| /* |
| * SHA-256 hash implementation and interface functions |
| * Copyright (c) 2003-2006, Jouni Malinen <[email protected]> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * Alternatively, this software may be distributed under the terms of BSD |
| * license. |
| * |
| * See README and COPYING for more details. |
| */ |
| |
| #include "includes.h" |
| |
| #include "common.h" |
| #include "sha256.h" |
| #include "crypto.h" |
| |
| |
| /** |
| * hmac_sha256_vector - HMAC-SHA256 over data vector (RFC 2104) |
| * @key: Key for HMAC operations |
| * @key_len: Length of the key in bytes |
| * @num_elem: Number of elements in the data vector |
| * @addr: Pointers to the data areas |
| * @len: Lengths of the data blocks |
| * @mac: Buffer for the hash (32 bytes) |
| */ |
| void hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem, |
| const u8 *addr[], const size_t *len, u8 *mac) |
| { |
| unsigned char k_pad[64]; /* padding - key XORd with ipad/opad */ |
| unsigned char tk[32]; |
| const u8 *_addr[6]; |
| size_t _len[6], i; |
| |
| if (num_elem > 5) { |
| /* |
| * Fixed limit on the number of fragments to avoid having to |
| * allocate memory (which could fail). |
| */ |
| return; |
| } |
| |
| /* if key is longer than 64 bytes reset it to key = SHA256(key) */ |
| if (key_len > 64) { |
| sha256_vector(1, &key, &key_len, tk); |
| key = tk; |
| key_len = 32; |
| } |
| |
| /* the HMAC_SHA256 transform looks like: |
| * |
| * SHA256(K XOR opad, SHA256(K XOR ipad, text)) |
| * |
| * where K is an n byte key |
| * ipad is the byte 0x36 repeated 64 times |
| * opad is the byte 0x5c repeated 64 times |
| * and text is the data being protected */ |
| |
| /* start out by storing key in ipad */ |
| memset(k_pad, 0, sizeof(k_pad)); |
| memcpy(k_pad, key, key_len); |
| /* XOR key with ipad values */ |
| for (i = 0; i < 64; i++) |
| k_pad[i] ^= 0x36; |
| |
| /* perform inner SHA256 */ |
| _addr[0] = k_pad; |
| _len[0] = 64; |
| for (i = 0; i < num_elem; i++) { |
| _addr[i + 1] = addr[i]; |
| _len[i + 1] = len[i]; |
| } |
| sha256_vector(1 + num_elem, _addr, _len, mac); |
| |
| memset(k_pad, 0, sizeof(k_pad)); |
| memcpy(k_pad, key, key_len); |
| /* XOR key with opad values */ |
| for (i = 0; i < 64; i++) |
| k_pad[i] ^= 0x5c; |
| |
| /* perform outer SHA256 */ |
| _addr[0] = k_pad; |
| _len[0] = 64; |
| _addr[1] = mac; |
| _len[1] = SHA256_MAC_LEN; |
| sha256_vector(2, _addr, _len, mac); |
| } |
| |
| |
| /** |
| * hmac_sha256 - HMAC-SHA256 over data buffer (RFC 2104) |
| * @key: Key for HMAC operations |
| * @key_len: Length of the key in bytes |
| * @data: Pointers to the data area |
| * @data_len: Length of the data area |
| * @mac: Buffer for the hash (20 bytes) |
| */ |
| void hmac_sha256(const u8 *key, size_t key_len, const u8 *data, |
| size_t data_len, u8 *mac) |
| { |
| hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac); |
| } |
| |
| |
| /** |
| * sha256_prf - SHA256-based Pseudo-Random Function (IEEE 802.11r, 8.5A.3) |
| * @key: Key for PRF |
| * @key_len: Length of the key in bytes |
| * @label: A unique label for each purpose of the PRF |
| * @data: Extra data to bind into the key |
| * @data_len: Length of the data |
| * @buf: Buffer for the generated pseudo-random key |
| * @buf_len: Number of bytes of key to generate |
| * |
| * This function is used to derive new, cryptographically separate keys from a |
| * given key. |
| */ |
| void sha256_prf(const u8 *key, size_t key_len, const char *label, |
| const u8 *data, size_t data_len, u8 *buf, size_t buf_len) |
| { |
| u16 counter = 0; |
| size_t pos, plen; |
| u8 hash[SHA256_MAC_LEN]; |
| const u8 *addr[3]; |
| size_t len[3]; |
| u8 counter_le[2]; |
| |
| addr[0] = counter_le; |
| len[0] = 2; |
| addr[1] = (u8 *) label; |
| len[1] = strlen(label) + 1; |
| addr[2] = data; |
| len[2] = data_len; |
| |
| pos = 0; |
| while (pos < buf_len) { |
| plen = buf_len - pos; |
| WPA_PUT_LE16(counter_le, counter); |
| if (plen >= SHA256_MAC_LEN) { |
| hmac_sha256_vector(key, key_len, 3, addr, len, |
| &buf[pos]); |
| pos += SHA256_MAC_LEN; |
| } else { |
| hmac_sha256_vector(key, key_len, 3, addr, len, hash); |
| memcpy(&buf[pos], hash, plen); |
| break; |
| } |
| counter++; |
| } |
| } |
| |
| |
| #ifdef INTERNAL_SHA256 |
| |
| struct sha256_state { |
| u64 length; |
| u32 state[8], curlen; |
| u8 buf[64]; |
| }; |
| |
| static void sha256_init(struct sha256_state *md); |
| static int sha256_process(struct sha256_state *md, const unsigned char *in, |
| unsigned long inlen); |
| static int sha256_done(struct sha256_state *md, unsigned char *out); |
| |
| |
| /** |
| * sha256_vector - SHA256 hash for data vector |
| * @num_elem: Number of elements in the data vector |
| * @addr: Pointers to the data areas |
| * @len: Lengths of the data blocks |
| * @mac: Buffer for the hash |
| */ |
| void sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len, |
| u8 *mac) |
| { |
| struct sha256_state ctx; |
| size_t i; |
| |
| sha256_init(&ctx); |
| for (i = 0; i < num_elem; i++) |
| sha256_process(&ctx, addr[i], len[i]); |
| sha256_done(&ctx, mac); |
| } |
| |
| |
| /* ===== start - public domain SHA256 implementation ===== */ |
| |
| /* This is based on SHA256 implementation in LibTomCrypt that was released into |
| * public domain by Tom St Denis. */ |
| |
| /* the K array */ |
| static const unsigned long K[64] = { |
| 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, |
| 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, |
| 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, |
| 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, |
| 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, |
| 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, |
| 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, |
| 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, |
| 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, |
| 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, |
| 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, |
| 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, |
| 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL |
| }; |
| |
| |
| /* Various logical functions */ |
| #define RORc(x, y) \ |
| ( ((((unsigned long) (x) & 0xFFFFFFFFUL) >> (unsigned long) ((y) & 31)) | \ |
| ((unsigned long) (x) << (unsigned long) (32 - ((y) & 31)))) & 0xFFFFFFFFUL) |
| #define Ch(x,y,z) (z ^ (x & (y ^ z))) |
| #define Maj(x,y,z) (((x | y) & z) | (x & y)) |
| #define S(x, n) RORc((x), (n)) |
| #define R(x, n) (((x)&0xFFFFFFFFUL)>>(n)) |
| #define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22)) |
| #define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25)) |
| #define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3)) |
| #define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10)) |
| #ifndef MIN |
| #define MIN(x, y) (((x) < (y)) ? (x) : (y)) |
| #endif |
| |
| /* compress 512-bits */ |
| static int sha256_compress(struct sha256_state *md, unsigned char *buf) |
| { |
| u32 S[8], W[64], t0, t1; |
| u32 t; |
| int i; |
| |
| /* copy state into S */ |
| for (i = 0; i < 8; i++) { |
| S[i] = md->state[i]; |
| } |
| |
| /* copy the state into 512-bits into W[0..15] */ |
| for (i = 0; i < 16; i++) |
| W[i] = WPA_GET_BE32(buf + (4 * i)); |
| |
| /* fill W[16..63] */ |
| for (i = 16; i < 64; i++) { |
| W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + |
| W[i - 16]; |
| } |
| |
| /* Compress */ |
| #define RND(a,b,c,d,e,f,g,h,i) \ |
| t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \ |
| t1 = Sigma0(a) + Maj(a, b, c); \ |
| d += t0; \ |
| h = t0 + t1; |
| |
| for (i = 0; i < 64; ++i) { |
| RND(S[0], S[1], S[2], S[3], S[4], S[5], S[6], S[7], i); |
| t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4]; |
| S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t; |
| } |
| |
| /* feedback */ |
| for (i = 0; i < 8; i++) { |
| md->state[i] = md->state[i] + S[i]; |
| } |
| return 0; |
| } |
| |
| |
| /* Initialize the hash state */ |
| static void sha256_init(struct sha256_state *md) |
| { |
| md->curlen = 0; |
| md->length = 0; |
| md->state[0] = 0x6A09E667UL; |
| md->state[1] = 0xBB67AE85UL; |
| md->state[2] = 0x3C6EF372UL; |
| md->state[3] = 0xA54FF53AUL; |
| md->state[4] = 0x510E527FUL; |
| md->state[5] = 0x9B05688CUL; |
| md->state[6] = 0x1F83D9ABUL; |
| md->state[7] = 0x5BE0CD19UL; |
| } |
| |
| /** |
| Process a block of memory though the hash |
| @param md The hash state |
| @param in The data to hash |
| @param inlen The length of the data (octets) |
| @return CRYPT_OK if successful |
| */ |
| static int sha256_process(struct sha256_state *md, const unsigned char *in, |
| unsigned long inlen) |
| { |
| unsigned long n; |
| #define block_size 64 |
| |
| if (md->curlen > sizeof(md->buf)) |
| return -1; |
| |
| while (inlen > 0) { |
| if (md->curlen == 0 && inlen >= block_size) { |
| if (sha256_compress(md, (unsigned char *) in) < 0) |
| return -1; |
| md->length += block_size * 8; |
| in += block_size; |
| inlen -= block_size; |
| } else { |
| n = MIN(inlen, (block_size - md->curlen)); |
| memcpy(md->buf + md->curlen, in, n); |
| md->curlen += n; |
| in += n; |
| inlen -= n; |
| if (md->curlen == block_size) { |
| if (sha256_compress(md, md->buf) < 0) |
| return -1; |
| md->length += 8 * block_size; |
| md->curlen = 0; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| |
| /** |
| Terminate the hash to get the digest |
| @param md The hash state |
| @param out [out] The destination of the hash (32 bytes) |
| @return CRYPT_OK if successful |
| */ |
| static int sha256_done(struct sha256_state *md, unsigned char *out) |
| { |
| int i; |
| |
| if (md->curlen >= sizeof(md->buf)) |
| return -1; |
| |
| /* increase the length of the message */ |
| md->length += md->curlen * 8; |
| |
| /* append the '1' bit */ |
| md->buf[md->curlen++] = (unsigned char) 0x80; |
| |
| /* if the length is currently above 56 bytes we append zeros |
| * then compress. Then we can fall back to padding zeros and length |
| * encoding like normal. |
| */ |
| if (md->curlen > 56) { |
| while (md->curlen < 64) { |
| md->buf[md->curlen++] = (unsigned char) 0; |
| } |
| sha256_compress(md, md->buf); |
| md->curlen = 0; |
| } |
| |
| /* pad upto 56 bytes of zeroes */ |
| while (md->curlen < 56) { |
| md->buf[md->curlen++] = (unsigned char) 0; |
| } |
| |
| /* store length */ |
| WPA_PUT_BE64(md->buf + 56, md->length); |
| sha256_compress(md, md->buf); |
| |
| /* copy output */ |
| for (i = 0; i < 8; i++) |
| WPA_PUT_BE32(out + (4 * i), md->state[i]); |
| |
| return 0; |
| } |
| |
| /* ===== end - public domain SHA256 implementation ===== */ |
| |
| #endif /* INTERNAL_SHA256 */ |