |
| VkConstantBufferObj::VkConstantBufferObj(VkDeviceObj *device, VkBufferUsageFlags usage) { |
| m_device = device; |
| |
| memset(&m_descriptorBufferInfo, 0, sizeof(m_descriptorBufferInfo)); |
| |
| // Special case for usages outside of original limits of framework |
| if ((VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT) != usage) { |
| init_no_mem(*m_device, create_info(0, usage)); |
| } |
| } |
| |
| VkConstantBufferObj::VkConstantBufferObj(VkDeviceObj *device, VkDeviceSize allocationSize, const void *data, |
| VkBufferUsageFlags usage) { |
| m_device = device; |
| |
| memset(&m_descriptorBufferInfo, 0, sizeof(m_descriptorBufferInfo)); |
| |
| VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; |
| |
| if ((VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT) == usage) { |
| init_as_src_and_dst(*m_device, allocationSize, reqs); |
| } else { |
| init(*m_device, create_info(allocationSize, usage), reqs); |
| } |
| |
| void *pData = memory().map(); |
| memcpy(pData, data, static_cast<size_t>(allocationSize)); |
| memory().unmap(); |
| |
| /* |
| * Constant buffers are going to be used as vertex input buffers |
| * or as shader uniform buffers. So, we'll create the shaderbuffer |
| * descriptor here so it's ready if needed. |
| */ |
| this->m_descriptorBufferInfo.buffer = handle(); |
| this->m_descriptorBufferInfo.offset = 0; |
| this->m_descriptorBufferInfo.range = allocationSize; |
| } |
| |
| VkPipelineShaderStageCreateInfo const &VkShaderObj::GetStageCreateInfo() const { return m_stage_info; } |
| |
| VkShaderObj::VkShaderObj(VkDeviceObj *device, const char *shader_code, VkShaderStageFlagBits stage, VkRenderFramework *framework, |
| char const *name, bool debug, VkSpecializationInfo *specInfo) { |
| VkResult U_ASSERT_ONLY err = VK_SUCCESS; |
| std::vector<unsigned int> spv; |
| VkShaderModuleCreateInfo moduleCreateInfo; |
| |
| m_device = device; |
| m_stage_info.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; |
| m_stage_info.pNext = nullptr; |
| m_stage_info.flags = 0; |
| m_stage_info.stage = stage; |
| m_stage_info.module = VK_NULL_HANDLE; |
| m_stage_info.pName = name; |
| m_stage_info.pSpecializationInfo = specInfo; |
| |
| moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; |
| moduleCreateInfo.pNext = nullptr; |
| |
| framework->GLSLtoSPV(stage, shader_code, spv, debug); |
| moduleCreateInfo.pCode = spv.data(); |
| moduleCreateInfo.codeSize = spv.size() * sizeof(unsigned int); |
| moduleCreateInfo.flags = 0; |
| |
| err = init_try(*m_device, moduleCreateInfo); |
| m_stage_info.module = handle(); |
| assert(VK_SUCCESS == err); |
| } |
| |
| VkShaderObj::VkShaderObj(VkDeviceObj *device, const std::string spv_source, VkShaderStageFlagBits stage, |
| VkRenderFramework *framework, char const *name, VkSpecializationInfo *specInfo) { |
| VkResult U_ASSERT_ONLY err = VK_SUCCESS; |
| std::vector<unsigned int> spv; |
| VkShaderModuleCreateInfo moduleCreateInfo; |
| |
| m_device = device; |
| m_stage_info.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; |
| m_stage_info.pNext = nullptr; |
| m_stage_info.flags = 0; |
| m_stage_info.stage = stage; |
| m_stage_info.module = VK_NULL_HANDLE; |
| m_stage_info.pName = name; |
| m_stage_info.pSpecializationInfo = specInfo; |
| |
| moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; |
| moduleCreateInfo.pNext = nullptr; |
| |
| framework->ASMtoSPV(SPV_ENV_VULKAN_1_0, 0, spv_source.data(), spv); |
| moduleCreateInfo.pCode = spv.data(); |
| moduleCreateInfo.codeSize = spv.size() * sizeof(unsigned int); |
| moduleCreateInfo.flags = 0; |
| |
| err = init_try(*m_device, moduleCreateInfo); |
| m_stage_info.module = handle(); |
| assert(VK_SUCCESS == err); |
| } |
| |
| VkPipelineLayoutObj::VkPipelineLayoutObj(VkDeviceObj *device, |
| const std::vector<const VkDescriptorSetLayoutObj *> &descriptor_layouts, |
| const std::vector<VkPushConstantRange> &push_constant_ranges) { |
| VkPipelineLayoutCreateInfo pl_ci = {}; |
| pl_ci.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; |
| pl_ci.pushConstantRangeCount = static_cast<uint32_t>(push_constant_ranges.size()); |
| pl_ci.pPushConstantRanges = push_constant_ranges.data(); |
| |
| auto descriptor_layouts_unwrapped = MakeTestbindingHandles<const vk_testing::DescriptorSetLayout>(descriptor_layouts); |
| |
| init(*device, pl_ci, descriptor_layouts_unwrapped); |
| } |
| |
| void VkPipelineLayoutObj::Reset() { *this = VkPipelineLayoutObj(); } |
| |
| VkPipelineObj::VkPipelineObj(VkDeviceObj *device) { |
| m_device = device; |
| |
| m_vi_state.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; |
| m_vi_state.pNext = nullptr; |
| m_vi_state.flags = 0; |
| m_vi_state.vertexBindingDescriptionCount = 0; |
| m_vi_state.pVertexBindingDescriptions = nullptr; |
| m_vi_state.vertexAttributeDescriptionCount = 0; |
| m_vi_state.pVertexAttributeDescriptions = nullptr; |
| |
| m_ia_state.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; |
| m_ia_state.pNext = nullptr; |
| m_ia_state.flags = 0; |
| m_ia_state.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; |
| m_ia_state.primitiveRestartEnable = VK_FALSE; |
| |
| m_te_state = nullptr; |
| |
| m_vp_state.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; |
| m_vp_state.pNext = VK_NULL_HANDLE; |
| m_vp_state.flags = 0; |
| m_vp_state.viewportCount = 1; |
| m_vp_state.scissorCount = 1; |
| m_vp_state.pViewports = nullptr; |
| m_vp_state.pScissors = nullptr; |
| |
| m_rs_state.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; |
| m_rs_state.pNext = &m_line_state; |
| m_rs_state.flags = 0; |
| m_rs_state.depthClampEnable = VK_FALSE; |
| m_rs_state.rasterizerDiscardEnable = VK_FALSE; |
| m_rs_state.polygonMode = VK_POLYGON_MODE_FILL; |
| m_rs_state.cullMode = VK_CULL_MODE_BACK_BIT; |
| m_rs_state.frontFace = VK_FRONT_FACE_CLOCKWISE; |
| m_rs_state.depthBiasEnable = VK_FALSE; |
| m_rs_state.depthBiasConstantFactor = 0.0f; |
| m_rs_state.depthBiasClamp = 0.0f; |
| m_rs_state.depthBiasSlopeFactor = 0.0f; |
| m_rs_state.lineWidth = 1.0f; |
| |
| m_line_state.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT; |
| m_line_state.pNext = nullptr; |
| m_line_state.lineRasterizationMode = VK_LINE_RASTERIZATION_MODE_DEFAULT_EXT; |
| m_line_state.stippledLineEnable = VK_FALSE; |
| m_line_state.lineStippleFactor = 0; |
| m_line_state.lineStipplePattern = 0; |
| |
| m_ms_state.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; |
| m_ms_state.pNext = nullptr; |
| m_ms_state.flags = 0; |
| m_ms_state.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; |
| m_ms_state.sampleShadingEnable = VK_FALSE; |
| m_ms_state.minSampleShading = 0.0f; |
| m_ms_state.pSampleMask = nullptr; |
| m_ms_state.alphaToCoverageEnable = VK_FALSE; |
| m_ms_state.alphaToOneEnable = VK_FALSE; |
| |
| m_ds_state = nullptr; |
| |
| memset(&m_cb_state, 0, sizeof(m_cb_state)); |
| m_cb_state.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; |
| m_cb_state.blendConstants[0] = 1.0f; |
| m_cb_state.blendConstants[1] = 1.0f; |
| m_cb_state.blendConstants[2] = 1.0f; |
| m_cb_state.blendConstants[3] = 1.0f; |
| |
| memset(&m_pd_state, 0, sizeof(m_pd_state)); |
| } |
| |
| void VkPipelineObj::AddShader(VkShaderObj *shader) { m_shaderStages.push_back(shader->GetStageCreateInfo()); } |
| |
| void VkPipelineObj::AddShader(VkPipelineShaderStageCreateInfo const &createInfo) { m_shaderStages.push_back(createInfo); } |
| |
| void VkPipelineObj::AddVertexInputAttribs(VkVertexInputAttributeDescription *vi_attrib, uint32_t count) { |
| m_vi_state.pVertexAttributeDescriptions = vi_attrib; |
| m_vi_state.vertexAttributeDescriptionCount = count; |
| } |
| |
| void VkPipelineObj::AddVertexInputBindings(VkVertexInputBindingDescription *vi_binding, uint32_t count) { |
| m_vi_state.pVertexBindingDescriptions = vi_binding; |
| m_vi_state.vertexBindingDescriptionCount = count; |
| } |
| |
| void VkPipelineObj::AddColorAttachment(uint32_t binding, const VkPipelineColorBlendAttachmentState &att) { |
| if (binding + 1 > m_colorAttachments.size()) { |
| m_colorAttachments.resize(binding + 1); |
| } |
| m_colorAttachments[binding] = att; |
| } |
| |
| void VkPipelineObj::SetDepthStencil(const VkPipelineDepthStencilStateCreateInfo *ds_state) { m_ds_state = ds_state; } |
| |
| void VkPipelineObj::SetViewport(const vector<VkViewport> viewports) { |
| m_viewports = viewports; |
| // If we explicitly set a null viewport, pass it through to create info |
| // but preserve viewportCount because it musn't change |
| if (m_viewports.size() == 0) { |
| m_vp_state.pViewports = nullptr; |
| } |
| } |
| |
| void VkPipelineObj::SetScissor(const vector<VkRect2D> scissors) { |
| m_scissors = scissors; |
| // If we explicitly set a null scissor, pass it through to create info |
| // but preserve scissorCount because it musn't change |
| if (m_scissors.size() == 0) { |
| m_vp_state.pScissors = nullptr; |
| } |
| } |
| |
| void VkPipelineObj::MakeDynamic(VkDynamicState state) { |
| /* Only add a state once */ |
| for (auto it = m_dynamic_state_enables.begin(); it != m_dynamic_state_enables.end(); it++) { |
| if ((*it) == state) return; |
| } |
| m_dynamic_state_enables.push_back(state); |
| } |
| |
| void VkPipelineObj::SetMSAA(const VkPipelineMultisampleStateCreateInfo *ms_state) { m_ms_state = *ms_state; } |
| |
| void VkPipelineObj::SetInputAssembly(const VkPipelineInputAssemblyStateCreateInfo *ia_state) { m_ia_state = *ia_state; } |
| |
| void VkPipelineObj::SetRasterization(const VkPipelineRasterizationStateCreateInfo *rs_state) { |
| m_rs_state = *rs_state; |
| m_rs_state.pNext = &m_line_state; |
| } |
| |
| void VkPipelineObj::SetTessellation(const VkPipelineTessellationStateCreateInfo *te_state) { m_te_state = te_state; } |
| |
| void VkPipelineObj::SetLineState(const VkPipelineRasterizationLineStateCreateInfoEXT *line_state) { m_line_state = *line_state; } |
| |
| void VkPipelineObj::InitGraphicsPipelineCreateInfo(VkGraphicsPipelineCreateInfo *gp_ci) { |
| gp_ci->stageCount = m_shaderStages.size(); |
| gp_ci->pStages = m_shaderStages.size() ? m_shaderStages.data() : nullptr; |
| |
| m_vi_state.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; |
| gp_ci->pVertexInputState = &m_vi_state; |
| |
| m_ia_state.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; |
| gp_ci->pInputAssemblyState = &m_ia_state; |
| |
| gp_ci->sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; |
| gp_ci->pNext = NULL; |
| gp_ci->flags = 0; |
| |
| m_cb_state.attachmentCount = m_colorAttachments.size(); |
| m_cb_state.pAttachments = m_colorAttachments.data(); |
| |
| if (m_viewports.size() > 0) { |
| m_vp_state.viewportCount = m_viewports.size(); |
| m_vp_state.pViewports = m_viewports.data(); |
| } else { |
| MakeDynamic(VK_DYNAMIC_STATE_VIEWPORT); |
| } |
| |
| if (m_scissors.size() > 0) { |
| m_vp_state.scissorCount = m_scissors.size(); |
| m_vp_state.pScissors = m_scissors.data(); |
| } else { |
| MakeDynamic(VK_DYNAMIC_STATE_SCISSOR); |
| } |
| |
| memset(&m_pd_state, 0, sizeof(m_pd_state)); |
| if (m_dynamic_state_enables.size() > 0) { |
| m_pd_state.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; |
| m_pd_state.dynamicStateCount = m_dynamic_state_enables.size(); |
| m_pd_state.pDynamicStates = m_dynamic_state_enables.data(); |
| gp_ci->pDynamicState = &m_pd_state; |
| } |
| |
| gp_ci->subpass = 0; |
| gp_ci->pViewportState = &m_vp_state; |
| gp_ci->pRasterizationState = &m_rs_state; |
| gp_ci->pMultisampleState = &m_ms_state; |
| gp_ci->pDepthStencilState = m_ds_state; |
| gp_ci->pColorBlendState = &m_cb_state; |
| gp_ci->pTessellationState = m_te_state; |
| } |
| |
| VkResult VkPipelineObj::CreateVKPipeline(VkPipelineLayout layout, VkRenderPass render_pass, VkGraphicsPipelineCreateInfo *gp_ci) { |
| VkGraphicsPipelineCreateInfo info = {}; |
| |
| // if not given a CreateInfo, create and initialize a local one. |
| if (gp_ci == nullptr) { |
| gp_ci = &info; |
| InitGraphicsPipelineCreateInfo(gp_ci); |
| } |
| |
| gp_ci->layout = layout; |
| gp_ci->renderPass = render_pass; |
| |
| return init_try(*m_device, *gp_ci); |
| } |
| |
| VkCommandBufferObj::VkCommandBufferObj(VkDeviceObj *device, VkCommandPoolObj *pool, VkCommandBufferLevel level, VkQueueObj *queue) { |
| m_device = device; |
| if (queue) { |
| m_queue = queue; |
| } else { |
| m_queue = m_device->GetDefaultQueue(); |
| } |
| assert(m_queue); |
| |
| auto create_info = vk_testing::CommandBuffer::create_info(pool->handle()); |
| create_info.level = level; |
| init(*device, create_info); |
| } |
| |
| void VkCommandBufferObj::PipelineBarrier(VkPipelineStageFlags src_stages, VkPipelineStageFlags dest_stages, |
| VkDependencyFlags dependencyFlags, uint32_t memoryBarrierCount, |
| const VkMemoryBarrier *pMemoryBarriers, uint32_t bufferMemoryBarrierCount, |
| const VkBufferMemoryBarrier *pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, |
| const VkImageMemoryBarrier *pImageMemoryBarriers) { |
| vkCmdPipelineBarrier(handle(), src_stages, dest_stages, dependencyFlags, memoryBarrierCount, pMemoryBarriers, |
| bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers); |
| } |
| |
| void VkCommandBufferObj::ClearAllBuffers(const vector<std::unique_ptr<VkImageObj>> &color_objs, VkClearColorValue clear_color, |
| VkDepthStencilObj *depth_stencil_obj, float depth_clear_value, |
| uint32_t stencil_clear_value) { |
| // whatever we want to do, we do it to the whole buffer |
| VkImageSubresourceRange subrange = {}; |
| // srRange.aspectMask to be set later |
| subrange.baseMipLevel = 0; |
| // TODO: Mali device crashing with VK_REMAINING_MIP_LEVELS |
| subrange.levelCount = 1; // VK_REMAINING_MIP_LEVELS; |
| subrange.baseArrayLayer = 0; |
| // TODO: Mesa crashing with VK_REMAINING_ARRAY_LAYERS |
| subrange.layerCount = 1; // VK_REMAINING_ARRAY_LAYERS; |
| |
| const VkImageLayout clear_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; |
| |
| for (const auto &color_obj : color_objs) { |
| subrange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
| color_obj->Layout(VK_IMAGE_LAYOUT_UNDEFINED); |
| color_obj->SetLayout(this, subrange.aspectMask, clear_layout); |
| ClearColorImage(color_obj->image(), clear_layout, &clear_color, 1, &subrange); |
| } |
| |
| if (depth_stencil_obj && depth_stencil_obj->Initialized()) { |
| subrange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; |
| if (FormatIsDepthOnly(depth_stencil_obj->format())) subrange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; |
| if (FormatIsStencilOnly(depth_stencil_obj->format())) subrange.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT; |
| |
| depth_stencil_obj->Layout(VK_IMAGE_LAYOUT_UNDEFINED); |
| depth_stencil_obj->SetLayout(this, subrange.aspectMask, clear_layout); |
| |
| VkClearDepthStencilValue clear_value = {depth_clear_value, stencil_clear_value}; |
| ClearDepthStencilImage(depth_stencil_obj->handle(), clear_layout, &clear_value, 1, &subrange); |
| } |
| } |
| |
| void VkCommandBufferObj::FillBuffer(VkBuffer buffer, VkDeviceSize offset, VkDeviceSize fill_size, uint32_t data) { |
| vkCmdFillBuffer(handle(), buffer, offset, fill_size, data); |
| } |
| |
| void VkCommandBufferObj::UpdateBuffer(VkBuffer buffer, VkDeviceSize dstOffset, VkDeviceSize dataSize, const void *pData) { |
| vkCmdUpdateBuffer(handle(), buffer, dstOffset, dataSize, pData); |
| } |
| |
| void VkCommandBufferObj::CopyImage(VkImage srcImage, VkImageLayout srcImageLayout, VkImage dstImage, VkImageLayout dstImageLayout, |
| uint32_t regionCount, const VkImageCopy *pRegions) { |
| vkCmdCopyImage(handle(), srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions); |
| } |
| |
| void VkCommandBufferObj::ResolveImage(VkImage srcImage, VkImageLayout srcImageLayout, VkImage dstImage, |
| VkImageLayout dstImageLayout, uint32_t regionCount, const VkImageResolve *pRegions) { |
| vkCmdResolveImage(handle(), srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions); |
| } |
| |
| void VkCommandBufferObj::ClearColorImage(VkImage image, VkImageLayout imageLayout, const VkClearColorValue *pColor, |
| uint32_t rangeCount, const VkImageSubresourceRange *pRanges) { |
| vkCmdClearColorImage(handle(), image, imageLayout, pColor, rangeCount, pRanges); |
| } |
| |
| void VkCommandBufferObj::ClearDepthStencilImage(VkImage image, VkImageLayout imageLayout, const VkClearDepthStencilValue *pColor, |
| uint32_t rangeCount, const VkImageSubresourceRange *pRanges) { |
| vkCmdClearDepthStencilImage(handle(), image, imageLayout, pColor, rangeCount, pRanges); |
| } |
| |
| void VkCommandBufferObj::BuildAccelerationStructure(VkAccelerationStructureObj *as, VkBuffer scratchBuffer) { |
| BuildAccelerationStructure(as, scratchBuffer, VK_NULL_HANDLE); |
| } |
| |
| void VkCommandBufferObj::BuildAccelerationStructure(VkAccelerationStructureObj *as, VkBuffer scratchBuffer, VkBuffer instanceData) { |
| PFN_vkCmdBuildAccelerationStructureNV vkCmdBuildAccelerationStructureNV = |
| (PFN_vkCmdBuildAccelerationStructureNV)vkGetDeviceProcAddr(as->dev(), "vkCmdBuildAccelerationStructureNV"); |
| assert(vkCmdBuildAccelerationStructureNV != nullptr); |
| |
| vkCmdBuildAccelerationStructureNV(handle(), &as->info(), instanceData, 0, VK_FALSE, as->handle(), VK_NULL_HANDLE, scratchBuffer, |
| 0); |
| } |
| |
| void VkCommandBufferObj::PrepareAttachments(const vector<std::unique_ptr<VkImageObj>> &color_atts, |
| VkDepthStencilObj *depth_stencil_att) { |
| for (const auto &color_att : color_atts) { |
| color_att->SetLayout(this, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); |
| } |
| |
| if (depth_stencil_att && depth_stencil_att->Initialized()) { |
| VkImageAspectFlags aspect = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; |
| if (FormatIsDepthOnly(depth_stencil_att->Format())) aspect = VK_IMAGE_ASPECT_DEPTH_BIT; |
| if (FormatIsStencilOnly(depth_stencil_att->Format())) aspect = VK_IMAGE_ASPECT_STENCIL_BIT; |
| |
| depth_stencil_att->SetLayout(this, aspect, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL); |
| } |
| } |
| |
| void VkCommandBufferObj::BeginRenderPass(const VkRenderPassBeginInfo &info) { |
| vkCmdBeginRenderPass(handle(), &info, VK_SUBPASS_CONTENTS_INLINE); |
| } |
| |
| void VkCommandBufferObj::EndRenderPass() { vkCmdEndRenderPass(handle()); } |
| |
| void VkCommandBufferObj::SetViewport(uint32_t firstViewport, uint32_t viewportCount, const VkViewport *pViewports) { |
| vkCmdSetViewport(handle(), firstViewport, viewportCount, pViewports); |
| } |
| |
| void VkCommandBufferObj::SetStencilReference(VkStencilFaceFlags faceMask, uint32_t reference) { |
| vkCmdSetStencilReference(handle(), faceMask, reference); |
| } |
| |
| void VkCommandBufferObj::DrawIndexed(uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset, |
| uint32_t firstInstance) { |
| vkCmdDrawIndexed(handle(), indexCount, instanceCount, firstIndex, vertexOffset, firstInstance); |
| } |
| |
| void VkCommandBufferObj::Draw(uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance) { |
| vkCmdDraw(handle(), vertexCount, instanceCount, firstVertex, firstInstance); |
| } |
| |
| void VkCommandBufferObj::QueueCommandBuffer(bool checkSuccess) { |
| VkFenceObj nullFence; |
| QueueCommandBuffer(nullFence, checkSuccess); |
| } |
| |
| void VkCommandBufferObj::QueueCommandBuffer(const VkFenceObj &fence, bool checkSuccess) { |
| VkResult err = VK_SUCCESS; |
| |
| err = m_queue->submit(*this, fence, checkSuccess); |
| if (checkSuccess) { |
| ASSERT_VK_SUCCESS(err); |
| } |
| |
| err = m_queue->wait(); |
| if (checkSuccess) { |
| ASSERT_VK_SUCCESS(err); |
| } |
| |
| // TODO: Determine if we really want this serialization here |
| // Wait for work to finish before cleaning up. |
| vkDeviceWaitIdle(m_device->device()); |
| } |
| |
| void VkCommandBufferObj::BindDescriptorSet(VkDescriptorSetObj &descriptorSet) { |
| VkDescriptorSet set_obj = descriptorSet.GetDescriptorSetHandle(); |
| |
| // bind pipeline, vertex buffer (descriptor set) and WVP (dynamic buffer view) |
| if (set_obj) { |
| vkCmdBindDescriptorSets(handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, descriptorSet.GetPipelineLayout(), 0, 1, &set_obj, 0, |
| NULL); |
| } |
| } |
| |
| void VkCommandBufferObj::BindIndexBuffer(VkBufferObj *indexBuffer, VkDeviceSize offset, VkIndexType indexType) { |
| vkCmdBindIndexBuffer(handle(), indexBuffer->handle(), offset, indexType); |
| } |
| |
| void VkCommandBufferObj::BindVertexBuffer(VkConstantBufferObj *vertexBuffer, VkDeviceSize offset, uint32_t binding) { |
| vkCmdBindVertexBuffers(handle(), binding, 1, &vertexBuffer->handle(), &offset); |
| } |
| |
| VkCommandPoolObj::VkCommandPoolObj(VkDeviceObj *device, uint32_t queue_family_index, VkCommandPoolCreateFlags flags) { |
| init(*device, vk_testing::CommandPool::create_info(queue_family_index, flags)); |
| } |
| |
| bool VkDepthStencilObj::Initialized() { return m_initialized; } |
| VkDepthStencilObj::VkDepthStencilObj(VkDeviceObj *device) : VkImageObj(device) { m_initialized = false; } |
| |
| VkImageView *VkDepthStencilObj::BindInfo() { return &m_attachmentBindInfo; } |
| |
| VkFormat VkDepthStencilObj::Format() const { return this->m_depth_stencil_fmt; } |
| |
| void VkDepthStencilObj::Init(VkDeviceObj *device, int32_t width, int32_t height, VkFormat format, VkImageUsageFlags usage) { |
| VkImageViewCreateInfo view_info = {}; |
| |
| m_device = device; |
| m_initialized = true; |
| m_depth_stencil_fmt = format; |
| |
| /* create image */ |
| VkImageObj::Init(width, height, 1, m_depth_stencil_fmt, usage, VK_IMAGE_TILING_OPTIMAL); |
| |
| VkImageAspectFlags aspect = VK_IMAGE_ASPECT_STENCIL_BIT | VK_IMAGE_ASPECT_DEPTH_BIT; |
| if (FormatIsDepthOnly(format)) |
| aspect = VK_IMAGE_ASPECT_DEPTH_BIT; |
| else if (FormatIsStencilOnly(format)) |
| aspect = VK_IMAGE_ASPECT_STENCIL_BIT; |
| |
| SetLayout(aspect, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL); |
| |
| view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; |
| view_info.pNext = NULL; |
| view_info.image = VK_NULL_HANDLE; |
| view_info.subresourceRange.aspectMask = aspect; |
| view_info.subresourceRange.baseMipLevel = 0; |
| view_info.subresourceRange.levelCount = 1; |
| view_info.subresourceRange.baseArrayLayer = 0; |
| view_info.subresourceRange.layerCount = 1; |
| view_info.flags = 0; |
| view_info.format = m_depth_stencil_fmt; |
| view_info.image = handle(); |
| view_info.viewType = VK_IMAGE_VIEW_TYPE_2D; |
| m_imageView.init(*m_device, view_info); |
| |
| m_attachmentBindInfo = m_imageView.handle(); |
| } |