| /* |
| * MD4 hash implementation |
| * Copyright (c) 2006, Jouni Malinen <[email protected]> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * Alternatively, this software may be distributed under the terms of BSD |
| * license. |
| * |
| * See README and COPYING for more details. |
| */ |
| |
| #include "includes.h" |
| |
| #include "common.h" |
| #include "crypto.h" |
| |
| |
| #ifdef INTERNAL_MD4 |
| |
| #define MD4_BLOCK_LENGTH 64 |
| #define MD4_DIGEST_LENGTH 16 |
| |
| typedef struct MD4Context { |
| u32 state[4]; /* state */ |
| u64 count; /* number of bits, mod 2^64 */ |
| u8 buffer[MD4_BLOCK_LENGTH]; /* input buffer */ |
| } MD4_CTX; |
| |
| |
| static void MD4Init(MD4_CTX *ctx); |
| static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len); |
| static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx); |
| |
| |
| void md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) |
| { |
| MD4_CTX ctx; |
| size_t i; |
| |
| MD4Init(&ctx); |
| for (i = 0; i < num_elem; i++) |
| MD4Update(&ctx, addr[i], len[i]); |
| MD4Final(mac, &ctx); |
| } |
| |
| |
| /* ===== start - public domain MD4 implementation ===== */ |
| /* $OpenBSD: md4.c,v 1.7 2005/08/08 08:05:35 espie Exp $ */ |
| |
| /* |
| * This code implements the MD4 message-digest algorithm. |
| * The algorithm is due to Ron Rivest. This code was |
| * written by Colin Plumb in 1993, no copyright is claimed. |
| * This code is in the public domain; do with it what you wish. |
| * Todd C. Miller modified the MD5 code to do MD4 based on RFC 1186. |
| * |
| * Equivalent code is available from RSA Data Security, Inc. |
| * This code has been tested against that, and is equivalent, |
| * except that you don't need to include two pages of legalese |
| * with every copy. |
| * |
| * To compute the message digest of a chunk of bytes, declare an |
| * MD4Context structure, pass it to MD4Init, call MD4Update as |
| * needed on buffers full of bytes, and then call MD4Final, which |
| * will fill a supplied 16-byte array with the digest. |
| */ |
| |
| #define MD4_DIGEST_STRING_LENGTH (MD4_DIGEST_LENGTH * 2 + 1) |
| |
| |
| static void |
| MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH]); |
| |
| #define PUT_64BIT_LE(cp, value) do { \ |
| (cp)[7] = (value) >> 56; \ |
| (cp)[6] = (value) >> 48; \ |
| (cp)[5] = (value) >> 40; \ |
| (cp)[4] = (value) >> 32; \ |
| (cp)[3] = (value) >> 24; \ |
| (cp)[2] = (value) >> 16; \ |
| (cp)[1] = (value) >> 8; \ |
| (cp)[0] = (value); } while (0) |
| |
| #define PUT_32BIT_LE(cp, value) do { \ |
| (cp)[3] = (value) >> 24; \ |
| (cp)[2] = (value) >> 16; \ |
| (cp)[1] = (value) >> 8; \ |
| (cp)[0] = (value); } while (0) |
| |
| static u8 PADDING[MD4_BLOCK_LENGTH] = { |
| 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 |
| }; |
| |
| /* |
| * Start MD4 accumulation. |
| * Set bit count to 0 and buffer to mysterious initialization constants. |
| */ |
| static void MD4Init(MD4_CTX *ctx) |
| { |
| ctx->count = 0; |
| ctx->state[0] = 0x67452301; |
| ctx->state[1] = 0xefcdab89; |
| ctx->state[2] = 0x98badcfe; |
| ctx->state[3] = 0x10325476; |
| } |
| |
| /* |
| * Update context to reflect the concatenation of another buffer full |
| * of bytes. |
| */ |
| static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len) |
| { |
| size_t have, need; |
| |
| /* Check how many bytes we already have and how many more we need. */ |
| have = (size_t)((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1)); |
| need = MD4_BLOCK_LENGTH - have; |
| |
| /* Update bitcount */ |
| ctx->count += (u64)len << 3; |
| |
| if (len >= need) { |
| if (have != 0) { |
| os_memcpy(ctx->buffer + have, input, need); |
| MD4Transform(ctx->state, ctx->buffer); |
| input += need; |
| len -= need; |
| have = 0; |
| } |
| |
| /* Process data in MD4_BLOCK_LENGTH-byte chunks. */ |
| while (len >= MD4_BLOCK_LENGTH) { |
| MD4Transform(ctx->state, input); |
| input += MD4_BLOCK_LENGTH; |
| len -= MD4_BLOCK_LENGTH; |
| } |
| } |
| |
| /* Handle any remaining bytes of data. */ |
| if (len != 0) |
| os_memcpy(ctx->buffer + have, input, len); |
| } |
| |
| /* |
| * Pad pad to 64-byte boundary with the bit pattern |
| * 1 0* (64-bit count of bits processed, MSB-first) |
| */ |
| static void MD4Pad(MD4_CTX *ctx) |
| { |
| u8 count[8]; |
| size_t padlen; |
| |
| /* Convert count to 8 bytes in little endian order. */ |
| PUT_64BIT_LE(count, ctx->count); |
| |
| /* Pad out to 56 mod 64. */ |
| padlen = MD4_BLOCK_LENGTH - |
| ((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1)); |
| if (padlen < 1 + 8) |
| padlen += MD4_BLOCK_LENGTH; |
| MD4Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */ |
| MD4Update(ctx, count, 8); |
| } |
| |
| /* |
| * Final wrapup--call MD4Pad, fill in digest and zero out ctx. |
| */ |
| static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx) |
| { |
| int i; |
| |
| MD4Pad(ctx); |
| if (digest != NULL) { |
| for (i = 0; i < 4; i++) |
| PUT_32BIT_LE(digest + i * 4, ctx->state[i]); |
| os_memset(ctx, 0, sizeof(*ctx)); |
| } |
| } |
| |
| |
| /* The three core functions - F1 is optimized somewhat */ |
| |
| /* #define F1(x, y, z) (x & y | ~x & z) */ |
| #define F1(x, y, z) (z ^ (x & (y ^ z))) |
| #define F2(x, y, z) ((x & y) | (x & z) | (y & z)) |
| #define F3(x, y, z) (x ^ y ^ z) |
| |
| /* This is the central step in the MD4 algorithm. */ |
| #define MD4STEP(f, w, x, y, z, data, s) \ |
| ( w += f(x, y, z) + data, w = w<<s | w>>(32-s) ) |
| |
| /* |
| * The core of the MD4 algorithm, this alters an existing MD4 hash to |
| * reflect the addition of 16 longwords of new data. MD4Update blocks |
| * the data and converts bytes into longwords for this routine. |
| */ |
| static void |
| MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH]) |
| { |
| u32 a, b, c, d, in[MD4_BLOCK_LENGTH / 4]; |
| |
| #if BYTE_ORDER == LITTLE_ENDIAN |
| os_memcpy(in, block, sizeof(in)); |
| #else |
| for (a = 0; a < MD4_BLOCK_LENGTH / 4; a++) { |
| in[a] = (u32)( |
| (u32)(block[a * 4 + 0]) | |
| (u32)(block[a * 4 + 1]) << 8 | |
| (u32)(block[a * 4 + 2]) << 16 | |
| (u32)(block[a * 4 + 3]) << 24); |
| } |
| #endif |
| |
| a = state[0]; |
| b = state[1]; |
| c = state[2]; |
| d = state[3]; |
| |
| MD4STEP(F1, a, b, c, d, in[ 0], 3); |
| MD4STEP(F1, d, a, b, c, in[ 1], 7); |
| MD4STEP(F1, c, d, a, b, in[ 2], 11); |
| MD4STEP(F1, b, c, d, a, in[ 3], 19); |
| MD4STEP(F1, a, b, c, d, in[ 4], 3); |
| MD4STEP(F1, d, a, b, c, in[ 5], 7); |
| MD4STEP(F1, c, d, a, b, in[ 6], 11); |
| MD4STEP(F1, b, c, d, a, in[ 7], 19); |
| MD4STEP(F1, a, b, c, d, in[ 8], 3); |
| MD4STEP(F1, d, a, b, c, in[ 9], 7); |
| MD4STEP(F1, c, d, a, b, in[10], 11); |
| MD4STEP(F1, b, c, d, a, in[11], 19); |
| MD4STEP(F1, a, b, c, d, in[12], 3); |
| MD4STEP(F1, d, a, b, c, in[13], 7); |
| MD4STEP(F1, c, d, a, b, in[14], 11); |
| MD4STEP(F1, b, c, d, a, in[15], 19); |
| |
| MD4STEP(F2, a, b, c, d, in[ 0] + 0x5a827999, 3); |
| MD4STEP(F2, d, a, b, c, in[ 4] + 0x5a827999, 5); |
| MD4STEP(F2, c, d, a, b, in[ 8] + 0x5a827999, 9); |
| MD4STEP(F2, b, c, d, a, in[12] + 0x5a827999, 13); |
| MD4STEP(F2, a, b, c, d, in[ 1] + 0x5a827999, 3); |
| MD4STEP(F2, d, a, b, c, in[ 5] + 0x5a827999, 5); |
| MD4STEP(F2, c, d, a, b, in[ 9] + 0x5a827999, 9); |
| MD4STEP(F2, b, c, d, a, in[13] + 0x5a827999, 13); |
| MD4STEP(F2, a, b, c, d, in[ 2] + 0x5a827999, 3); |
| MD4STEP(F2, d, a, b, c, in[ 6] + 0x5a827999, 5); |
| MD4STEP(F2, c, d, a, b, in[10] + 0x5a827999, 9); |
| MD4STEP(F2, b, c, d, a, in[14] + 0x5a827999, 13); |
| MD4STEP(F2, a, b, c, d, in[ 3] + 0x5a827999, 3); |
| MD4STEP(F2, d, a, b, c, in[ 7] + 0x5a827999, 5); |
| MD4STEP(F2, c, d, a, b, in[11] + 0x5a827999, 9); |
| MD4STEP(F2, b, c, d, a, in[15] + 0x5a827999, 13); |
| |
| MD4STEP(F3, a, b, c, d, in[ 0] + 0x6ed9eba1, 3); |
| MD4STEP(F3, d, a, b, c, in[ 8] + 0x6ed9eba1, 9); |
| MD4STEP(F3, c, d, a, b, in[ 4] + 0x6ed9eba1, 11); |
| MD4STEP(F3, b, c, d, a, in[12] + 0x6ed9eba1, 15); |
| MD4STEP(F3, a, b, c, d, in[ 2] + 0x6ed9eba1, 3); |
| MD4STEP(F3, d, a, b, c, in[10] + 0x6ed9eba1, 9); |
| MD4STEP(F3, c, d, a, b, in[ 6] + 0x6ed9eba1, 11); |
| MD4STEP(F3, b, c, d, a, in[14] + 0x6ed9eba1, 15); |
| MD4STEP(F3, a, b, c, d, in[ 1] + 0x6ed9eba1, 3); |
| MD4STEP(F3, d, a, b, c, in[ 9] + 0x6ed9eba1, 9); |
| MD4STEP(F3, c, d, a, b, in[ 5] + 0x6ed9eba1, 11); |
| MD4STEP(F3, b, c, d, a, in[13] + 0x6ed9eba1, 15); |
| MD4STEP(F3, a, b, c, d, in[ 3] + 0x6ed9eba1, 3); |
| MD4STEP(F3, d, a, b, c, in[11] + 0x6ed9eba1, 9); |
| MD4STEP(F3, c, d, a, b, in[ 7] + 0x6ed9eba1, 11); |
| MD4STEP(F3, b, c, d, a, in[15] + 0x6ed9eba1, 15); |
| |
| state[0] += a; |
| state[1] += b; |
| state[2] += c; |
| state[3] += d; |
| } |
| /* ===== end - public domain MD4 implementation ===== */ |
| |
| #endif /* INTERNAL_MD4 */ |