| /* Copyright (c) 2015-2019 The Khronos Group Inc. |
| * Copyright (c) 2015-2019 Valve Corporation |
| * Copyright (c) 2015-2019 LunarG, Inc. |
| * Copyright (C) 2015-2019 Google Inc. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| * |
| * Author: Chris Forbes <[email protected]> |
| */ |
| #ifndef VULKAN_SHADER_VALIDATION_H |
| #define VULKAN_SHADER_VALIDATION_H |
| |
| #include <unordered_map> |
| |
| #include <SPIRV/spirv.hpp> |
| #include <generated/spirv_tools_commit_id.h> |
| #include "spirv-tools/optimizer.hpp" |
| |
| // A forward iterator over spirv instructions. Provides easy access to len, opcode, and content words |
| // without the caller needing to care too much about the physical SPIRV module layout. |
| struct spirv_inst_iter { |
| std::vector<uint32_t>::const_iterator zero; |
| std::vector<uint32_t>::const_iterator it; |
| |
| uint32_t len() const { |
| auto result = *it >> 16; |
| assert(result > 0); |
| return result; |
| } |
| |
| uint32_t opcode() { return *it & 0x0ffffu; } |
| |
| uint32_t const &word(unsigned n) const { |
| assert(n < len()); |
| return it[n]; |
| } |
| |
| uint32_t offset() { return (uint32_t)(it - zero); } |
| |
| spirv_inst_iter() {} |
| |
| spirv_inst_iter(std::vector<uint32_t>::const_iterator zero, std::vector<uint32_t>::const_iterator it) : zero(zero), it(it) {} |
| |
| bool operator==(spirv_inst_iter const &other) const { return it == other.it; } |
| |
| bool operator!=(spirv_inst_iter const &other) const { return it != other.it; } |
| |
| spirv_inst_iter operator++(int) { // x++ |
| spirv_inst_iter ii = *this; |
| it += len(); |
| return ii; |
| } |
| |
| spirv_inst_iter operator++() { // ++x; |
| it += len(); |
| return *this; |
| } |
| |
| // The iterator and the value are the same thing. |
| spirv_inst_iter &operator*() { return *this; } |
| spirv_inst_iter const &operator*() const { return *this; } |
| }; |
| |
| struct decoration_set { |
| enum { |
| location_bit = 1 << 0, |
| patch_bit = 1 << 1, |
| relaxed_precision_bit = 1 << 2, |
| block_bit = 1 << 3, |
| buffer_block_bit = 1 << 4, |
| component_bit = 1 << 5, |
| input_attachment_index_bit = 1 << 6, |
| descriptor_set_bit = 1 << 7, |
| binding_bit = 1 << 8, |
| nonwritable_bit = 1 << 9, |
| builtin_bit = 1 << 10, |
| }; |
| uint32_t flags = 0; |
| uint32_t location = static_cast<uint32_t>(-1); |
| uint32_t component = 0; |
| uint32_t input_attachment_index = 0; |
| uint32_t descriptor_set = 0; |
| uint32_t binding = 0; |
| uint32_t builtin = static_cast<uint32_t>(-1); |
| |
| void merge(decoration_set const &other) { |
| if (other.flags & location_bit) location = other.location; |
| if (other.flags & component_bit) component = other.component; |
| if (other.flags & input_attachment_index_bit) input_attachment_index = other.input_attachment_index; |
| if (other.flags & descriptor_set_bit) descriptor_set = other.descriptor_set; |
| if (other.flags & binding_bit) binding = other.binding; |
| if (other.flags & builtin_bit) builtin = other.builtin; |
| flags |= other.flags; |
| } |
| |
| void add(uint32_t decoration, uint32_t value); |
| }; |
| |
| struct SHADER_MODULE_STATE { |
| // The spirv image itself |
| std::vector<uint32_t> words; |
| // A mapping of <id> to the first word of its def. this is useful because walking type |
| // trees, constant expressions, etc requires jumping all over the instruction stream. |
| std::unordered_map<unsigned, unsigned> def_index; |
| std::unordered_map<unsigned, decoration_set> decorations; |
| struct EntryPoint { |
| uint32_t offset; |
| VkShaderStageFlags stage; |
| }; |
| std::unordered_multimap<std::string, EntryPoint> entry_points; |
| bool has_valid_spirv; |
| VkShaderModule vk_shader_module; |
| uint32_t gpu_validation_shader_id; |
| |
| std::vector<uint32_t> PreprocessShaderBinary(uint32_t *src_binary, size_t binary_size, spv_target_env env) { |
| std::vector<uint32_t> src(src_binary, src_binary + binary_size / sizeof(uint32_t)); |
| |
| // Check if there are any group decoration instructions, and flatten them if found. |
| bool has_group_decoration = false; |
| bool done = false; |
| |
| // Walk through the first part of the SPIR-V module, looking for group decoration instructions. |
| // Skip the header (5 words). |
| auto itr = spirv_inst_iter(src.begin(), src.begin() + 5); |
| auto itrend = spirv_inst_iter(src.begin(), src.end()); |
| while (itr != itrend && !done) { |
| spv::Op opcode = (spv::Op)itr.opcode(); |
| switch (opcode) { |
| case spv::OpDecorationGroup: |
| case spv::OpGroupDecorate: |
| case spv::OpGroupMemberDecorate: |
| has_group_decoration = true; |
| done = true; |
| break; |
| case spv::OpFunction: |
| // An OpFunction indicates there are no more decorations |
| done = true; |
| break; |
| default: |
| break; |
| } |
| itr++; |
| } |
| |
| if (has_group_decoration) { |
| spvtools::Optimizer optimizer(env); |
| optimizer.RegisterPass(spvtools::CreateFlattenDecorationPass()); |
| std::vector<uint32_t> optimized_binary; |
| // Run optimizer to flatten decorations only, set skip_validation so as to not re-run validator |
| auto result = |
| optimizer.Run(src_binary, binary_size / sizeof(uint32_t), &optimized_binary, spvtools::ValidatorOptions(), true); |
| if (result) { |
| return optimized_binary; |
| } |
| } |
| // Return the original module. |
| return src; |
| } |
| |
| SHADER_MODULE_STATE(VkShaderModuleCreateInfo const *pCreateInfo, VkShaderModule shaderModule, spv_target_env env, |
| uint32_t unique_shader_id) |
| : words(PreprocessShaderBinary((uint32_t *)pCreateInfo->pCode, pCreateInfo->codeSize, env)), |
| def_index(), |
| has_valid_spirv(true), |
| vk_shader_module(shaderModule), |
| gpu_validation_shader_id(unique_shader_id) { |
| BuildDefIndex(); |
| } |
| |
| SHADER_MODULE_STATE() : has_valid_spirv(false), vk_shader_module(VK_NULL_HANDLE) {} |
| |
| decoration_set get_decorations(unsigned id) const { |
| // return the actual decorations for this id, or a default set. |
| auto it = decorations.find(id); |
| if (it != decorations.end()) return it->second; |
| return decoration_set(); |
| } |
| |
| // Expose begin() / end() to enable range-based for |
| spirv_inst_iter begin() const { return spirv_inst_iter(words.begin(), words.begin() + 5); } // First insn |
| spirv_inst_iter end() const { return spirv_inst_iter(words.begin(), words.end()); } // Just past last insn |
| // Given an offset into the module, produce an iterator there. |
| spirv_inst_iter at(unsigned offset) const { return spirv_inst_iter(words.begin(), words.begin() + offset); } |
| |
| // Gets an iterator to the definition of an id |
| spirv_inst_iter get_def(unsigned id) const { |
| auto it = def_index.find(id); |
| if (it == def_index.end()) { |
| return end(); |
| } |
| return at(it->second); |
| } |
| |
| void BuildDefIndex(); |
| }; |
| |
| class ValidationCache { |
| // hashes of shaders that have passed validation before, and can be skipped. |
| // we don't store negative results, as we would have to also store what was |
| // wrong with them; also, we expect they will get fixed, so we're less |
| // likely to see them again. |
| std::unordered_set<uint32_t> good_shader_hashes; |
| ValidationCache() {} |
| |
| public: |
| static VkValidationCacheEXT Create(VkValidationCacheCreateInfoEXT const *pCreateInfo) { |
| auto cache = new ValidationCache(); |
| cache->Load(pCreateInfo); |
| return VkValidationCacheEXT(cache); |
| } |
| |
| void Load(VkValidationCacheCreateInfoEXT const *pCreateInfo) { |
| const auto headerSize = 2 * sizeof(uint32_t) + VK_UUID_SIZE; |
| auto size = headerSize; |
| if (!pCreateInfo->pInitialData || pCreateInfo->initialDataSize < size) return; |
| |
| uint32_t const *data = (uint32_t const *)pCreateInfo->pInitialData; |
| if (data[0] != size) return; |
| if (data[1] != VK_VALIDATION_CACHE_HEADER_VERSION_ONE_EXT) return; |
| uint8_t expected_uuid[VK_UUID_SIZE]; |
| Sha1ToVkUuid(SPIRV_TOOLS_COMMIT_ID, expected_uuid); |
| if (memcmp(&data[2], expected_uuid, VK_UUID_SIZE) != 0) return; // different version |
| |
| data = (uint32_t const *)(reinterpret_cast<uint8_t const *>(data) + headerSize); |
| |
| for (; size < pCreateInfo->initialDataSize; data++, size += sizeof(uint32_t)) { |
| good_shader_hashes.insert(*data); |
| } |
| } |
| |
| void Write(size_t *pDataSize, void *pData) { |
| const auto headerSize = 2 * sizeof(uint32_t) + VK_UUID_SIZE; // 4 bytes for header size + 4 bytes for version number + UUID |
| if (!pData) { |
| *pDataSize = headerSize + good_shader_hashes.size() * sizeof(uint32_t); |
| return; |
| } |
| |
| if (*pDataSize < headerSize) { |
| *pDataSize = 0; |
| return; // Too small for even the header! |
| } |
| |
| uint32_t *out = (uint32_t *)pData; |
| size_t actualSize = headerSize; |
| |
| // Write the header |
| *out++ = headerSize; |
| *out++ = VK_VALIDATION_CACHE_HEADER_VERSION_ONE_EXT; |
| Sha1ToVkUuid(SPIRV_TOOLS_COMMIT_ID, reinterpret_cast<uint8_t *>(out)); |
| out = (uint32_t *)(reinterpret_cast<uint8_t *>(out) + VK_UUID_SIZE); |
| |
| for (auto it = good_shader_hashes.begin(); it != good_shader_hashes.end() && actualSize < *pDataSize; |
| it++, out++, actualSize += sizeof(uint32_t)) { |
| *out = *it; |
| } |
| |
| *pDataSize = actualSize; |
| } |
| |
| void Merge(ValidationCache const *other) { |
| good_shader_hashes.reserve(good_shader_hashes.size() + other->good_shader_hashes.size()); |
| for (auto h : other->good_shader_hashes) good_shader_hashes.insert(h); |
| } |
| |
| static uint32_t MakeShaderHash(VkShaderModuleCreateInfo const *smci); |
| |
| bool Contains(uint32_t hash) { return good_shader_hashes.count(hash) != 0; } |
| |
| void Insert(uint32_t hash) { good_shader_hashes.insert(hash); } |
| |
| private: |
| void Sha1ToVkUuid(const char *sha1_str, uint8_t uuid[VK_UUID_SIZE]) { |
| // Convert sha1_str from a hex string to binary. We only need VK_UUID_BYTES of |
| // output, so pad with zeroes if the input string is shorter than that, and truncate |
| // if it's longer. |
| char padded_sha1_str[2 * VK_UUID_SIZE + 1] = {}; |
| strncpy(padded_sha1_str, sha1_str, 2 * VK_UUID_SIZE + 1); |
| char byte_str[3] = {}; |
| for (uint32_t i = 0; i < VK_UUID_SIZE; ++i) { |
| byte_str[0] = padded_sha1_str[2 * i + 0]; |
| byte_str[1] = padded_sha1_str[2 * i + 1]; |
| uuid[i] = static_cast<uint8_t>(strtol(byte_str, NULL, 16)); |
| } |
| } |
| }; |
| |
| #endif // VULKAN_SHADER_VALIDATION_H |