| // Copyright 2022 Google Inc. All Rights Reserved. |
| // |
| // Use of this source code is governed by a BSD-style license |
| // that can be found in the COPYING file in the root of the source |
| // tree. An additional intellectual property rights grant can be found |
| // in the file PATENTS. All contributing project authors may |
| // be found in the AUTHORS file in the root of the source tree. |
| // ----------------------------------------------------------------------------- |
| // |
| // Sharp RGB to YUV conversion. |
| // |
| // Author: Skal ([email protected]) |
| |
| #include "sharpyuv/sharpyuv.h" |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <stddef.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "src/webp/types.h" |
| #include "sharpyuv/sharpyuv_cpu.h" |
| #include "sharpyuv/sharpyuv_dsp.h" |
| #include "sharpyuv/sharpyuv_gamma.h" |
| |
| //------------------------------------------------------------------------------ |
| |
| int SharpYuvGetVersion(void) { |
| return SHARPYUV_VERSION; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Sharp RGB->YUV conversion |
| |
| static const int kNumIterations = 4; |
| |
| #define YUV_FIX 16 // fixed-point precision for RGB->YUV |
| static const int kYuvHalf = 1 << (YUV_FIX - 1); |
| |
| // Max bit depth so that intermediate calculations fit in 16 bits. |
| static const int kMaxBitDepth = 14; |
| |
| // Returns the precision shift to use based on the input rgb_bit_depth. |
| static int GetPrecisionShift(int rgb_bit_depth) { |
| // Try to add 2 bits of precision if it fits in kMaxBitDepth. Otherwise remove |
| // bits if needed. |
| return ((rgb_bit_depth + 2) <= kMaxBitDepth) ? 2 |
| : (kMaxBitDepth - rgb_bit_depth); |
| } |
| |
| typedef int16_t fixed_t; // signed type with extra precision for UV |
| typedef uint16_t fixed_y_t; // unsigned type with extra precision for W |
| |
| //------------------------------------------------------------------------------ |
| |
| static uint8_t clip_8b(fixed_t v) { |
| return (!(v & ~0xff)) ? (uint8_t)v : (v < 0) ? 0u : 255u; |
| } |
| |
| static uint16_t clip(fixed_t v, int max) { |
| return (v < 0) ? 0 : (v > max) ? max : (uint16_t)v; |
| } |
| |
| static fixed_y_t clip_bit_depth(int y, int bit_depth) { |
| const int max = (1 << bit_depth) - 1; |
| return (!(y & ~max)) ? (fixed_y_t)y : (y < 0) ? 0 : max; |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| static int RGBToGray(int64_t r, int64_t g, int64_t b) { |
| const int64_t luma = 13933 * r + 46871 * g + 4732 * b + kYuvHalf; |
| return (int)(luma >> YUV_FIX); |
| } |
| |
| static uint32_t ScaleDown(uint16_t a, uint16_t b, uint16_t c, uint16_t d, |
| int rgb_bit_depth) { |
| const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth); |
| const uint32_t A = SharpYuvGammaToLinear(a, bit_depth); |
| const uint32_t B = SharpYuvGammaToLinear(b, bit_depth); |
| const uint32_t C = SharpYuvGammaToLinear(c, bit_depth); |
| const uint32_t D = SharpYuvGammaToLinear(d, bit_depth); |
| return SharpYuvLinearToGamma((A + B + C + D + 2) >> 2, bit_depth); |
| } |
| |
| static WEBP_INLINE void UpdateW(const fixed_y_t* src, fixed_y_t* dst, int w, |
| int rgb_bit_depth) { |
| const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth); |
| int i; |
| for (i = 0; i < w; ++i) { |
| const uint32_t R = SharpYuvGammaToLinear(src[0 * w + i], bit_depth); |
| const uint32_t G = SharpYuvGammaToLinear(src[1 * w + i], bit_depth); |
| const uint32_t B = SharpYuvGammaToLinear(src[2 * w + i], bit_depth); |
| const uint32_t Y = RGBToGray(R, G, B); |
| dst[i] = (fixed_y_t)SharpYuvLinearToGamma(Y, bit_depth); |
| } |
| } |
| |
| static void UpdateChroma(const fixed_y_t* src1, const fixed_y_t* src2, |
| fixed_t* dst, int uv_w, int rgb_bit_depth) { |
| int i; |
| for (i = 0; i < uv_w; ++i) { |
| const int r = |
| ScaleDown(src1[0 * uv_w + 0], src1[0 * uv_w + 1], src2[0 * uv_w + 0], |
| src2[0 * uv_w + 1], rgb_bit_depth); |
| const int g = |
| ScaleDown(src1[2 * uv_w + 0], src1[2 * uv_w + 1], src2[2 * uv_w + 0], |
| src2[2 * uv_w + 1], rgb_bit_depth); |
| const int b = |
| ScaleDown(src1[4 * uv_w + 0], src1[4 * uv_w + 1], src2[4 * uv_w + 0], |
| src2[4 * uv_w + 1], rgb_bit_depth); |
| const int W = RGBToGray(r, g, b); |
| dst[0 * uv_w] = (fixed_t)(r - W); |
| dst[1 * uv_w] = (fixed_t)(g - W); |
| dst[2 * uv_w] = (fixed_t)(b - W); |
| dst += 1; |
| src1 += 2; |
| src2 += 2; |
| } |
| } |
| |
| static void StoreGray(const fixed_y_t* rgb, fixed_y_t* y, int w) { |
| int i; |
| assert(w > 0); |
| for (i = 0; i < w; ++i) { |
| y[i] = RGBToGray(rgb[0 * w + i], rgb[1 * w + i], rgb[2 * w + i]); |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| static WEBP_INLINE fixed_y_t Filter2(int A, int B, int W0, int bit_depth) { |
| const int v0 = (A * 3 + B + 2) >> 2; |
| return clip_bit_depth(v0 + W0, bit_depth); |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| static WEBP_INLINE int Shift(int v, int shift) { |
| return (shift >= 0) ? (v << shift) : (v >> -shift); |
| } |
| |
| static void ImportOneRow(const uint8_t* const r_ptr, |
| const uint8_t* const g_ptr, |
| const uint8_t* const b_ptr, |
| int rgb_step, |
| int rgb_bit_depth, |
| int pic_width, |
| fixed_y_t* const dst) { |
| // Convert the rgb_step from a number of bytes to a number of uint8_t or |
| // uint16_t values depending the bit depth. |
| const int step = (rgb_bit_depth > 8) ? rgb_step / 2 : rgb_step; |
| int i; |
| const int w = (pic_width + 1) & ~1; |
| for (i = 0; i < pic_width; ++i) { |
| const int off = i * step; |
| const int shift = GetPrecisionShift(rgb_bit_depth); |
| if (rgb_bit_depth == 8) { |
| dst[i + 0 * w] = Shift(r_ptr[off], shift); |
| dst[i + 1 * w] = Shift(g_ptr[off], shift); |
| dst[i + 2 * w] = Shift(b_ptr[off], shift); |
| } else { |
| dst[i + 0 * w] = Shift(((uint16_t*)r_ptr)[off], shift); |
| dst[i + 1 * w] = Shift(((uint16_t*)g_ptr)[off], shift); |
| dst[i + 2 * w] = Shift(((uint16_t*)b_ptr)[off], shift); |
| } |
| } |
| if (pic_width & 1) { // replicate rightmost pixel |
| dst[pic_width + 0 * w] = dst[pic_width + 0 * w - 1]; |
| dst[pic_width + 1 * w] = dst[pic_width + 1 * w - 1]; |
| dst[pic_width + 2 * w] = dst[pic_width + 2 * w - 1]; |
| } |
| } |
| |
| static void InterpolateTwoRows(const fixed_y_t* const best_y, |
| const fixed_t* prev_uv, |
| const fixed_t* cur_uv, |
| const fixed_t* next_uv, |
| int w, |
| fixed_y_t* out1, |
| fixed_y_t* out2, |
| int rgb_bit_depth) { |
| const int uv_w = w >> 1; |
| const int len = (w - 1) >> 1; // length to filter |
| int k = 3; |
| const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth); |
| while (k-- > 0) { // process each R/G/B segments in turn |
| // special boundary case for i==0 |
| out1[0] = Filter2(cur_uv[0], prev_uv[0], best_y[0], bit_depth); |
| out2[0] = Filter2(cur_uv[0], next_uv[0], best_y[w], bit_depth); |
| |
| SharpYuvFilterRow(cur_uv, prev_uv, len, best_y + 0 + 1, out1 + 1, |
| bit_depth); |
| SharpYuvFilterRow(cur_uv, next_uv, len, best_y + w + 1, out2 + 1, |
| bit_depth); |
| |
| // special boundary case for i == w - 1 when w is even |
| if (!(w & 1)) { |
| out1[w - 1] = Filter2(cur_uv[uv_w - 1], prev_uv[uv_w - 1], |
| best_y[w - 1 + 0], bit_depth); |
| out2[w - 1] = Filter2(cur_uv[uv_w - 1], next_uv[uv_w - 1], |
| best_y[w - 1 + w], bit_depth); |
| } |
| out1 += w; |
| out2 += w; |
| prev_uv += uv_w; |
| cur_uv += uv_w; |
| next_uv += uv_w; |
| } |
| } |
| |
| static WEBP_INLINE int RGBToYUVComponent(int r, int g, int b, |
| const int coeffs[4], int sfix) { |
| const int srounder = 1 << (YUV_FIX + sfix - 1); |
| const int luma = coeffs[0] * r + coeffs[1] * g + coeffs[2] * b + |
| coeffs[3] + srounder; |
| return (luma >> (YUV_FIX + sfix)); |
| } |
| |
| static int ConvertWRGBToYUV(const fixed_y_t* best_y, const fixed_t* best_uv, |
| uint8_t* y_ptr, int y_stride, uint8_t* u_ptr, |
| int u_stride, uint8_t* v_ptr, int v_stride, |
| int rgb_bit_depth, |
| int yuv_bit_depth, int width, int height, |
| const SharpYuvConversionMatrix* yuv_matrix) { |
| int i, j; |
| const fixed_t* const best_uv_base = best_uv; |
| const int w = (width + 1) & ~1; |
| const int h = (height + 1) & ~1; |
| const int uv_w = w >> 1; |
| const int uv_h = h >> 1; |
| const int sfix = GetPrecisionShift(rgb_bit_depth); |
| const int yuv_max = (1 << yuv_bit_depth) - 1; |
| |
| for (best_uv = best_uv_base, j = 0; j < height; ++j) { |
| for (i = 0; i < width; ++i) { |
| const int off = (i >> 1); |
| const int W = best_y[i]; |
| const int r = best_uv[off + 0 * uv_w] + W; |
| const int g = best_uv[off + 1 * uv_w] + W; |
| const int b = best_uv[off + 2 * uv_w] + W; |
| const int y = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_y, sfix); |
| if (yuv_bit_depth <= 8) { |
| y_ptr[i] = clip_8b(y); |
| } else { |
| ((uint16_t*)y_ptr)[i] = clip(y, yuv_max); |
| } |
| } |
| best_y += w; |
| best_uv += (j & 1) * 3 * uv_w; |
| y_ptr += y_stride; |
| } |
| for (best_uv = best_uv_base, j = 0; j < uv_h; ++j) { |
| for (i = 0; i < uv_w; ++i) { |
| const int off = i; |
| // Note r, g and b values here are off by W, but a constant offset on all |
| // 3 components doesn't change the value of u and v with a YCbCr matrix. |
| const int r = best_uv[off + 0 * uv_w]; |
| const int g = best_uv[off + 1 * uv_w]; |
| const int b = best_uv[off + 2 * uv_w]; |
| const int u = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_u, sfix); |
| const int v = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_v, sfix); |
| if (yuv_bit_depth <= 8) { |
| u_ptr[i] = clip_8b(u); |
| v_ptr[i] = clip_8b(v); |
| } else { |
| ((uint16_t*)u_ptr)[i] = clip(u, yuv_max); |
| ((uint16_t*)v_ptr)[i] = clip(v, yuv_max); |
| } |
| } |
| best_uv += 3 * uv_w; |
| u_ptr += u_stride; |
| v_ptr += v_stride; |
| } |
| return 1; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Main function |
| |
| static void* SafeMalloc(uint64_t nmemb, size_t size) { |
| const uint64_t total_size = nmemb * (uint64_t)size; |
| if (total_size != (size_t)total_size) return NULL; |
| return malloc((size_t)total_size); |
| } |
| |
| #define SAFE_ALLOC(W, H, T) ((T*)SafeMalloc((W) * (H), sizeof(T))) |
| |
| static int DoSharpArgbToYuv(const uint8_t* r_ptr, const uint8_t* g_ptr, |
| const uint8_t* b_ptr, int rgb_step, int rgb_stride, |
| int rgb_bit_depth, uint8_t* y_ptr, int y_stride, |
| uint8_t* u_ptr, int u_stride, uint8_t* v_ptr, |
| int v_stride, int yuv_bit_depth, int width, |
| int height, |
| const SharpYuvConversionMatrix* yuv_matrix) { |
| // we expand the right/bottom border if needed |
| const int w = (width + 1) & ~1; |
| const int h = (height + 1) & ~1; |
| const int uv_w = w >> 1; |
| const int uv_h = h >> 1; |
| uint64_t prev_diff_y_sum = ~0; |
| int j, iter; |
| |
| // TODO(skal): allocate one big memory chunk. But for now, it's easier |
| // for valgrind debugging to have several chunks. |
| fixed_y_t* const tmp_buffer = SAFE_ALLOC(w * 3, 2, fixed_y_t); // scratch |
| fixed_y_t* const best_y_base = SAFE_ALLOC(w, h, fixed_y_t); |
| fixed_y_t* const target_y_base = SAFE_ALLOC(w, h, fixed_y_t); |
| fixed_y_t* const best_rgb_y = SAFE_ALLOC(w, 2, fixed_y_t); |
| fixed_t* const best_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t); |
| fixed_t* const target_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t); |
| fixed_t* const best_rgb_uv = SAFE_ALLOC(uv_w * 3, 1, fixed_t); |
| fixed_y_t* best_y = best_y_base; |
| fixed_y_t* target_y = target_y_base; |
| fixed_t* best_uv = best_uv_base; |
| fixed_t* target_uv = target_uv_base; |
| const uint64_t diff_y_threshold = (uint64_t)(3.0 * w * h); |
| int ok; |
| assert(w > 0); |
| assert(h > 0); |
| |
| if (best_y_base == NULL || best_uv_base == NULL || |
| target_y_base == NULL || target_uv_base == NULL || |
| best_rgb_y == NULL || best_rgb_uv == NULL || |
| tmp_buffer == NULL) { |
| ok = 0; |
| goto End; |
| } |
| |
| // Import RGB samples to W/RGB representation. |
| for (j = 0; j < height; j += 2) { |
| const int is_last_row = (j == height - 1); |
| fixed_y_t* const src1 = tmp_buffer + 0 * w; |
| fixed_y_t* const src2 = tmp_buffer + 3 * w; |
| |
| // prepare two rows of input |
| ImportOneRow(r_ptr, g_ptr, b_ptr, rgb_step, rgb_bit_depth, width, |
| src1); |
| if (!is_last_row) { |
| ImportOneRow(r_ptr + rgb_stride, g_ptr + rgb_stride, b_ptr + rgb_stride, |
| rgb_step, rgb_bit_depth, width, src2); |
| } else { |
| memcpy(src2, src1, 3 * w * sizeof(*src2)); |
| } |
| StoreGray(src1, best_y + 0, w); |
| StoreGray(src2, best_y + w, w); |
| |
| UpdateW(src1, target_y, w, rgb_bit_depth); |
| UpdateW(src2, target_y + w, w, rgb_bit_depth); |
| UpdateChroma(src1, src2, target_uv, uv_w, rgb_bit_depth); |
| memcpy(best_uv, target_uv, 3 * uv_w * sizeof(*best_uv)); |
| best_y += 2 * w; |
| best_uv += 3 * uv_w; |
| target_y += 2 * w; |
| target_uv += 3 * uv_w; |
| r_ptr += 2 * rgb_stride; |
| g_ptr += 2 * rgb_stride; |
| b_ptr += 2 * rgb_stride; |
| } |
| |
| // Iterate and resolve clipping conflicts. |
| for (iter = 0; iter < kNumIterations; ++iter) { |
| const fixed_t* cur_uv = best_uv_base; |
| const fixed_t* prev_uv = best_uv_base; |
| uint64_t diff_y_sum = 0; |
| |
| best_y = best_y_base; |
| best_uv = best_uv_base; |
| target_y = target_y_base; |
| target_uv = target_uv_base; |
| for (j = 0; j < h; j += 2) { |
| fixed_y_t* const src1 = tmp_buffer + 0 * w; |
| fixed_y_t* const src2 = tmp_buffer + 3 * w; |
| { |
| const fixed_t* const next_uv = cur_uv + ((j < h - 2) ? 3 * uv_w : 0); |
| InterpolateTwoRows(best_y, prev_uv, cur_uv, next_uv, w, |
| src1, src2, rgb_bit_depth); |
| prev_uv = cur_uv; |
| cur_uv = next_uv; |
| } |
| |
| UpdateW(src1, best_rgb_y + 0 * w, w, rgb_bit_depth); |
| UpdateW(src2, best_rgb_y + 1 * w, w, rgb_bit_depth); |
| UpdateChroma(src1, src2, best_rgb_uv, uv_w, rgb_bit_depth); |
| |
| // update two rows of Y and one row of RGB |
| diff_y_sum += |
| SharpYuvUpdateY(target_y, best_rgb_y, best_y, 2 * w, |
| rgb_bit_depth + GetPrecisionShift(rgb_bit_depth)); |
| SharpYuvUpdateRGB(target_uv, best_rgb_uv, best_uv, 3 * uv_w); |
| |
| best_y += 2 * w; |
| best_uv += 3 * uv_w; |
| target_y += 2 * w; |
| target_uv += 3 * uv_w; |
| } |
| // test exit condition |
| if (iter > 0) { |
| if (diff_y_sum < diff_y_threshold) break; |
| if (diff_y_sum > prev_diff_y_sum) break; |
| } |
| prev_diff_y_sum = diff_y_sum; |
| } |
| |
| // final reconstruction |
| ok = ConvertWRGBToYUV(best_y_base, best_uv_base, y_ptr, y_stride, u_ptr, |
| u_stride, v_ptr, v_stride, rgb_bit_depth, yuv_bit_depth, |
| width, height, yuv_matrix); |
| |
| End: |
| free(best_y_base); |
| free(best_uv_base); |
| free(target_y_base); |
| free(target_uv_base); |
| free(best_rgb_y); |
| free(best_rgb_uv); |
| free(tmp_buffer); |
| return ok; |
| } |
| #undef SAFE_ALLOC |
| |
| #if defined(WEBP_USE_THREAD) && !defined(_WIN32) |
| #include <pthread.h> // NOLINT |
| |
| #define LOCK_ACCESS \ |
| static pthread_mutex_t sharpyuv_lock = PTHREAD_MUTEX_INITIALIZER; \ |
| if (pthread_mutex_lock(&sharpyuv_lock)) return |
| #define UNLOCK_ACCESS_AND_RETURN \ |
| do { \ |
| (void)pthread_mutex_unlock(&sharpyuv_lock); \ |
| return; \ |
| } while (0) |
| #else // !(defined(WEBP_USE_THREAD) && !defined(_WIN32)) |
| #define LOCK_ACCESS do {} while (0) |
| #define UNLOCK_ACCESS_AND_RETURN return |
| #endif // defined(WEBP_USE_THREAD) && !defined(_WIN32) |
| |
| // Hidden exported init function. |
| // By default SharpYuvConvert calls it with SharpYuvGetCPUInfo. If needed, |
| // users can declare it as extern and call it with an alternate VP8CPUInfo |
| // function. |
| SHARPYUV_EXTERN void SharpYuvInit(VP8CPUInfo cpu_info_func); |
| void SharpYuvInit(VP8CPUInfo cpu_info_func) { |
| static volatile VP8CPUInfo sharpyuv_last_cpuinfo_used = |
| (VP8CPUInfo)&sharpyuv_last_cpuinfo_used; |
| LOCK_ACCESS; |
| // Only update SharpYuvGetCPUInfo when called from external code to avoid a |
| // race on reading the value in SharpYuvConvert(). |
| if (cpu_info_func != (VP8CPUInfo)&SharpYuvGetCPUInfo) { |
| SharpYuvGetCPUInfo = cpu_info_func; |
| } |
| if (sharpyuv_last_cpuinfo_used == SharpYuvGetCPUInfo) { |
| UNLOCK_ACCESS_AND_RETURN; |
| } |
| |
| SharpYuvInitDsp(); |
| SharpYuvInitGammaTables(); |
| |
| sharpyuv_last_cpuinfo_used = SharpYuvGetCPUInfo; |
| UNLOCK_ACCESS_AND_RETURN; |
| } |
| |
| int SharpYuvConvert(const void* r_ptr, const void* g_ptr, |
| const void* b_ptr, int rgb_step, int rgb_stride, |
| int rgb_bit_depth, void* y_ptr, int y_stride, |
| void* u_ptr, int u_stride, void* v_ptr, |
| int v_stride, int yuv_bit_depth, int width, |
| int height, const SharpYuvConversionMatrix* yuv_matrix) { |
| SharpYuvConversionMatrix scaled_matrix; |
| const int rgb_max = (1 << rgb_bit_depth) - 1; |
| const int rgb_round = 1 << (rgb_bit_depth - 1); |
| const int yuv_max = (1 << yuv_bit_depth) - 1; |
| const int sfix = GetPrecisionShift(rgb_bit_depth); |
| |
| if (width < 1 || height < 1 || width == INT_MAX || height == INT_MAX || |
| r_ptr == NULL || g_ptr == NULL || b_ptr == NULL || y_ptr == NULL || |
| u_ptr == NULL || v_ptr == NULL) { |
| return 0; |
| } |
| if (rgb_bit_depth != 8 && rgb_bit_depth != 10 && rgb_bit_depth != 12 && |
| rgb_bit_depth != 16) { |
| return 0; |
| } |
| if (yuv_bit_depth != 8 && yuv_bit_depth != 10 && yuv_bit_depth != 12) { |
| return 0; |
| } |
| if (rgb_bit_depth > 8 && (rgb_step % 2 != 0 || rgb_stride %2 != 0)) { |
| // Step/stride should be even for uint16_t buffers. |
| return 0; |
| } |
| if (yuv_bit_depth > 8 && |
| (y_stride % 2 != 0 || u_stride % 2 != 0 || v_stride % 2 != 0)) { |
| // Stride should be even for uint16_t buffers. |
| return 0; |
| } |
| // The address of the function pointer is used to avoid a read race. |
| SharpYuvInit((VP8CPUInfo)&SharpYuvGetCPUInfo); |
| |
| // Add scaling factor to go from rgb_bit_depth to yuv_bit_depth, to the |
| // rgb->yuv conversion matrix. |
| if (rgb_bit_depth == yuv_bit_depth) { |
| memcpy(&scaled_matrix, yuv_matrix, sizeof(scaled_matrix)); |
| } else { |
| int i; |
| for (i = 0; i < 3; ++i) { |
| scaled_matrix.rgb_to_y[i] = |
| (yuv_matrix->rgb_to_y[i] * yuv_max + rgb_round) / rgb_max; |
| scaled_matrix.rgb_to_u[i] = |
| (yuv_matrix->rgb_to_u[i] * yuv_max + rgb_round) / rgb_max; |
| scaled_matrix.rgb_to_v[i] = |
| (yuv_matrix->rgb_to_v[i] * yuv_max + rgb_round) / rgb_max; |
| } |
| } |
| // Also incorporate precision change scaling. |
| scaled_matrix.rgb_to_y[3] = Shift(yuv_matrix->rgb_to_y[3], sfix); |
| scaled_matrix.rgb_to_u[3] = Shift(yuv_matrix->rgb_to_u[3], sfix); |
| scaled_matrix.rgb_to_v[3] = Shift(yuv_matrix->rgb_to_v[3], sfix); |
| |
| return DoSharpArgbToYuv(r_ptr, g_ptr, b_ptr, rgb_step, rgb_stride, |
| rgb_bit_depth, y_ptr, y_stride, u_ptr, u_stride, |
| v_ptr, v_stride, yuv_bit_depth, width, height, |
| &scaled_matrix); |
| } |
| |
| //------------------------------------------------------------------------------ |