| /* |
| * SHA1 hash implementation and interface functions |
| * Copyright (c) 2003-2005, Jouni Malinen <[email protected]> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * Alternatively, this software may be distributed under the terms of BSD |
| * license. |
| * |
| * See README and COPYING for more details. |
| */ |
| |
| #include "includes.h" |
| |
| #include "common.h" |
| #include "sha1.h" |
| #include "md5.h" |
| #include "crypto.h" |
| |
| |
| /** |
| * hmac_sha1_vector - HMAC-SHA1 over data vector (RFC 2104) |
| * @key: Key for HMAC operations |
| * @key_len: Length of the key in bytes |
| * @num_elem: Number of elements in the data vector |
| * @addr: Pointers to the data areas |
| * @len: Lengths of the data blocks |
| * @mac: Buffer for the hash (20 bytes) |
| */ |
| void hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem, |
| const u8 *addr[], const size_t *len, u8 *mac) |
| { |
| unsigned char k_pad[64]; /* padding - key XORd with ipad/opad */ |
| unsigned char tk[20]; |
| const u8 *_addr[6]; |
| size_t _len[6], i; |
| |
| if (num_elem > 5) { |
| /* |
| * Fixed limit on the number of fragments to avoid having to |
| * allocate memory (which could fail). |
| */ |
| return; |
| } |
| |
| /* if key is longer than 64 bytes reset it to key = SHA1(key) */ |
| if (key_len > 64) { |
| sha1_vector(1, &key, &key_len, tk); |
| key = tk; |
| key_len = 20; |
| } |
| |
| /* the HMAC_SHA1 transform looks like: |
| * |
| * SHA1(K XOR opad, SHA1(K XOR ipad, text)) |
| * |
| * where K is an n byte key |
| * ipad is the byte 0x36 repeated 64 times |
| * opad is the byte 0x5c repeated 64 times |
| * and text is the data being protected */ |
| |
| /* start out by storing key in ipad */ |
| os_memset(k_pad, 0, sizeof(k_pad)); |
| os_memcpy(k_pad, key, key_len); |
| /* XOR key with ipad values */ |
| for (i = 0; i < 64; i++) |
| k_pad[i] ^= 0x36; |
| |
| /* perform inner SHA1 */ |
| _addr[0] = k_pad; |
| _len[0] = 64; |
| for (i = 0; i < num_elem; i++) { |
| _addr[i + 1] = addr[i]; |
| _len[i + 1] = len[i]; |
| } |
| sha1_vector(1 + num_elem, _addr, _len, mac); |
| |
| os_memset(k_pad, 0, sizeof(k_pad)); |
| os_memcpy(k_pad, key, key_len); |
| /* XOR key with opad values */ |
| for (i = 0; i < 64; i++) |
| k_pad[i] ^= 0x5c; |
| |
| /* perform outer SHA1 */ |
| _addr[0] = k_pad; |
| _len[0] = 64; |
| _addr[1] = mac; |
| _len[1] = SHA1_MAC_LEN; |
| sha1_vector(2, _addr, _len, mac); |
| } |
| |
| |
| /** |
| * hmac_sha1 - HMAC-SHA1 over data buffer (RFC 2104) |
| * @key: Key for HMAC operations |
| * @key_len: Length of the key in bytes |
| * @data: Pointers to the data area |
| * @data_len: Length of the data area |
| * @mac: Buffer for the hash (20 bytes) |
| */ |
| void hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len, |
| u8 *mac) |
| { |
| hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac); |
| } |
| |
| |
| /** |
| * sha1_prf - SHA1-based Pseudo-Random Function (PRF) (IEEE 802.11i, 8.5.1.1) |
| * @key: Key for PRF |
| * @key_len: Length of the key in bytes |
| * @label: A unique label for each purpose of the PRF |
| * @data: Extra data to bind into the key |
| * @data_len: Length of the data |
| * @buf: Buffer for the generated pseudo-random key |
| * @buf_len: Number of bytes of key to generate |
| * |
| * This function is used to derive new, cryptographically separate keys from a |
| * given key (e.g., PMK in IEEE 802.11i). |
| */ |
| void sha1_prf(const u8 *key, size_t key_len, const char *label, |
| const u8 *data, size_t data_len, u8 *buf, size_t buf_len) |
| { |
| u8 zero = 0, counter = 0; |
| size_t pos, plen; |
| u8 hash[SHA1_MAC_LEN]; |
| size_t label_len = os_strlen(label); |
| const unsigned char *addr[4]; |
| size_t len[4]; |
| |
| addr[0] = (u8 *) label; |
| len[0] = label_len; |
| addr[1] = &zero; |
| len[1] = 1; |
| addr[2] = data; |
| len[2] = data_len; |
| addr[3] = &counter; |
| len[3] = 1; |
| |
| pos = 0; |
| while (pos < buf_len) { |
| plen = buf_len - pos; |
| if (plen >= SHA1_MAC_LEN) { |
| hmac_sha1_vector(key, key_len, 4, addr, len, |
| &buf[pos]); |
| pos += SHA1_MAC_LEN; |
| } else { |
| hmac_sha1_vector(key, key_len, 4, addr, len, |
| hash); |
| os_memcpy(&buf[pos], hash, plen); |
| break; |
| } |
| counter++; |
| } |
| } |
| |
| |
| /** |
| * sha1_t_prf - EAP-FAST Pseudo-Random Function (T-PRF) |
| * @key: Key for PRF |
| * @key_len: Length of the key in bytes |
| * @label: A unique label for each purpose of the PRF |
| * @seed: Seed value to bind into the key |
| * @seed_len: Length of the seed |
| * @buf: Buffer for the generated pseudo-random key |
| * @buf_len: Number of bytes of key to generate |
| * |
| * This function is used to derive new, cryptographically separate keys from a |
| * given key for EAP-FAST. T-PRF is defined in |
| * draft-cam-winget-eap-fast-02.txt, Appendix B. |
| */ |
| void sha1_t_prf(const u8 *key, size_t key_len, const char *label, |
| const u8 *seed, size_t seed_len, u8 *buf, size_t buf_len) |
| { |
| unsigned char counter = 0; |
| size_t pos, plen; |
| u8 hash[SHA1_MAC_LEN]; |
| size_t label_len = os_strlen(label); |
| u8 output_len[2]; |
| const unsigned char *addr[5]; |
| size_t len[5]; |
| |
| addr[0] = hash; |
| len[0] = 0; |
| addr[1] = (unsigned char *) label; |
| len[1] = label_len + 1; |
| addr[2] = seed; |
| len[2] = seed_len; |
| addr[3] = output_len; |
| len[3] = 2; |
| addr[4] = &counter; |
| len[4] = 1; |
| |
| output_len[0] = (buf_len >> 8) & 0xff; |
| output_len[1] = buf_len & 0xff; |
| pos = 0; |
| while (pos < buf_len) { |
| counter++; |
| plen = buf_len - pos; |
| hmac_sha1_vector(key, key_len, 5, addr, len, hash); |
| if (plen >= SHA1_MAC_LEN) { |
| os_memcpy(&buf[pos], hash, SHA1_MAC_LEN); |
| pos += SHA1_MAC_LEN; |
| } else { |
| os_memcpy(&buf[pos], hash, plen); |
| break; |
| } |
| len[0] = SHA1_MAC_LEN; |
| } |
| } |
| |
| |
| /** |
| * tls_prf - Pseudo-Random Function for TLS (TLS-PRF, RFC 2246) |
| * @secret: Key for PRF |
| * @secret_len: Length of the key in bytes |
| * @label: A unique label for each purpose of the PRF |
| * @seed: Seed value to bind into the key |
| * @seed_len: Length of the seed |
| * @out: Buffer for the generated pseudo-random key |
| * @outlen: Number of bytes of key to generate |
| * Returns: 0 on success, -1 on failure. |
| * |
| * This function is used to derive new, cryptographically separate keys from a |
| * given key in TLS. This PRF is defined in RFC 2246, Chapter 5. |
| */ |
| int tls_prf(const u8 *secret, size_t secret_len, const char *label, |
| const u8 *seed, size_t seed_len, u8 *out, size_t outlen) |
| { |
| size_t L_S1, L_S2, i; |
| const u8 *S1, *S2; |
| u8 A_MD5[MD5_MAC_LEN], A_SHA1[SHA1_MAC_LEN]; |
| u8 P_MD5[MD5_MAC_LEN], P_SHA1[SHA1_MAC_LEN]; |
| int MD5_pos, SHA1_pos; |
| const u8 *MD5_addr[3]; |
| size_t MD5_len[3]; |
| const unsigned char *SHA1_addr[3]; |
| size_t SHA1_len[3]; |
| |
| if (secret_len & 1) |
| return -1; |
| |
| MD5_addr[0] = A_MD5; |
| MD5_len[0] = MD5_MAC_LEN; |
| MD5_addr[1] = (unsigned char *) label; |
| MD5_len[1] = os_strlen(label); |
| MD5_addr[2] = seed; |
| MD5_len[2] = seed_len; |
| |
| SHA1_addr[0] = A_SHA1; |
| SHA1_len[0] = SHA1_MAC_LEN; |
| SHA1_addr[1] = (unsigned char *) label; |
| SHA1_len[1] = os_strlen(label); |
| SHA1_addr[2] = seed; |
| SHA1_len[2] = seed_len; |
| |
| /* RFC 2246, Chapter 5 |
| * A(0) = seed, A(i) = HMAC(secret, A(i-1)) |
| * P_hash = HMAC(secret, A(1) + seed) + HMAC(secret, A(2) + seed) + .. |
| * PRF = P_MD5(S1, label + seed) XOR P_SHA-1(S2, label + seed) |
| */ |
| |
| L_S1 = L_S2 = (secret_len + 1) / 2; |
| S1 = secret; |
| S2 = secret + L_S1; |
| if (secret_len & 1) { |
| /* The last byte of S1 will be shared with S2 */ |
| S2--; |
| } |
| |
| hmac_md5_vector(S1, L_S1, 2, &MD5_addr[1], &MD5_len[1], A_MD5); |
| hmac_sha1_vector(S2, L_S2, 2, &SHA1_addr[1], &SHA1_len[1], A_SHA1); |
| |
| MD5_pos = MD5_MAC_LEN; |
| SHA1_pos = SHA1_MAC_LEN; |
| for (i = 0; i < outlen; i++) { |
| if (MD5_pos == MD5_MAC_LEN) { |
| hmac_md5_vector(S1, L_S1, 3, MD5_addr, MD5_len, P_MD5); |
| MD5_pos = 0; |
| hmac_md5(S1, L_S1, A_MD5, MD5_MAC_LEN, A_MD5); |
| } |
| if (SHA1_pos == SHA1_MAC_LEN) { |
| hmac_sha1_vector(S2, L_S2, 3, SHA1_addr, SHA1_len, |
| P_SHA1); |
| SHA1_pos = 0; |
| hmac_sha1(S2, L_S2, A_SHA1, SHA1_MAC_LEN, A_SHA1); |
| } |
| |
| out[i] = P_MD5[MD5_pos] ^ P_SHA1[SHA1_pos]; |
| |
| MD5_pos++; |
| SHA1_pos++; |
| } |
| |
| return 0; |
| } |
| |
| |
| static void pbkdf2_sha1_f(const char *passphrase, const char *ssid, |
| size_t ssid_len, int iterations, unsigned int count, |
| u8 *digest) |
| { |
| unsigned char tmp[SHA1_MAC_LEN], tmp2[SHA1_MAC_LEN]; |
| int i, j; |
| unsigned char count_buf[4]; |
| const u8 *addr[2]; |
| size_t len[2]; |
| size_t passphrase_len = os_strlen(passphrase); |
| |
| addr[0] = (u8 *) ssid; |
| len[0] = ssid_len; |
| addr[1] = count_buf; |
| len[1] = 4; |
| |
| /* F(P, S, c, i) = U1 xor U2 xor ... Uc |
| * U1 = PRF(P, S || i) |
| * U2 = PRF(P, U1) |
| * Uc = PRF(P, Uc-1) |
| */ |
| |
| count_buf[0] = (count >> 24) & 0xff; |
| count_buf[1] = (count >> 16) & 0xff; |
| count_buf[2] = (count >> 8) & 0xff; |
| count_buf[3] = count & 0xff; |
| hmac_sha1_vector((u8 *) passphrase, passphrase_len, 2, addr, len, tmp); |
| os_memcpy(digest, tmp, SHA1_MAC_LEN); |
| |
| for (i = 1; i < iterations; i++) { |
| hmac_sha1((u8 *) passphrase, passphrase_len, tmp, SHA1_MAC_LEN, |
| tmp2); |
| os_memcpy(tmp, tmp2, SHA1_MAC_LEN); |
| for (j = 0; j < SHA1_MAC_LEN; j++) |
| digest[j] ^= tmp2[j]; |
| } |
| } |
| |
| |
| /** |
| * pbkdf2_sha1 - SHA1-based key derivation function (PBKDF2) for IEEE 802.11i |
| * @passphrase: ASCII passphrase |
| * @ssid: SSID |
| * @ssid_len: SSID length in bytes |
| * @interations: Number of iterations to run |
| * @buf: Buffer for the generated key |
| * @buflen: Length of the buffer in bytes |
| * |
| * This function is used to derive PSK for WPA-PSK. For this protocol, |
| * iterations is set to 4096 and buflen to 32. This function is described in |
| * IEEE Std 802.11-2004, Clause H.4. The main construction is from PKCS#5 v2.0. |
| */ |
| void pbkdf2_sha1(const char *passphrase, const char *ssid, size_t ssid_len, |
| int iterations, u8 *buf, size_t buflen) |
| { |
| unsigned int count = 0; |
| unsigned char *pos = buf; |
| size_t left = buflen, plen; |
| unsigned char digest[SHA1_MAC_LEN]; |
| |
| while (left > 0) { |
| count++; |
| pbkdf2_sha1_f(passphrase, ssid, ssid_len, iterations, count, |
| digest); |
| plen = left > SHA1_MAC_LEN ? SHA1_MAC_LEN : left; |
| os_memcpy(pos, digest, plen); |
| pos += plen; |
| left -= plen; |
| } |
| } |
| |
| |
| #ifdef INTERNAL_SHA1 |
| |
| struct SHA1Context { |
| u32 state[5]; |
| u32 count[2]; |
| unsigned char buffer[64]; |
| }; |
| |
| typedef struct SHA1Context SHA1_CTX; |
| |
| #ifndef CONFIG_CRYPTO_INTERNAL |
| static void SHA1Init(struct SHA1Context *context); |
| static void SHA1Update(struct SHA1Context *context, const void *data, u32 len); |
| static void SHA1Final(unsigned char digest[20], struct SHA1Context *context); |
| #endif /* CONFIG_CRYPTO_INTERNAL */ |
| static void SHA1Transform(u32 state[5], const unsigned char buffer[64]); |
| |
| |
| /** |
| * sha1_vector - SHA-1 hash for data vector |
| * @num_elem: Number of elements in the data vector |
| * @addr: Pointers to the data areas |
| * @len: Lengths of the data blocks |
| * @mac: Buffer for the hash |
| */ |
| void sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, |
| u8 *mac) |
| { |
| SHA1_CTX ctx; |
| size_t i; |
| |
| SHA1Init(&ctx); |
| for (i = 0; i < num_elem; i++) |
| SHA1Update(&ctx, addr[i], len[i]); |
| SHA1Final(mac, &ctx); |
| } |
| |
| |
| int fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x, size_t xlen) |
| { |
| u8 xkey[64]; |
| u32 t[5], _t[5]; |
| int i, j, m, k; |
| u8 *xpos = x; |
| u32 carry; |
| |
| if (seed_len > sizeof(xkey)) |
| seed_len = sizeof(xkey); |
| |
| /* FIPS 186-2 + change notice 1 */ |
| |
| os_memcpy(xkey, seed, seed_len); |
| os_memset(xkey + seed_len, 0, 64 - seed_len); |
| t[0] = 0x67452301; |
| t[1] = 0xEFCDAB89; |
| t[2] = 0x98BADCFE; |
| t[3] = 0x10325476; |
| t[4] = 0xC3D2E1F0; |
| |
| m = xlen / 40; |
| for (j = 0; j < m; j++) { |
| /* XSEED_j = 0 */ |
| for (i = 0; i < 2; i++) { |
| /* XVAL = (XKEY + XSEED_j) mod 2^b */ |
| |
| /* w_i = G(t, XVAL) */ |
| os_memcpy(_t, t, 20); |
| SHA1Transform(_t, xkey); |
| _t[0] = host_to_be32(_t[0]); |
| _t[1] = host_to_be32(_t[1]); |
| _t[2] = host_to_be32(_t[2]); |
| _t[3] = host_to_be32(_t[3]); |
| _t[4] = host_to_be32(_t[4]); |
| os_memcpy(xpos, _t, 20); |
| |
| /* XKEY = (1 + XKEY + w_i) mod 2^b */ |
| carry = 1; |
| for (k = 19; k >= 0; k--) { |
| carry += xkey[k] + xpos[k]; |
| xkey[k] = carry & 0xff; |
| carry >>= 8; |
| } |
| |
| xpos += SHA1_MAC_LEN; |
| } |
| /* x_j = w_0|w_1 */ |
| } |
| |
| return 0; |
| } |
| |
| |
| /* ===== start - public domain SHA1 implementation ===== */ |
| |
| /* |
| SHA-1 in C |
| By Steve Reid <[email protected]> |
| 100% Public Domain |
| |
| ----------------- |
| Modified 7/98 |
| By James H. Brown <[email protected]> |
| Still 100% Public Domain |
| |
| Corrected a problem which generated improper hash values on 16 bit machines |
| Routine SHA1Update changed from |
| void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned int |
| len) |
| to |
| void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned |
| long len) |
| |
| The 'len' parameter was declared an int which works fine on 32 bit machines. |
| However, on 16 bit machines an int is too small for the shifts being done |
| against |
| it. This caused the hash function to generate incorrect values if len was |
| greater than 8191 (8K - 1) due to the 'len << 3' on line 3 of SHA1Update(). |
| |
| Since the file IO in main() reads 16K at a time, any file 8K or larger would |
| be guaranteed to generate the wrong hash (e.g. Test Vector #3, a million |
| "a"s). |
| |
| I also changed the declaration of variables i & j in SHA1Update to |
| unsigned long from unsigned int for the same reason. |
| |
| These changes should make no difference to any 32 bit implementations since |
| an |
| int and a long are the same size in those environments. |
| |
| -- |
| I also corrected a few compiler warnings generated by Borland C. |
| 1. Added #include <process.h> for exit() prototype |
| 2. Removed unused variable 'j' in SHA1Final |
| 3. Changed exit(0) to return(0) at end of main. |
| |
| ALL changes I made can be located by searching for comments containing 'JHB' |
| ----------------- |
| Modified 8/98 |
| By Steve Reid <[email protected]> |
| Still 100% public domain |
| |
| 1- Removed #include <process.h> and used return() instead of exit() |
| 2- Fixed overwriting of finalcount in SHA1Final() (discovered by Chris Hall) |
| 3- Changed email address from [email protected] to [email protected] |
| |
| ----------------- |
| Modified 4/01 |
| By Saul Kravitz <[email protected]> |
| Still 100% PD |
| Modified to run on Compaq Alpha hardware. |
| |
| ----------------- |
| Modified 4/01 |
| By Jouni Malinen <[email protected]> |
| Minor changes to match the coding style used in Dynamics. |
| |
| Modified September 24, 2004 |
| By Jouni Malinen <[email protected]> |
| Fixed alignment issue in SHA1Transform when SHA1HANDSOFF is defined. |
| |
| */ |
| |
| /* |
| Test Vectors (from FIPS PUB 180-1) |
| "abc" |
| A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D |
| "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" |
| 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1 |
| A million repetitions of "a" |
| 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F |
| */ |
| |
| #define SHA1HANDSOFF |
| |
| #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) |
| |
| /* blk0() and blk() perform the initial expand. */ |
| /* I got the idea of expanding during the round function from SSLeay */ |
| #ifndef WORDS_BIGENDIAN |
| #define blk0(i) (block->l[i] = (rol(block->l[i], 24) & 0xFF00FF00) | \ |
| (rol(block->l[i], 8) & 0x00FF00FF)) |
| #else |
| #define blk0(i) block->l[i] |
| #endif |
| #define blk(i) (block->l[i & 15] = rol(block->l[(i + 13) & 15] ^ \ |
| block->l[(i + 8) & 15] ^ block->l[(i + 2) & 15] ^ block->l[i & 15], 1)) |
| |
| /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ |
| #define R0(v,w,x,y,z,i) \ |
| z += ((w & (x ^ y)) ^ y) + blk0(i) + 0x5A827999 + rol(v, 5); \ |
| w = rol(w, 30); |
| #define R1(v,w,x,y,z,i) \ |
| z += ((w & (x ^ y)) ^ y) + blk(i) + 0x5A827999 + rol(v, 5); \ |
| w = rol(w, 30); |
| #define R2(v,w,x,y,z,i) \ |
| z += (w ^ x ^ y) + blk(i) + 0x6ED9EBA1 + rol(v, 5); w = rol(w, 30); |
| #define R3(v,w,x,y,z,i) \ |
| z += (((w | x) & y) | (w & x)) + blk(i) + 0x8F1BBCDC + rol(v, 5); \ |
| w = rol(w, 30); |
| #define R4(v,w,x,y,z,i) \ |
| z += (w ^ x ^ y) + blk(i) + 0xCA62C1D6 + rol(v, 5); \ |
| w=rol(w, 30); |
| |
| |
| #ifdef VERBOSE /* SAK */ |
| void SHAPrintContext(SHA1_CTX *context, char *msg) |
| { |
| printf("%s (%d,%d) %x %x %x %x %x\n", |
| msg, |
| context->count[0], context->count[1], |
| context->state[0], |
| context->state[1], |
| context->state[2], |
| context->state[3], |
| context->state[4]); |
| } |
| #endif |
| |
| /* Hash a single 512-bit block. This is the core of the algorithm. */ |
| |
| static void SHA1Transform(u32 state[5], const unsigned char buffer[64]) |
| { |
| u32 a, b, c, d, e; |
| typedef union { |
| unsigned char c[64]; |
| u32 l[16]; |
| } CHAR64LONG16; |
| CHAR64LONG16* block; |
| #ifdef SHA1HANDSOFF |
| u32 workspace[16]; |
| block = (CHAR64LONG16 *) workspace; |
| os_memcpy(block, buffer, 64); |
| #else |
| block = (CHAR64LONG16 *) buffer; |
| #endif |
| /* Copy context->state[] to working vars */ |
| a = state[0]; |
| b = state[1]; |
| c = state[2]; |
| d = state[3]; |
| e = state[4]; |
| /* 4 rounds of 20 operations each. Loop unrolled. */ |
| R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); |
| R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); |
| R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); |
| R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); |
| R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); |
| R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); |
| R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); |
| R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); |
| R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); |
| R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); |
| R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); |
| R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); |
| R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); |
| R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); |
| R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); |
| R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); |
| R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); |
| R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); |
| R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); |
| R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); |
| /* Add the working vars back into context.state[] */ |
| state[0] += a; |
| state[1] += b; |
| state[2] += c; |
| state[3] += d; |
| state[4] += e; |
| /* Wipe variables */ |
| a = b = c = d = e = 0; |
| #ifdef SHA1HANDSOFF |
| os_memset(block, 0, 64); |
| #endif |
| } |
| |
| |
| /* SHA1Init - Initialize new context */ |
| |
| void SHA1Init(SHA1_CTX* context) |
| { |
| /* SHA1 initialization constants */ |
| context->state[0] = 0x67452301; |
| context->state[1] = 0xEFCDAB89; |
| context->state[2] = 0x98BADCFE; |
| context->state[3] = 0x10325476; |
| context->state[4] = 0xC3D2E1F0; |
| context->count[0] = context->count[1] = 0; |
| } |
| |
| |
| /* Run your data through this. */ |
| |
| void SHA1Update(SHA1_CTX* context, const void *_data, u32 len) |
| { |
| u32 i, j; |
| const unsigned char *data = _data; |
| |
| #ifdef VERBOSE |
| SHAPrintContext(context, "before"); |
| #endif |
| j = (context->count[0] >> 3) & 63; |
| if ((context->count[0] += len << 3) < (len << 3)) |
| context->count[1]++; |
| context->count[1] += (len >> 29); |
| if ((j + len) > 63) { |
| os_memcpy(&context->buffer[j], data, (i = 64-j)); |
| SHA1Transform(context->state, context->buffer); |
| for ( ; i + 63 < len; i += 64) { |
| SHA1Transform(context->state, &data[i]); |
| } |
| j = 0; |
| } |
| else i = 0; |
| os_memcpy(&context->buffer[j], &data[i], len - i); |
| #ifdef VERBOSE |
| SHAPrintContext(context, "after "); |
| #endif |
| } |
| |
| |
| /* Add padding and return the message digest. */ |
| |
| void SHA1Final(unsigned char digest[20], SHA1_CTX* context) |
| { |
| u32 i; |
| unsigned char finalcount[8]; |
| |
| for (i = 0; i < 8; i++) { |
| finalcount[i] = (unsigned char) |
| ((context->count[(i >= 4 ? 0 : 1)] >> |
| ((3-(i & 3)) * 8) ) & 255); /* Endian independent */ |
| } |
| SHA1Update(context, (unsigned char *) "\200", 1); |
| while ((context->count[0] & 504) != 448) { |
| SHA1Update(context, (unsigned char *) "\0", 1); |
| } |
| SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() |
| */ |
| for (i = 0; i < 20; i++) { |
| digest[i] = (unsigned char) |
| ((context->state[i >> 2] >> ((3 - (i & 3)) * 8)) & |
| 255); |
| } |
| /* Wipe variables */ |
| i = 0; |
| os_memset(context->buffer, 0, 64); |
| os_memset(context->state, 0, 20); |
| os_memset(context->count, 0, 8); |
| os_memset(finalcount, 0, 8); |
| } |
| |
| /* ===== end - public domain SHA1 implementation ===== */ |
| |
| #endif /* INTERNAL_SHA1 */ |