blob: 7ef746a95acc89a1aa6ab2283e975272b62478f9 [file] [log] [blame]
/*
* WPA Supplicant - WPA state machine and EAPOL-Key processing
* Copyright (c) 2003-2006, Jouni Malinen <[email protected]>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Alternatively, this software may be distributed under the terms of BSD
* license.
*
* See README and COPYING for more details.
*/
#include "includes.h"
#include "common.h"
#include "md5.h"
#include "sha1.h"
#include "rc4.h"
#include "aes_wrap.h"
#include "wpa.h"
#include "eloop.h"
#include "config.h"
#include "l2_packet.h"
#include "eapol_sm.h"
#include "preauth.h"
#include "pmksa_cache.h"
#include "wpa_i.h"
static const int WPA_SELECTOR_LEN = 4;
static const u8 WPA_OUI_TYPE[] = { 0x00, 0x50, 0xf2, 1 };
static const u16 WPA_VERSION = 1;
static const u8 WPA_AUTH_KEY_MGMT_NONE[] = { 0x00, 0x50, 0xf2, 0 };
static const u8 WPA_AUTH_KEY_MGMT_UNSPEC_802_1X[] = { 0x00, 0x50, 0xf2, 1 };
static const u8 WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X[] = { 0x00, 0x50, 0xf2, 2 };
static const u8 WPA_CIPHER_SUITE_NONE[] = { 0x00, 0x50, 0xf2, 0 };
static const u8 WPA_CIPHER_SUITE_WEP40[] = { 0x00, 0x50, 0xf2, 1 };
static const u8 WPA_CIPHER_SUITE_TKIP[] = { 0x00, 0x50, 0xf2, 2 };
#if 0
static const u8 WPA_CIPHER_SUITE_WRAP[] = { 0x00, 0x50, 0xf2, 3 };
#endif
static const u8 WPA_CIPHER_SUITE_CCMP[] = { 0x00, 0x50, 0xf2, 4 };
static const u8 WPA_CIPHER_SUITE_WEP104[] = { 0x00, 0x50, 0xf2, 5 };
/* WPA IE version 1
* 00-50-f2:1 (OUI:OUI type)
* 0x01 0x00 (version; little endian)
* (all following fields are optional:)
* Group Suite Selector (4 octets) (default: TKIP)
* Pairwise Suite Count (2 octets, little endian) (default: 1)
* Pairwise Suite List (4 * n octets) (default: TKIP)
* Authenticated Key Management Suite Count (2 octets, little endian)
* (default: 1)
* Authenticated Key Management Suite List (4 * n octets)
* (default: unspec 802.1X)
* WPA Capabilities (2 octets, little endian) (default: 0)
*/
#ifdef _MSC_VER
#pragma pack(push, 1)
#endif /* _MSC_VER */
struct wpa_ie_hdr {
u8 elem_id;
u8 len;
u8 oui[4]; /* 24-bit OUI followed by 8-bit OUI type */
u8 version[2];
} STRUCT_PACKED;
#ifdef _MSC_VER
#pragma pack(pop)
#endif /* _MSC_VER */
static const int RSN_SELECTOR_LEN = 4;
static const u16 RSN_VERSION = 1;
static const u8 RSN_AUTH_KEY_MGMT_UNSPEC_802_1X[] = { 0x00, 0x0f, 0xac, 1 };
static const u8 RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X[] = { 0x00, 0x0f, 0xac, 2 };
static const u8 RSN_CIPHER_SUITE_NONE[] = { 0x00, 0x0f, 0xac, 0 };
static const u8 RSN_CIPHER_SUITE_WEP40[] = { 0x00, 0x0f, 0xac, 1 };
static const u8 RSN_CIPHER_SUITE_TKIP[] = { 0x00, 0x0f, 0xac, 2 };
#if 0
static const u8 RSN_CIPHER_SUITE_WRAP[] = { 0x00, 0x0f, 0xac, 3 };
#endif
static const u8 RSN_CIPHER_SUITE_CCMP[] = { 0x00, 0x0f, 0xac, 4 };
static const u8 RSN_CIPHER_SUITE_WEP104[] = { 0x00, 0x0f, 0xac, 5 };
#ifdef CONFIG_IEEE80211W
static const u8 RSN_CIPHER_SUITE_AES_128_CMAC[] = { 0x00, 0x0f, 0xac, 6 };
#endif /* CONFIG_IEEE80211W */
/* EAPOL-Key Key Data Encapsulation
* GroupKey and PeerKey require encryption, otherwise, encryption is optional.
*/
static const u8 RSN_KEY_DATA_GROUPKEY[] = { 0x00, 0x0f, 0xac, 1 };
#if 0
static const u8 RSN_KEY_DATA_STAKEY[] = { 0x00, 0x0f, 0xac, 2 };
#endif
static const u8 RSN_KEY_DATA_MAC_ADDR[] = { 0x00, 0x0f, 0xac, 3 };
static const u8 RSN_KEY_DATA_PMKID[] = { 0x00, 0x0f, 0xac, 4 };
#ifdef CONFIG_PEERKEY
static const u8 RSN_KEY_DATA_SMK[] = { 0x00, 0x0f, 0xac, 5 };
static const u8 RSN_KEY_DATA_NONCE[] = { 0x00, 0x0f, 0xac, 6 };
static const u8 RSN_KEY_DATA_LIFETIME[] = { 0x00, 0x0f, 0xac, 7 };
static const u8 RSN_KEY_DATA_ERROR[] = { 0x00, 0x0f, 0xac, 8 };
#endif /* CONFIG_PEERKEY */
#ifdef CONFIG_IEEE80211W
/* FIX: IEEE 802.11w/D1.0 is using subtypes 5 and 6 for these, but they were
* already taken by 802.11ma (PeerKey). Need to update the values here once
* IEEE 802.11w fixes these. */
static const u8 RSN_KEY_DATA_DHV[] = { 0x00, 0x0f, 0xac, 9 };
static const u8 RSN_KEY_DATA_IGTK[] = { 0x00, 0x0f, 0xac, 10 };
#endif /* CONFIG_IEEE80211W */
#ifdef CONFIG_PEERKEY
enum {
STK_MUI_4WAY_STA_AP = 1,
STK_MUI_4WAY_STAT_STA = 2,
STK_MUI_GTK = 3,
STK_MUI_SMK = 4
};
enum {
STK_ERR_STA_NR = 1,
STK_ERR_STA_NRSN = 2,
STK_ERR_CPHR_NS = 3,
STK_ERR_NO_STSL = 4
};
#endif /* CONFIG_PEERKEY */
/* 1/4: PMKID
* 2/4: RSN IE
* 3/4: one or two RSN IEs + GTK IE (encrypted)
* 4/4: empty
* 1/2: GTK IE (encrypted)
* 2/2: empty
*/
/* RSN IE version 1
* 0x01 0x00 (version; little endian)
* (all following fields are optional:)
* Group Suite Selector (4 octets) (default: CCMP)
* Pairwise Suite Count (2 octets, little endian) (default: 1)
* Pairwise Suite List (4 * n octets) (default: CCMP)
* Authenticated Key Management Suite Count (2 octets, little endian)
* (default: 1)
* Authenticated Key Management Suite List (4 * n octets)
* (default: unspec 802.1X)
* RSN Capabilities (2 octets, little endian) (default: 0)
* PMKID Count (2 octets) (default: 0)
* PMKID List (16 * n octets)
* Management Group Cipher Suite (4 octets) (default: AES-128-CMAC)
*/
#ifdef _MSC_VER
#pragma pack(push, 1)
#endif /* _MSC_VER */
struct rsn_ie_hdr {
u8 elem_id; /* WLAN_EID_RSN */
u8 len;
u8 version[2];
} STRUCT_PACKED;
struct wpa_eapol_key {
u8 type;
/* Note: key_info, key_length, and key_data_length are unaligned */
u8 key_info[2];
u8 key_length[2];
u8 replay_counter[WPA_REPLAY_COUNTER_LEN];
u8 key_nonce[WPA_NONCE_LEN];
u8 key_iv[16];
u8 key_rsc[8];
u8 key_id[8]; /* Reserved in IEEE 802.11i/RSN */
u8 key_mic[16];
u8 key_data_length[2];
/* followed by key_data_length bytes of key_data */
} STRUCT_PACKED;
struct rsn_error_kde {
u16 mui;
u16 error_type;
} STRUCT_PACKED;
#ifdef CONFIG_IEEE80211W
struct wpa_dhv_kde {
u8 dhv[WPA_DHV_LEN];
} STRUCT_PACKED;
struct wpa_igtk_kde {
u8 keyid[2];
u8 pn[6];
u8 igtk[WPA_IGTK_LEN];
} STRUCT_PACKED;
#endif /* CONFIG_IEEE80211W */
#ifdef _MSC_VER
#pragma pack(pop)
#endif /* _MSC_VER */
#define WPA_KEY_INFO_TYPE_MASK ((u16) (BIT(0) | BIT(1) | BIT(2)))
#define WPA_KEY_INFO_TYPE_HMAC_MD5_RC4 BIT(0)
#define WPA_KEY_INFO_TYPE_HMAC_SHA1_AES BIT(1)
#define WPA_KEY_INFO_KEY_TYPE BIT(3) /* 1 = Pairwise, 0 = Group key */
/* bit4..5 is used in WPA, but is reserved in IEEE 802.11i/RSN */
#define WPA_KEY_INFO_KEY_INDEX_MASK (BIT(4) | BIT(5))
#define WPA_KEY_INFO_KEY_INDEX_SHIFT 4
#define WPA_KEY_INFO_INSTALL BIT(6) /* pairwise */
#define WPA_KEY_INFO_TXRX BIT(6) /* group */
#define WPA_KEY_INFO_ACK BIT(7)
#define WPA_KEY_INFO_MIC BIT(8)
#define WPA_KEY_INFO_SECURE BIT(9)
#define WPA_KEY_INFO_ERROR BIT(10)
#define WPA_KEY_INFO_REQUEST BIT(11)
#define WPA_KEY_INFO_ENCR_KEY_DATA BIT(12) /* IEEE 802.11i/RSN only */
#define WPA_KEY_INFO_SMK_MESSAGE BIT(13)
#ifdef CONFIG_PEERKEY
static void wpa_supplicant_peerkey_free(struct wpa_sm *sm,
struct wpa_peerkey *peerkey);
#endif /* CONFIG_PEERKEY */
/**
* wpa_cipher_txt - Convert cipher suite to a text string
* @cipher: Cipher suite (WPA_CIPHER_* enum)
* Returns: Pointer to a text string of the cipher suite name
*/
static const char * wpa_cipher_txt(int cipher)
{
switch (cipher) {
case WPA_CIPHER_NONE:
return "NONE";
case WPA_CIPHER_WEP40:
return "WEP-40";
case WPA_CIPHER_WEP104:
return "WEP-104";
case WPA_CIPHER_TKIP:
return "TKIP";
case WPA_CIPHER_CCMP:
return "CCMP";
default:
return "UNKNOWN";
}
}
/**
* wpa_key_mgmt_txt - Convert key management suite to a text string
* @key_mgmt: Key management suite (WPA_KEY_MGMT_* enum)
* @proto: WPA/WPA2 version (WPA_PROTO_*)
* Returns: Pointer to a text string of the key management suite name
*/
static const char * wpa_key_mgmt_txt(int key_mgmt, int proto)
{
switch (key_mgmt) {
case WPA_KEY_MGMT_IEEE8021X:
return proto == WPA_PROTO_RSN ?
"WPA2/IEEE 802.1X/EAP" : "WPA/IEEE 802.1X/EAP";
case WPA_KEY_MGMT_PSK:
return proto == WPA_PROTO_RSN ?
"WPA2-PSK" : "WPA-PSK";
case WPA_KEY_MGMT_NONE:
return "NONE";
case WPA_KEY_MGMT_IEEE8021X_NO_WPA:
return "IEEE 802.1X (no WPA)";
default:
return "UNKNOWN";
}
}
static int wpa_selector_to_bitfield(const u8 *s)
{
if (os_memcmp(s, WPA_CIPHER_SUITE_NONE, WPA_SELECTOR_LEN) == 0)
return WPA_CIPHER_NONE;
if (os_memcmp(s, WPA_CIPHER_SUITE_WEP40, WPA_SELECTOR_LEN) == 0)
return WPA_CIPHER_WEP40;
if (os_memcmp(s, WPA_CIPHER_SUITE_TKIP, WPA_SELECTOR_LEN) == 0)
return WPA_CIPHER_TKIP;
if (os_memcmp(s, WPA_CIPHER_SUITE_CCMP, WPA_SELECTOR_LEN) == 0)
return WPA_CIPHER_CCMP;
if (os_memcmp(s, WPA_CIPHER_SUITE_WEP104, WPA_SELECTOR_LEN) == 0)
return WPA_CIPHER_WEP104;
return 0;
}
static int wpa_key_mgmt_to_bitfield(const u8 *s)
{
if (os_memcmp(s, WPA_AUTH_KEY_MGMT_UNSPEC_802_1X, WPA_SELECTOR_LEN) ==
0)
return WPA_KEY_MGMT_IEEE8021X;
if (os_memcmp(s, WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X, WPA_SELECTOR_LEN)
== 0)
return WPA_KEY_MGMT_PSK;
if (os_memcmp(s, WPA_AUTH_KEY_MGMT_NONE, WPA_SELECTOR_LEN) == 0)
return WPA_KEY_MGMT_WPA_NONE;
return 0;
}
#ifndef CONFIG_NO_WPA2
static int rsn_selector_to_bitfield(const u8 *s)
{
if (os_memcmp(s, RSN_CIPHER_SUITE_NONE, RSN_SELECTOR_LEN) == 0)
return WPA_CIPHER_NONE;
if (os_memcmp(s, RSN_CIPHER_SUITE_WEP40, RSN_SELECTOR_LEN) == 0)
return WPA_CIPHER_WEP40;
if (os_memcmp(s, RSN_CIPHER_SUITE_TKIP, RSN_SELECTOR_LEN) == 0)
return WPA_CIPHER_TKIP;
if (os_memcmp(s, RSN_CIPHER_SUITE_CCMP, RSN_SELECTOR_LEN) == 0)
return WPA_CIPHER_CCMP;
if (os_memcmp(s, RSN_CIPHER_SUITE_WEP104, RSN_SELECTOR_LEN) == 0)
return WPA_CIPHER_WEP104;
#ifdef CONFIG_IEEE80211W
if (os_memcmp(s, RSN_CIPHER_SUITE_AES_128_CMAC, RSN_SELECTOR_LEN) == 0)
return WPA_CIPHER_AES_128_CMAC;
#endif /* CONFIG_IEEE80211W */
return 0;
}
static int rsn_key_mgmt_to_bitfield(const u8 *s)
{
if (os_memcmp(s, RSN_AUTH_KEY_MGMT_UNSPEC_802_1X, RSN_SELECTOR_LEN) ==
0)
return WPA_KEY_MGMT_IEEE8021X;
if (os_memcmp(s, RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X, RSN_SELECTOR_LEN)
== 0)
return WPA_KEY_MGMT_PSK;
return 0;
}
#endif /* CONFIG_NO_WPA2 */
#ifdef CONFIG_PEERKEY
static u8 * wpa_add_ie(u8 *pos, const u8 *ie, size_t ie_len)
{
os_memcpy(pos, ie, ie_len);
return pos + ie_len;
}
static u8 * wpa_add_kde(u8 *pos, const u8 *kde, const u8 *data,
size_t data_len)
{
*pos++ = GENERIC_INFO_ELEM;
*pos++ = RSN_SELECTOR_LEN + data_len;
os_memcpy(pos, kde, RSN_SELECTOR_LEN);
pos += RSN_SELECTOR_LEN;
os_memcpy(pos, data, data_len);
pos += data_len;
return pos;
}
#endif /* CONFIG_PEERKEY */
static int wpa_parse_wpa_ie_wpa(const u8 *wpa_ie, size_t wpa_ie_len,
struct wpa_ie_data *data)
{
const struct wpa_ie_hdr *hdr;
const u8 *pos;
int left;
int i, count;
data->proto = WPA_PROTO_WPA;
data->pairwise_cipher = WPA_CIPHER_TKIP;
data->group_cipher = WPA_CIPHER_TKIP;
data->key_mgmt = WPA_KEY_MGMT_IEEE8021X;
data->capabilities = 0;
data->pmkid = NULL;
data->num_pmkid = 0;
data->mgmt_group_cipher = 0;
if (wpa_ie_len == 0) {
/* No WPA IE - fail silently */
return -1;
}
if (wpa_ie_len < sizeof(struct wpa_ie_hdr)) {
wpa_printf(MSG_DEBUG, "%s: ie len too short %lu",
__func__, (unsigned long) wpa_ie_len);
return -1;
}
hdr = (const struct wpa_ie_hdr *) wpa_ie;
if (hdr->elem_id != GENERIC_INFO_ELEM ||
hdr->len != wpa_ie_len - 2 ||
os_memcmp(hdr->oui, WPA_OUI_TYPE, WPA_SELECTOR_LEN) != 0 ||
WPA_GET_LE16(hdr->version) != WPA_VERSION) {
wpa_printf(MSG_DEBUG, "%s: malformed ie or unknown version",
__func__);
return -1;
}
pos = (const u8 *) (hdr + 1);
left = wpa_ie_len - sizeof(*hdr);
if (left >= WPA_SELECTOR_LEN) {
data->group_cipher = wpa_selector_to_bitfield(pos);
pos += WPA_SELECTOR_LEN;
left -= WPA_SELECTOR_LEN;
} else if (left > 0) {
wpa_printf(MSG_DEBUG, "%s: ie length mismatch, %u too much",
__func__, left);
return -1;
}
if (left >= 2) {
data->pairwise_cipher = 0;
count = WPA_GET_LE16(pos);
pos += 2;
left -= 2;
if (count == 0 || left < count * WPA_SELECTOR_LEN) {
wpa_printf(MSG_DEBUG, "%s: ie count botch (pairwise), "
"count %u left %u", __func__, count, left);
return -1;
}
for (i = 0; i < count; i++) {
data->pairwise_cipher |= wpa_selector_to_bitfield(pos);
pos += WPA_SELECTOR_LEN;
left -= WPA_SELECTOR_LEN;
}
} else if (left == 1) {
wpa_printf(MSG_DEBUG, "%s: ie too short (for key mgmt)",
__func__);
return -1;
}
if (left >= 2) {
data->key_mgmt = 0;
count = WPA_GET_LE16(pos);
pos += 2;
left -= 2;
if (count == 0 || left < count * WPA_SELECTOR_LEN) {
wpa_printf(MSG_DEBUG, "%s: ie count botch (key mgmt), "
"count %u left %u", __func__, count, left);
return -1;
}
for (i = 0; i < count; i++) {
data->key_mgmt |= wpa_key_mgmt_to_bitfield(pos);
pos += WPA_SELECTOR_LEN;
left -= WPA_SELECTOR_LEN;
}
} else if (left == 1) {
wpa_printf(MSG_DEBUG, "%s: ie too short (for capabilities)",
__func__);
return -1;
}
if (left >= 2) {
data->capabilities = WPA_GET_LE16(pos);
pos += 2;
left -= 2;
}
if (left > 0) {
wpa_printf(MSG_DEBUG, "%s: ie has %u trailing bytes - ignored",
__func__, left);
}
return 0;
}
static int wpa_parse_wpa_ie_rsn(const u8 *rsn_ie, size_t rsn_ie_len,
struct wpa_ie_data *data)
{
#ifndef CONFIG_NO_WPA2
const struct rsn_ie_hdr *hdr;
const u8 *pos;
int left;
int i, count;
data->proto = WPA_PROTO_RSN;
data->pairwise_cipher = WPA_CIPHER_CCMP;
data->group_cipher = WPA_CIPHER_CCMP;
data->key_mgmt = WPA_KEY_MGMT_IEEE8021X;
data->capabilities = 0;
data->pmkid = NULL;
data->num_pmkid = 0;
#ifdef CONFIG_IEEE80211W
data->mgmt_group_cipher = WPA_CIPHER_AES_128_CMAC;
#else /* CONFIG_IEEE80211W */
data->mgmt_group_cipher = 0;
#endif /* CONFIG_IEEE80211W */
if (rsn_ie_len == 0) {
/* No RSN IE - fail silently */
return -1;
}
if (rsn_ie_len < sizeof(struct rsn_ie_hdr)) {
wpa_printf(MSG_DEBUG, "%s: ie len too short %lu",
__func__, (unsigned long) rsn_ie_len);
return -1;
}
hdr = (const struct rsn_ie_hdr *) rsn_ie;
if (hdr->elem_id != RSN_INFO_ELEM ||
hdr->len != rsn_ie_len - 2 ||
WPA_GET_LE16(hdr->version) != RSN_VERSION) {
wpa_printf(MSG_DEBUG, "%s: malformed ie or unknown version",
__func__);
return -1;
}
pos = (const u8 *) (hdr + 1);
left = rsn_ie_len - sizeof(*hdr);
if (left >= RSN_SELECTOR_LEN) {
data->group_cipher = rsn_selector_to_bitfield(pos);
#ifdef CONFIG_IEEE80211W
if (data->group_cipher == WPA_CIPHER_AES_128_CMAC) {
wpa_printf(MSG_DEBUG, "%s: AES-128-CMAC used as group "
"cipher", __func__);
return -1;
}
#endif /* CONFIG_IEEE80211W */
pos += RSN_SELECTOR_LEN;
left -= RSN_SELECTOR_LEN;
} else if (left > 0) {
wpa_printf(MSG_DEBUG, "%s: ie length mismatch, %u too much",
__func__, left);
return -1;
}
if (left >= 2) {
data->pairwise_cipher = 0;
count = WPA_GET_LE16(pos);
pos += 2;
left -= 2;
if (count == 0 || left < count * RSN_SELECTOR_LEN) {
wpa_printf(MSG_DEBUG, "%s: ie count botch (pairwise), "
"count %u left %u", __func__, count, left);
return -1;
}
for (i = 0; i < count; i++) {
data->pairwise_cipher |= rsn_selector_to_bitfield(pos);
pos += RSN_SELECTOR_LEN;
left -= RSN_SELECTOR_LEN;
}
#ifdef CONFIG_IEEE80211W
if (data->pairwise_cipher & WPA_CIPHER_AES_128_CMAC) {
wpa_printf(MSG_DEBUG, "%s: AES-128-CMAC used as "
"pairwise cipher", __func__);
return -1;
}
#endif /* CONFIG_IEEE80211W */
} else if (left == 1) {
wpa_printf(MSG_DEBUG, "%s: ie too short (for key mgmt)",
__func__);
return -1;
}
if (left >= 2) {
data->key_mgmt = 0;
count = WPA_GET_LE16(pos);
pos += 2;
left -= 2;
if (count == 0 || left < count * RSN_SELECTOR_LEN) {
wpa_printf(MSG_DEBUG, "%s: ie count botch (key mgmt), "
"count %u left %u", __func__, count, left);
return -1;
}
for (i = 0; i < count; i++) {
data->key_mgmt |= rsn_key_mgmt_to_bitfield(pos);
pos += RSN_SELECTOR_LEN;
left -= RSN_SELECTOR_LEN;
}
} else if (left == 1) {
wpa_printf(MSG_DEBUG, "%s: ie too short (for capabilities)",
__func__);
return -1;
}
if (left >= 2) {
data->capabilities = WPA_GET_LE16(pos);
pos += 2;
left -= 2;
}
if (left >= 2) {
data->num_pmkid = WPA_GET_LE16(pos);
pos += 2;
left -= 2;
if (left < data->num_pmkid * PMKID_LEN) {
wpa_printf(MSG_DEBUG, "%s: PMKID underflow "
"(num_pmkid=%d left=%d)",
__func__, data->num_pmkid, left);
data->num_pmkid = 0;
} else {
data->pmkid = pos;
pos += data->num_pmkid * PMKID_LEN;
left -= data->num_pmkid * PMKID_LEN;
}
}
#ifdef CONFIG_IEEE80211W
if (left >= 4) {
data->mgmt_group_cipher = rsn_selector_to_bitfield(pos);
if (data->mgmt_group_cipher != WPA_CIPHER_AES_128_CMAC) {
wpa_printf(MSG_DEBUG, "%s: Unsupported management "
"group cipher 0x%x", __func__,
data->mgmt_group_cipher);
return -1;
}
pos += RSN_SELECTOR_LEN;
left -= RSN_SELECTOR_LEN;
}
#endif /* CONFIG_IEEE80211W */
if (left > 0) {
wpa_printf(MSG_DEBUG, "%s: ie has %u trailing bytes - ignored",
__func__, left);
}
return 0;
#else /* CONFIG_NO_WPA2 */
return -1;
#endif /* CONFIG_NO_WPA2 */
}
/**
* wpa_parse_wpa_ie - Parse WPA/RSN IE
* @wpa_ie: Pointer to WPA or RSN IE
* @wpa_ie_len: Length of the WPA/RSN IE
* @data: Pointer to data area for parsing results
* Returns: 0 on success, -1 on failure
*
* Parse the contents of WPA or RSN IE and write the parsed data into data.
*/
int wpa_parse_wpa_ie(const u8 *wpa_ie, size_t wpa_ie_len,
struct wpa_ie_data *data)
{
if (wpa_ie_len >= 1 && wpa_ie[0] == RSN_INFO_ELEM)
return wpa_parse_wpa_ie_rsn(wpa_ie, wpa_ie_len, data);
else
return wpa_parse_wpa_ie_wpa(wpa_ie, wpa_ie_len, data);
}
static int wpa_gen_wpa_ie_wpa(u8 *wpa_ie, size_t wpa_ie_len,
int pairwise_cipher, int group_cipher,
int key_mgmt)
{
u8 *pos;
struct wpa_ie_hdr *hdr;
if (wpa_ie_len < sizeof(*hdr) + WPA_SELECTOR_LEN +
2 + WPA_SELECTOR_LEN + 2 + WPA_SELECTOR_LEN)
return -1;
hdr = (struct wpa_ie_hdr *) wpa_ie;
hdr->elem_id = GENERIC_INFO_ELEM;
os_memcpy(hdr->oui, WPA_OUI_TYPE, WPA_SELECTOR_LEN);
WPA_PUT_LE16(hdr->version, WPA_VERSION);
pos = (u8 *) (hdr + 1);
if (group_cipher == WPA_CIPHER_CCMP) {
os_memcpy(pos, WPA_CIPHER_SUITE_CCMP, WPA_SELECTOR_LEN);
} else if (group_cipher == WPA_CIPHER_TKIP) {
os_memcpy(pos, WPA_CIPHER_SUITE_TKIP, WPA_SELECTOR_LEN);
} else if (group_cipher == WPA_CIPHER_WEP104) {
os_memcpy(pos, WPA_CIPHER_SUITE_WEP104, WPA_SELECTOR_LEN);
} else if (group_cipher == WPA_CIPHER_WEP40) {
os_memcpy(pos, WPA_CIPHER_SUITE_WEP40, WPA_SELECTOR_LEN);
} else {
wpa_printf(MSG_WARNING, "Invalid group cipher (%d).",
group_cipher);
return -1;
}
pos += WPA_SELECTOR_LEN;
*pos++ = 1;
*pos++ = 0;
if (pairwise_cipher == WPA_CIPHER_CCMP) {
os_memcpy(pos, WPA_CIPHER_SUITE_CCMP, WPA_SELECTOR_LEN);
} else if (pairwise_cipher == WPA_CIPHER_TKIP) {
os_memcpy(pos, WPA_CIPHER_SUITE_TKIP, WPA_SELECTOR_LEN);
} else if (pairwise_cipher == WPA_CIPHER_NONE) {
os_memcpy(pos, WPA_CIPHER_SUITE_NONE, WPA_SELECTOR_LEN);
} else {
wpa_printf(MSG_WARNING, "Invalid pairwise cipher (%d).",
pairwise_cipher);
return -1;
}
pos += WPA_SELECTOR_LEN;
*pos++ = 1;
*pos++ = 0;
if (key_mgmt == WPA_KEY_MGMT_IEEE8021X) {
os_memcpy(pos, WPA_AUTH_KEY_MGMT_UNSPEC_802_1X,
WPA_SELECTOR_LEN);
} else if (key_mgmt == WPA_KEY_MGMT_PSK) {
os_memcpy(pos, WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X,
WPA_SELECTOR_LEN);
} else if (key_mgmt == WPA_KEY_MGMT_WPA_NONE) {
os_memcpy(pos, WPA_AUTH_KEY_MGMT_NONE, WPA_SELECTOR_LEN);
} else {
wpa_printf(MSG_WARNING, "Invalid key management type (%d).",
key_mgmt);
return -1;
}
pos += WPA_SELECTOR_LEN;
/* WPA Capabilities; use defaults, so no need to include it */
hdr->len = (pos - wpa_ie) - 2;
WPA_ASSERT((size_t) (pos - wpa_ie) <= wpa_ie_len);
return pos - wpa_ie;
}
static int wpa_gen_wpa_ie_rsn(u8 *rsn_ie, size_t rsn_ie_len,
int pairwise_cipher, int group_cipher,
int key_mgmt, int mgmt_group_cipher,
struct wpa_sm *sm)
{
#ifndef CONFIG_NO_WPA2
u8 *pos;
struct rsn_ie_hdr *hdr;
u16 capab;
if (rsn_ie_len < sizeof(*hdr) + RSN_SELECTOR_LEN +
2 + RSN_SELECTOR_LEN + 2 + RSN_SELECTOR_LEN + 2 +
(sm->cur_pmksa ? 2 + PMKID_LEN : 0))
return -1;
hdr = (struct rsn_ie_hdr *) rsn_ie;
hdr->elem_id = RSN_INFO_ELEM;
WPA_PUT_LE16(hdr->version, RSN_VERSION);
pos = (u8 *) (hdr + 1);
if (group_cipher == WPA_CIPHER_CCMP) {
os_memcpy(pos, RSN_CIPHER_SUITE_CCMP, RSN_SELECTOR_LEN);
} else if (group_cipher == WPA_CIPHER_TKIP) {
os_memcpy(pos, RSN_CIPHER_SUITE_TKIP, RSN_SELECTOR_LEN);
} else if (group_cipher == WPA_CIPHER_WEP104) {
os_memcpy(pos, RSN_CIPHER_SUITE_WEP104, RSN_SELECTOR_LEN);
} else if (group_cipher == WPA_CIPHER_WEP40) {
os_memcpy(pos, RSN_CIPHER_SUITE_WEP40, RSN_SELECTOR_LEN);
} else {
wpa_printf(MSG_WARNING, "Invalid group cipher (%d).",
group_cipher);
return -1;
}
pos += RSN_SELECTOR_LEN;
*pos++ = 1;
*pos++ = 0;
if (pairwise_cipher == WPA_CIPHER_CCMP) {
os_memcpy(pos, RSN_CIPHER_SUITE_CCMP, RSN_SELECTOR_LEN);
} else if (pairwise_cipher == WPA_CIPHER_TKIP) {
os_memcpy(pos, RSN_CIPHER_SUITE_TKIP, RSN_SELECTOR_LEN);
} else if (pairwise_cipher == WPA_CIPHER_NONE) {
os_memcpy(pos, RSN_CIPHER_SUITE_NONE, RSN_SELECTOR_LEN);
} else {
wpa_printf(MSG_WARNING, "Invalid pairwise cipher (%d).",
pairwise_cipher);
return -1;
}
pos += RSN_SELECTOR_LEN;
*pos++ = 1;
*pos++ = 0;
if (key_mgmt == WPA_KEY_MGMT_IEEE8021X) {
os_memcpy(pos, RSN_AUTH_KEY_MGMT_UNSPEC_802_1X,
RSN_SELECTOR_LEN);
} else if (key_mgmt == WPA_KEY_MGMT_PSK) {
os_memcpy(pos, RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X,
RSN_SELECTOR_LEN);
} else {
wpa_printf(MSG_WARNING, "Invalid key management type (%d).",
key_mgmt);
return -1;
}
pos += RSN_SELECTOR_LEN;
/* RSN Capabilities */
capab = 0;
#ifdef CONFIG_IEEE80211W
if (mgmt_group_cipher == WPA_CIPHER_AES_128_CMAC)
capab |= WPA_CAPABILITY_MGMT_FRAME_PROTECTION;
#endif /* CONFIG_IEEE80211W */
WPA_PUT_LE16(pos, capab);
pos += 2;
if (sm->cur_pmksa) {
/* PMKID Count (2 octets, little endian) */
*pos++ = 1;
*pos++ = 0;
/* PMKID */
os_memcpy(pos, sm->cur_pmksa->pmkid, PMKID_LEN);
pos += PMKID_LEN;
}
#ifdef CONFIG_IEEE80211W
if (mgmt_group_cipher == WPA_CIPHER_AES_128_CMAC) {
if (!sm->cur_pmksa) {
/* PMKID Count */
WPA_PUT_LE16(pos, 0);
pos += 2;
/* Management Group Cipher Suite */
memcpy(pos, RSN_CIPHER_SUITE_AES_128_CMAC,
RSN_SELECTOR_LEN);
pos += RSN_SELECTOR_LEN;
}
}
#endif /* CONFIG_IEEE80211W */
hdr->len = (pos - rsn_ie) - 2;
WPA_ASSERT((size_t) (pos - rsn_ie) <= rsn_ie_len);
return pos - rsn_ie;
#else /* CONFIG_NO_WPA2 */
return -1;
#endif /* CONFIG_NO_WPA2 */
}
/**
* wpa_gen_wpa_ie - Generate WPA/RSN IE based on current security policy
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @wpa_ie: Pointer to memory area for the generated WPA/RSN IE
* @wpa_ie_len: Maximum length of the generated WPA/RSN IE
* Returns: Length of the generated WPA/RSN IE or -1 on failure
*/
static int wpa_gen_wpa_ie(struct wpa_sm *sm, u8 *wpa_ie, size_t wpa_ie_len)
{
if (sm->proto == WPA_PROTO_RSN)
return wpa_gen_wpa_ie_rsn(wpa_ie, wpa_ie_len,
sm->pairwise_cipher,
sm->group_cipher,
sm->key_mgmt, sm->mgmt_group_cipher,
sm);
else
return wpa_gen_wpa_ie_wpa(wpa_ie, wpa_ie_len,
sm->pairwise_cipher,
sm->group_cipher,
sm->key_mgmt);
}
/**
* wpa_pmk_to_ptk - Calculate PTK from PMK, addresses, and nonces
* @pmk: Pairwise master key
* @pmk_len: Length of PMK
* @label: Label to use in derivation
* @addr1: AA or SA
* @addr2: SA or AA
* @nonce1: ANonce or SNonce
* @nonce2: SNonce or ANonce
* @ptk: Buffer for pairwise transient key
* @ptk_len: Length of PTK
*
* IEEE Std 802.11i-2004 - 8.5.1.2 Pairwise key hierarchy
* PTK = PRF-X(PMK, "Pairwise key expansion",
* Min(AA, SA) || Max(AA, SA) ||
* Min(ANonce, SNonce) || Max(ANonce, SNonce))
*
* STK = PRF-X(SMK, "Peer key expansion",
* Min(MAC_I, MAC_P) || Max(MAC_I, MAC_P) ||
* Min(INonce, PNonce) || Max(INonce, PNonce))
*/
static void wpa_pmk_to_ptk(const u8 *pmk, size_t pmk_len,
const char *label,
const u8 *addr1, const u8 *addr2,
const u8 *nonce1, const u8 *nonce2,
u8 *ptk, size_t ptk_len)
{
u8 data[2 * ETH_ALEN + 2 * 32];
if (os_memcmp(addr1, addr2, ETH_ALEN) < 0) {
os_memcpy(data, addr1, ETH_ALEN);
os_memcpy(data + ETH_ALEN, addr2, ETH_ALEN);
} else {
os_memcpy(data, addr2, ETH_ALEN);
os_memcpy(data + ETH_ALEN, addr1, ETH_ALEN);
}
if (os_memcmp(nonce1, nonce2, 32) < 0) {
os_memcpy(data + 2 * ETH_ALEN, nonce1, 32);
os_memcpy(data + 2 * ETH_ALEN + 32, nonce2, 32);
} else {
os_memcpy(data + 2 * ETH_ALEN, nonce2, 32);
os_memcpy(data + 2 * ETH_ALEN + 32, nonce1, 32);
}
sha1_prf(pmk, pmk_len, label, data, sizeof(data), ptk, ptk_len);
wpa_hexdump_key(MSG_DEBUG, "WPA: PMK", pmk, pmk_len);
wpa_hexdump_key(MSG_DEBUG, "WPA: PTK", ptk, ptk_len);
}
/**
* wpa_eapol_key_mic - Calculate EAPOL-Key MIC
* @key: EAPOL-Key Key Confirmation Key (KCK)
* @ver: Key descriptor version (WPA_KEY_INFO_TYPE_*)
* @buf: Pointer to the beginning of the EAPOL header (version field)
* @len: Length of the EAPOL frame (from EAPOL header to the end of the frame)
* @mic: Pointer to the buffer to which the EAPOL-Key MIC is written
*
* Calculate EAPOL-Key MIC for an EAPOL-Key packet. The EAPOL-Key MIC field has
* to be cleared (all zeroes) when calling this function.
*
* Note: 'IEEE Std 802.11i-2004 - 8.5.2 EAPOL-Key frames' has an error in the
* description of the Key MIC calculation. It includes packet data from the
* beginning of the EAPOL-Key header, not EAPOL header. This incorrect change
* happened during final editing of the standard and the correct behavior is
* defined in the last draft (IEEE 802.11i/D10).
*/
static void wpa_eapol_key_mic(const u8 *key, int ver,
const u8 *buf, size_t len, u8 *mic)
{
if (ver == WPA_KEY_INFO_TYPE_HMAC_MD5_RC4) {
hmac_md5(key, 16, buf, len, mic);
} else if (ver == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) {
u8 hash[SHA1_MAC_LEN];
hmac_sha1(key, 16, buf, len, hash);
os_memcpy(mic, hash, MD5_MAC_LEN);
}
}
static void wpa_eapol_key_send(struct wpa_sm *sm, const u8 *kck,
int ver, const u8 *dest, u16 proto,
u8 *msg, size_t msg_len, u8 *key_mic)
{
if (os_memcmp(dest, "\x00\x00\x00\x00\x00\x00", ETH_ALEN) == 0 &&
os_memcmp(sm->bssid, "\x00\x00\x00\x00\x00\x00", ETH_ALEN) == 0) {
/*
* Association event was not yet received; try to fetch
* BSSID from the driver.
*/
if (wpa_sm_get_bssid(sm, sm->bssid) < 0) {
wpa_printf(MSG_DEBUG, "WPA: Failed to read BSSID for "
"EAPOL-Key destination address");
} else {
dest = sm->bssid;
wpa_printf(MSG_DEBUG, "WPA: Use BSSID (" MACSTR
") as the destination for EAPOL-Key",
MAC2STR(dest));
}
}
if (key_mic) {
wpa_eapol_key_mic(kck, ver, msg, msg_len, key_mic);
}
wpa_hexdump(MSG_MSGDUMP, "WPA: TX EAPOL-Key", msg, msg_len);
wpa_sm_ether_send(sm, dest, proto, msg, msg_len);
eapol_sm_notify_tx_eapol_key(sm->eapol);
os_free(msg);
}
/**
* wpa_sm_key_request - Send EAPOL-Key Request
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @error: Indicate whether this is an Michael MIC error report
* @pairwise: 1 = error report for pairwise packet, 0 = for group packet
* Returns: Pointer to the current network structure or %NULL on failure
*
* Send an EAPOL-Key Request to the current authenticator. This function is
* used to request rekeying and it is usually called when a local Michael MIC
* failure is detected.
*/
void wpa_sm_key_request(struct wpa_sm *sm, int error, int pairwise)
{
size_t rlen;
struct wpa_eapol_key *reply;
int key_info, ver;
u8 bssid[ETH_ALEN], *rbuf;
if (sm->pairwise_cipher == WPA_CIPHER_CCMP)
ver = WPA_KEY_INFO_TYPE_HMAC_SHA1_AES;
else
ver = WPA_KEY_INFO_TYPE_HMAC_MD5_RC4;
if (wpa_sm_get_bssid(sm, bssid) < 0) {
wpa_printf(MSG_WARNING, "Failed to read BSSID for EAPOL-Key "
"request");
return;
}
rbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY, NULL,
sizeof(*reply), &rlen, (void *) &reply);
if (rbuf == NULL)
return;
reply->type = sm->proto == WPA_PROTO_RSN ?
EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA;
key_info = WPA_KEY_INFO_REQUEST | ver;
if (sm->ptk_set)
key_info |= WPA_KEY_INFO_MIC;
if (error)
key_info |= WPA_KEY_INFO_ERROR;
if (pairwise)
key_info |= WPA_KEY_INFO_KEY_TYPE;
WPA_PUT_BE16(reply->key_info, key_info);
WPA_PUT_BE16(reply->key_length, 0);
os_memcpy(reply->replay_counter, sm->request_counter,
WPA_REPLAY_COUNTER_LEN);
inc_byte_array(sm->request_counter, WPA_REPLAY_COUNTER_LEN);
WPA_PUT_BE16(reply->key_data_length, 0);
wpa_printf(MSG_INFO, "WPA: Sending EAPOL-Key Request (error=%d "
"pairwise=%d ptk_set=%d len=%lu)",
error, pairwise, sm->ptk_set, (unsigned long) rlen);
wpa_eapol_key_send(sm, sm->ptk.kck, ver, bssid, ETH_P_EAPOL,
rbuf, rlen, key_info & WPA_KEY_INFO_MIC ?
reply->key_mic : NULL);
}
/**
* wpa_sm_stkstart - Send EAPOL-Key Request for STK handshake (STK M1)
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @peer: MAC address of the peer STA
* Returns: 0 on success, or -1 on failure
*
* Send an EAPOL-Key Request to the current authenticator to start STK
* handshake with the peer.
*/
int wpa_sm_stkstart(struct wpa_sm *sm, const u8 *peer)
{
#ifdef CONFIG_PEERKEY
size_t rlen, kde_len;
struct wpa_eapol_key *req;
int key_info, ver;
u8 bssid[ETH_ALEN], *rbuf, *pos, *count_pos;
u16 count;
struct wpa_ssid *ssid = sm->cur_ssid;
struct rsn_ie_hdr *hdr;
struct wpa_peerkey *peerkey;
struct wpa_ie_data ie;
if (sm->proto != WPA_PROTO_RSN || !sm->ptk_set ||
ssid == NULL || !ssid->peerkey)
return -1;
if (sm->ap_rsn_ie &&
wpa_parse_wpa_ie_rsn(sm->ap_rsn_ie, sm->ap_rsn_ie_len, &ie) == 0 &&
!(ie.capabilities & WPA_CAPABILITY_PEERKEY_ENABLED)) {
wpa_printf(MSG_DEBUG, "RSN: Current AP does not support STK");
return -1;
}
if (sm->pairwise_cipher == WPA_CIPHER_CCMP)
ver = WPA_KEY_INFO_TYPE_HMAC_SHA1_AES;
else
ver = WPA_KEY_INFO_TYPE_HMAC_MD5_RC4;
if (wpa_sm_get_bssid(sm, bssid) < 0) {
wpa_printf(MSG_WARNING, "Failed to read BSSID for EAPOL-Key "
"SMK M1");
return -1;
}
/* TODO: find existing entry and if found, use that instead of adding
* a new one */
peerkey = os_malloc(sizeof(*peerkey));
if (peerkey == NULL)
return -1;
os_memset(peerkey, 0, sizeof(*peerkey));
peerkey->initiator = 1;
os_memcpy(peerkey->addr, peer, ETH_ALEN);
/* SMK M1:
* EAPOL-Key(S=1, M=1, A=0, I=0, K=0, SM=1, KeyRSC=0, Nonce=INonce,
* MIC=MIC, DataKDs=(RSNIE_I, MAC_P KDE))
*/
hdr = (struct rsn_ie_hdr *) peerkey->rsnie_i;
hdr->elem_id = RSN_INFO_ELEM;
WPA_PUT_LE16(hdr->version, RSN_VERSION);
pos = (u8 *) (hdr + 1);
/* Group Suite can be anything for SMK RSN IE; receiver will just
* ignore it. */
os_memcpy(pos, RSN_CIPHER_SUITE_CCMP, RSN_SELECTOR_LEN);
pos += RSN_SELECTOR_LEN;
count_pos = pos;
pos += 2;
count = 0;
if (ssid->pairwise_cipher & WPA_CIPHER_CCMP) {
os_memcpy(pos, RSN_CIPHER_SUITE_CCMP, RSN_SELECTOR_LEN);
pos += RSN_SELECTOR_LEN;
count++;
}
if (ssid->pairwise_cipher & WPA_CIPHER_TKIP) {
os_memcpy(pos, RSN_CIPHER_SUITE_TKIP, RSN_SELECTOR_LEN);
pos += RSN_SELECTOR_LEN;
count++;
}
WPA_PUT_LE16(count_pos, count);
hdr->len = (pos - peerkey->rsnie_i) - 2;
peerkey->rsnie_i_len = pos - peerkey->rsnie_i;
wpa_hexdump(MSG_DEBUG, "WPA: RSN IE for SMK handshake",
peerkey->rsnie_i, peerkey->rsnie_i_len);
kde_len = peerkey->rsnie_i_len + 2 + RSN_SELECTOR_LEN + ETH_ALEN;
rbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY, NULL,
sizeof(*req) + kde_len, &rlen,
(void *) &req);
if (rbuf == NULL) {
wpa_supplicant_peerkey_free(sm, peerkey);
return -1;
}
req->type = EAPOL_KEY_TYPE_RSN;
key_info = WPA_KEY_INFO_SMK_MESSAGE | WPA_KEY_INFO_MIC |
WPA_KEY_INFO_SECURE | WPA_KEY_INFO_REQUEST | ver;
WPA_PUT_BE16(req->key_info, key_info);
WPA_PUT_BE16(req->key_length, 0);
os_memcpy(req->replay_counter, sm->request_counter,
WPA_REPLAY_COUNTER_LEN);
inc_byte_array(sm->request_counter, WPA_REPLAY_COUNTER_LEN);
if (hostapd_get_rand(peerkey->inonce, WPA_NONCE_LEN)) {
wpa_msg(sm->ctx->ctx, MSG_WARNING,
"WPA: Failed to get random data for INonce");
os_free(rbuf);
wpa_supplicant_peerkey_free(sm, peerkey);
return -1;
}
os_memcpy(req->key_nonce, peerkey->inonce, WPA_NONCE_LEN);
wpa_hexdump(MSG_DEBUG, "WPA: INonce for SMK handshake",
req->key_nonce, WPA_NONCE_LEN);
WPA_PUT_BE16(req->key_data_length, (u16) kde_len);
pos = (u8 *) (req + 1);
/* Initiator RSN IE */
pos = wpa_add_ie(pos, peerkey->rsnie_i, peerkey->rsnie_i_len);
/* Peer MAC address KDE */
pos = wpa_add_kde(pos, RSN_KEY_DATA_MAC_ADDR, peer, ETH_ALEN);
wpa_printf(MSG_INFO, "RSN: Sending EAPOL-Key SMK M1 Request (peer "
MACSTR ")", MAC2STR(peer));
wpa_eapol_key_send(sm, sm->ptk.kck, ver, bssid, ETH_P_EAPOL,
rbuf, rlen, req->key_mic);
peerkey->next = sm->peerkey;
sm->peerkey = peerkey;
return 0;
#else /* CONFIG_PEERKEY */
return -1;
#endif /* CONFIG_PEERKEY */
}
struct wpa_eapol_ie_parse {
const u8 *wpa_ie;
size_t wpa_ie_len;
const u8 *rsn_ie;
size_t rsn_ie_len;
const u8 *pmkid;
const u8 *gtk;
size_t gtk_len;
const u8 *mac_addr;
size_t mac_addr_len;
#ifdef CONFIG_PEERKEY
const u8 *smk;
size_t smk_len;
const u8 *nonce;
size_t nonce_len;
const u8 *lifetime;
size_t lifetime_len;
const u8 *error;
size_t error_len;
#endif /* CONFIG_PEERKEY */
#ifdef CONFIG_IEEE80211W
const u8 *dhv;
size_t dhv_len;
const u8 *igtk;
size_t igtk_len;
#endif /* CONFIG_IEEE80211W */
};
/**
* wpa_supplicant_parse_generic - Parse EAPOL-Key Key Data Generic IEs
* @pos: Pointer to the IE header
* @end: Pointer to the end of the Key Data buffer
* @ie: Pointer to parsed IE data
* Returns: 0 on success, 1 if end mark is found, -1 on failure
*/
static int wpa_supplicant_parse_generic(const u8 *pos, const u8 *end,
struct wpa_eapol_ie_parse *ie)
{
if (pos[1] == 0)
return 1;
if (pos[1] >= 6 &&
os_memcmp(pos + 2, WPA_OUI_TYPE, WPA_SELECTOR_LEN) == 0 &&
pos[2 + WPA_SELECTOR_LEN] == 1 &&
pos[2 + WPA_SELECTOR_LEN + 1] == 0) {
ie->wpa_ie = pos;
ie->wpa_ie_len = pos[1] + 2;
return 0;
}
if (pos + 1 + RSN_SELECTOR_LEN < end &&
pos[1] >= RSN_SELECTOR_LEN + PMKID_LEN &&
os_memcmp(pos + 2, RSN_KEY_DATA_PMKID, RSN_SELECTOR_LEN) == 0) {
ie->pmkid = pos + 2 + RSN_SELECTOR_LEN;
return 0;
}
if (pos[1] > RSN_SELECTOR_LEN + 2 &&
os_memcmp(pos + 2, RSN_KEY_DATA_GROUPKEY, RSN_SELECTOR_LEN) == 0) {
ie->gtk = pos + 2 + RSN_SELECTOR_LEN;
ie->gtk_len = pos[1] - RSN_SELECTOR_LEN;
return 0;
}
if (pos[1] > RSN_SELECTOR_LEN + 2 &&
os_memcmp(pos + 2, RSN_KEY_DATA_MAC_ADDR, RSN_SELECTOR_LEN) == 0) {
ie->mac_addr = pos + 2 + RSN_SELECTOR_LEN;
ie->mac_addr_len = pos[1] - RSN_SELECTOR_LEN;
return 0;
}
#ifdef CONFIG_PEERKEY
if (pos[1] > RSN_SELECTOR_LEN + 2 &&
os_memcmp(pos + 2, RSN_KEY_DATA_SMK, RSN_SELECTOR_LEN) == 0) {
ie->smk = pos + 2 + RSN_SELECTOR_LEN;
ie->smk_len = pos[1] - RSN_SELECTOR_LEN;
return 0;
}
if (pos[1] > RSN_SELECTOR_LEN + 2 &&
os_memcmp(pos + 2, RSN_KEY_DATA_NONCE, RSN_SELECTOR_LEN) == 0) {
ie->nonce = pos + 2 + RSN_SELECTOR_LEN;
ie->nonce_len = pos[1] - RSN_SELECTOR_LEN;
return 0;
}
if (pos[1] > RSN_SELECTOR_LEN + 2 &&
os_memcmp(pos + 2, RSN_KEY_DATA_LIFETIME, RSN_SELECTOR_LEN) == 0) {
ie->lifetime = pos + 2 + RSN_SELECTOR_LEN;
ie->lifetime_len = pos[1] - RSN_SELECTOR_LEN;
return 0;
}
if (pos[1] > RSN_SELECTOR_LEN + 2 &&
os_memcmp(pos + 2, RSN_KEY_DATA_ERROR, RSN_SELECTOR_LEN) == 0) {
ie->error = pos + 2 + RSN_SELECTOR_LEN;
ie->error_len = pos[1] - RSN_SELECTOR_LEN;
return 0;
}
#endif /* CONFIG_PEERKEY */
#ifdef CONFIG_IEEE80211W
if (pos[1] > RSN_SELECTOR_LEN + 2 &&
os_memcmp(pos + 2, RSN_KEY_DATA_DHV, RSN_SELECTOR_LEN) == 0) {
ie->dhv = pos + 2 + RSN_SELECTOR_LEN;
ie->dhv_len = pos[1] - RSN_SELECTOR_LEN;
return 0;
}
if (pos[1] > RSN_SELECTOR_LEN + 2 &&
os_memcmp(pos + 2, RSN_KEY_DATA_IGTK, RSN_SELECTOR_LEN) == 0) {
ie->igtk = pos + 2 + RSN_SELECTOR_LEN;
ie->igtk_len = pos[1] - RSN_SELECTOR_LEN;
return 0;
}
#endif /* CONFIG_IEEE80211W */
return 0;
}
/**
* wpa_supplicant_parse_ies - Parse EAPOL-Key Key Data IEs
* @buf: Pointer to the Key Data buffer
* @len: Key Data Length
* @ie: Pointer to parsed IE data
* Returns: 0 on success, -1 on failure
*/
static int wpa_supplicant_parse_ies(const u8 *buf, size_t len,
struct wpa_eapol_ie_parse *ie)
{
const u8 *pos, *end;
int ret = 0;
os_memset(ie, 0, sizeof(*ie));
for (pos = buf, end = pos + len; pos + 1 < end; pos += 2 + pos[1]) {
if (pos[0] == 0xdd &&
((pos == buf + len - 1) || pos[1] == 0)) {
/* Ignore padding */
break;
}
if (pos + 2 + pos[1] > end) {
wpa_printf(MSG_DEBUG, "WPA: EAPOL-Key Key Data "
"underflow (ie=%d len=%d pos=%d)",
pos[0], pos[1], (int) (pos - buf));
wpa_hexdump_key(MSG_DEBUG, "WPA: Key Data",
buf, len);
ret = -1;
break;
}
if (*pos == RSN_INFO_ELEM) {
ie->rsn_ie = pos;
ie->rsn_ie_len = pos[1] + 2;
} else if (*pos == GENERIC_INFO_ELEM) {
ret = wpa_supplicant_parse_generic(pos, end, ie);
if (ret < 0)
break;
if (ret > 0) {
ret = 0;
break;
}
} else {
wpa_hexdump(MSG_DEBUG, "WPA: Unrecognized EAPOL-Key "
"Key Data IE", pos, 2 + pos[1]);
}
}
return ret;
}
static int wpa_supplicant_get_pmk(struct wpa_sm *sm,
const unsigned char *src_addr,
const u8 *pmkid)
{
int abort_cached = 0;
if (pmkid && !sm->cur_pmksa) {
/* When using drivers that generate RSN IE, wpa_supplicant may
* not have enough time to get the association information
* event before receiving this 1/4 message, so try to find a
* matching PMKSA cache entry here. */
sm->cur_pmksa = pmksa_cache_get(sm->pmksa, src_addr, pmkid);
if (sm->cur_pmksa) {
wpa_printf(MSG_DEBUG, "RSN: found matching PMKID from "
"PMKSA cache");
} else {
wpa_printf(MSG_DEBUG, "RSN: no matching PMKID found");
abort_cached = 1;
}
}
if (pmkid && sm->cur_pmksa &&
os_memcmp(pmkid, sm->cur_pmksa->pmkid, PMKID_LEN) == 0) {
wpa_hexdump(MSG_DEBUG, "RSN: matched PMKID", pmkid, PMKID_LEN);
wpa_sm_set_pmk_from_pmksa(sm);
wpa_hexdump_key(MSG_DEBUG, "RSN: PMK from PMKSA cache",
sm->pmk, sm->pmk_len);
eapol_sm_notify_cached(sm->eapol);
} else if (sm->key_mgmt == WPA_KEY_MGMT_IEEE8021X && sm->eapol) {
int res, pmk_len;
pmk_len = PMK_LEN;
res = eapol_sm_get_key(sm->eapol, sm->pmk, PMK_LEN);
if (res) {
/*
* EAP-LEAP is an exception from other EAP methods: it
* uses only 16-byte PMK.
*/
res = eapol_sm_get_key(sm->eapol, sm->pmk, 16);
pmk_len = 16;
}
if (res == 0) {
wpa_hexdump_key(MSG_DEBUG, "WPA: PMK from EAPOL state "
"machines", sm->pmk, pmk_len);
sm->pmk_len = pmk_len;
pmksa_cache_add(sm->pmksa, sm->pmk, pmk_len, src_addr,
sm->own_addr, sm->cur_ssid);
if (!sm->cur_pmksa && pmkid &&
pmksa_cache_get(sm->pmksa, src_addr, pmkid)) {
wpa_printf(MSG_DEBUG, "RSN: the new PMK "
"matches with the PMKID");
abort_cached = 0;
}
} else {
wpa_msg(sm->ctx->ctx, MSG_WARNING,
"WPA: Failed to get master session key from "
"EAPOL state machines");
wpa_msg(sm->ctx->ctx, MSG_WARNING,
"WPA: Key handshake aborted");
if (sm->cur_pmksa) {
wpa_printf(MSG_DEBUG, "RSN: Cancelled PMKSA "
"caching attempt");
sm->cur_pmksa = NULL;
abort_cached = 1;
} else if (!abort_cached) {
return -1;
}
}
}
if (abort_cached && sm->key_mgmt == WPA_KEY_MGMT_IEEE8021X) {
/* Send EAPOL-Start to trigger full EAP authentication. */
u8 *buf;
size_t buflen;
wpa_printf(MSG_DEBUG, "RSN: no PMKSA entry found - trigger "
"full EAP authentication");
buf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_START,
NULL, 0, &buflen, NULL);
if (buf) {
wpa_sm_ether_send(sm, sm->bssid, ETH_P_EAPOL,
buf, buflen);
os_free(buf);
}
return -1;
}
return 0;
}
static int wpa_supplicant_send_2_of_4(struct wpa_sm *sm,
const unsigned char *dst,
const struct wpa_eapol_key *key,
int ver, const u8 *nonce,
const u8 *wpa_ie, size_t wpa_ie_len,
struct wpa_ptk *ptk)
{
size_t rlen;
struct wpa_eapol_key *reply;
u8 *rbuf;
if (wpa_ie == NULL) {
wpa_printf(MSG_WARNING, "WPA: No wpa_ie set - cannot "
"generate msg 2/4");
return -1;
}
wpa_hexdump(MSG_DEBUG, "WPA: WPA IE for msg 2/4", wpa_ie, wpa_ie_len);
rbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY,
NULL, sizeof(*reply) + wpa_ie_len,
&rlen, (void *) &reply);
if (rbuf == NULL)
return -1;
reply->type = sm->proto == WPA_PROTO_RSN ?
EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA;
WPA_PUT_BE16(reply->key_info,
ver | WPA_KEY_INFO_KEY_TYPE | WPA_KEY_INFO_MIC);
if (sm->proto == WPA_PROTO_RSN)
WPA_PUT_BE16(reply->key_length, 0);
else
os_memcpy(reply->key_length, key->key_length, 2);
os_memcpy(reply->replay_counter, key->replay_counter,
WPA_REPLAY_COUNTER_LEN);
WPA_PUT_BE16(reply->key_data_length, wpa_ie_len);
os_memcpy(reply + 1, wpa_ie, wpa_ie_len);
os_memcpy(reply->key_nonce, nonce, WPA_NONCE_LEN);
wpa_printf(MSG_DEBUG, "WPA: Sending EAPOL-Key 2/4");
wpa_eapol_key_send(sm, ptk->kck, ver, dst, ETH_P_EAPOL,
rbuf, rlen, reply->key_mic);
return 0;
}
static void wpa_supplicant_process_1_of_4(struct wpa_sm *sm,
const unsigned char *src_addr,
const struct wpa_eapol_key *key,
u16 ver)
{
struct wpa_eapol_ie_parse ie;
struct wpa_ptk *ptk;
u8 buf[8];
if (wpa_sm_get_ssid(sm) == NULL) {
wpa_printf(MSG_WARNING, "WPA: No SSID info found (msg 1 of "
"4).");
return;
}
wpa_sm_set_state(sm, WPA_4WAY_HANDSHAKE);
wpa_printf(MSG_DEBUG, "WPA: RX message 1 of 4-Way Handshake from "
MACSTR " (ver=%d)", MAC2STR(src_addr), ver);
os_memset(&ie, 0, sizeof(ie));
#ifndef CONFIG_NO_WPA2
if (sm->proto == WPA_PROTO_RSN) {
/* RSN: msg 1/4 should contain PMKID for the selected PMK */
const u8 *_buf = (const u8 *) (key + 1);
size_t len = WPA_GET_BE16(key->key_data_length);
wpa_hexdump(MSG_DEBUG, "RSN: msg 1/4 key data", _buf, len);
wpa_supplicant_parse_ies(_buf, len, &ie);
if (ie.pmkid) {
wpa_hexdump(MSG_DEBUG, "RSN: PMKID from "
"Authenticator", ie.pmkid, PMKID_LEN);
}
}
#endif /* CONFIG_NO_WPA2 */
if (wpa_supplicant_get_pmk(sm, src_addr, ie.pmkid))
return;
if (sm->renew_snonce) {
if (hostapd_get_rand(sm->snonce, WPA_NONCE_LEN)) {
wpa_msg(sm->ctx->ctx, MSG_WARNING,
"WPA: Failed to get random data for SNonce");
return;
}
sm->renew_snonce = 0;
wpa_hexdump(MSG_DEBUG, "WPA: Renewed SNonce",
sm->snonce, WPA_NONCE_LEN);
}
/* Calculate PTK which will be stored as a temporary PTK until it has
* been verified when processing message 3/4. */
ptk = &sm->tptk;
wpa_pmk_to_ptk(sm->pmk, sm->pmk_len, "Pairwise key expansion",
sm->own_addr, sm->bssid, sm->snonce, key->key_nonce,
(u8 *) ptk, sizeof(*ptk));
/* Supplicant: swap tx/rx Mic keys */
os_memcpy(buf, ptk->u.auth.tx_mic_key, 8);
os_memcpy(ptk->u.auth.tx_mic_key, ptk->u.auth.rx_mic_key, 8);
os_memcpy(ptk->u.auth.rx_mic_key, buf, 8);
sm->tptk_set = 1;
if (wpa_supplicant_send_2_of_4(sm, sm->bssid, key, ver, sm->snonce,
sm->assoc_wpa_ie, sm->assoc_wpa_ie_len,
ptk))
return;
os_memcpy(sm->anonce, key->key_nonce, WPA_NONCE_LEN);
}
static void wpa_sm_start_preauth(void *eloop_ctx, void *timeout_ctx)
{
struct wpa_sm *sm = eloop_ctx;
rsn_preauth_candidate_process(sm);
}
static void wpa_supplicant_key_neg_complete(struct wpa_sm *sm,
const u8 *addr, int secure)
{
wpa_msg(sm->ctx->ctx, MSG_INFO, "WPA: Key negotiation completed with "
MACSTR " [PTK=%s GTK=%s]", MAC2STR(addr),
wpa_cipher_txt(sm->pairwise_cipher),
wpa_cipher_txt(sm->group_cipher));
wpa_sm_cancel_auth_timeout(sm);
wpa_sm_set_state(sm, WPA_COMPLETED);
if (secure) {
wpa_sm_mlme_setprotection(
sm, addr, MLME_SETPROTECTION_PROTECT_TYPE_RX_TX,
MLME_SETPROTECTION_KEY_TYPE_PAIRWISE);
eapol_sm_notify_portValid(sm->eapol, TRUE);
if (sm->key_mgmt == WPA_KEY_MGMT_PSK)
eapol_sm_notify_eap_success(sm->eapol, TRUE);
/*
* Start preauthentication after a short wait to avoid a
* possible race condition between the data receive and key
* configuration after the 4-Way Handshake. This increases the
* likelyhood of the first preauth EAPOL-Start frame getting to
* the target AP.
*/
eloop_register_timeout(1, 0, wpa_sm_start_preauth, sm, NULL);
}
if (sm->cur_pmksa && sm->cur_pmksa->opportunistic) {
wpa_printf(MSG_DEBUG, "RSN: Authenticator accepted "
"opportunistic PMKSA entry - marking it valid");
sm->cur_pmksa->opportunistic = 0;
}
}
static int wpa_supplicant_install_ptk(struct wpa_sm *sm,
const struct wpa_eapol_key *key)
{
int keylen, rsclen;
wpa_alg alg;
const u8 *key_rsc;
u8 null_rsc[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
wpa_printf(MSG_DEBUG, "WPA: Installing PTK to the driver.");
switch (sm->pairwise_cipher) {
case WPA_CIPHER_CCMP:
alg = WPA_ALG_CCMP;
keylen = 16;
rsclen = 6;
break;
case WPA_CIPHER_TKIP:
alg = WPA_ALG_TKIP;
keylen = 32;
rsclen = 6;
break;
case WPA_CIPHER_NONE:
wpa_printf(MSG_DEBUG, "WPA: Pairwise Cipher Suite: "
"NONE - do not use pairwise keys");
return 0;
default:
wpa_printf(MSG_WARNING, "WPA: Unsupported pairwise cipher %d",
sm->pairwise_cipher);
return -1;
}
if (sm->proto == WPA_PROTO_RSN) {
key_rsc = null_rsc;
} else {
key_rsc = key->key_rsc;
wpa_hexdump(MSG_DEBUG, "WPA: RSC", key_rsc, rsclen);
}
if (wpa_sm_set_key(sm, alg, sm->bssid, 0, 1, key_rsc, rsclen,
(u8 *) sm->ptk.tk1, keylen) < 0) {
wpa_printf(MSG_WARNING, "WPA: Failed to set PTK to the "
"driver.");
return -1;
}
return 0;
}
static int wpa_supplicant_check_group_cipher(int group_cipher,
int keylen, int maxkeylen,
int *key_rsc_len, wpa_alg *alg)
{
int ret = 0;
switch (group_cipher) {
case WPA_CIPHER_CCMP:
if (keylen != 16 || maxkeylen < 16) {
ret = -1;
break;
}
*key_rsc_len = 6;
*alg = WPA_ALG_CCMP;
break;
case WPA_CIPHER_TKIP:
if (keylen != 32 || maxkeylen < 32) {
ret = -1;
break;
}
*key_rsc_len = 6;
*alg = WPA_ALG_TKIP;
break;
case WPA_CIPHER_WEP104:
if (keylen != 13 || maxkeylen < 13) {
ret = -1;
break;
}
*key_rsc_len = 0;
*alg = WPA_ALG_WEP;
break;
case WPA_CIPHER_WEP40:
if (keylen != 5 || maxkeylen < 5) {
ret = -1;
break;
}
*key_rsc_len = 0;
*alg = WPA_ALG_WEP;
break;
default:
wpa_printf(MSG_WARNING, "WPA: Unsupported Group Cipher %d",
group_cipher);
return -1;
}
if (ret < 0 ) {
wpa_printf(MSG_WARNING, "WPA: Unsupported %s Group Cipher key "
"length %d (%d).",
wpa_cipher_txt(group_cipher), keylen, maxkeylen);
}
return ret;
}
struct wpa_gtk_data {
wpa_alg alg;
int tx, key_rsc_len, keyidx;
u8 gtk[32];
int gtk_len;
};
static int wpa_supplicant_install_gtk(struct wpa_sm *sm,
const struct wpa_gtk_data *gd,
const u8 *key_rsc)
{
const u8 *_gtk = gd->gtk;
u8 gtk_buf[32];
wpa_hexdump_key(MSG_DEBUG, "WPA: Group Key", gd->gtk, gd->gtk_len);
wpa_printf(MSG_DEBUG, "WPA: Installing GTK to the driver "
"(keyidx=%d tx=%d).", gd->keyidx, gd->tx);
wpa_hexdump(MSG_DEBUG, "WPA: RSC", key_rsc, gd->key_rsc_len);
if (sm->group_cipher == WPA_CIPHER_TKIP) {
/* Swap Tx/Rx keys for Michael MIC */
os_memcpy(gtk_buf, gd->gtk, 16);
os_memcpy(gtk_buf + 16, gd->gtk + 24, 8);
os_memcpy(gtk_buf + 24, gd->gtk + 16, 8);
_gtk = gtk_buf;
}
if (sm->pairwise_cipher == WPA_CIPHER_NONE) {
if (wpa_sm_set_key(sm, gd->alg,
(u8 *) "\xff\xff\xff\xff\xff\xff",
gd->keyidx, 1, key_rsc, gd->key_rsc_len,
_gtk, gd->gtk_len) < 0) {
wpa_printf(MSG_WARNING, "WPA: Failed to set "
"GTK to the driver (Group only).");
return -1;
}
} else if (wpa_sm_set_key(sm, gd->alg,
(u8 *) "\xff\xff\xff\xff\xff\xff",
gd->keyidx, gd->tx, key_rsc, gd->key_rsc_len,
_gtk, gd->gtk_len) < 0) {
wpa_printf(MSG_WARNING, "WPA: Failed to set GTK to "
"the driver.");
return -1;
}
return 0;
}
static int wpa_supplicant_gtk_tx_bit_workaround(const struct wpa_sm *sm,
int tx)
{
if (tx && sm->pairwise_cipher != WPA_CIPHER_NONE) {
/* Ignore Tx bit for GTK if a pairwise key is used. One AP
* seemed to set this bit (incorrectly, since Tx is only when
* doing Group Key only APs) and without this workaround, the
* data connection does not work because wpa_supplicant
* configured non-zero keyidx to be used for unicast. */
wpa_printf(MSG_INFO, "WPA: Tx bit set for GTK, but pairwise "
"keys are used - ignore Tx bit");
return 0;
}
return tx;
}
static int wpa_supplicant_pairwise_gtk(struct wpa_sm *sm,
const struct wpa_eapol_key *key,
const u8 *gtk, size_t gtk_len,
int key_info)
{
#ifndef CONFIG_NO_WPA2
struct wpa_gtk_data gd;
/*
* IEEE Std 802.11i-2004 - 8.5.2 EAPOL-Key frames - Figure 43x
* GTK KDE format:
* KeyID[bits 0-1], Tx [bit 2], Reserved [bits 3-7]
* Reserved [bits 0-7]
* GTK
*/
os_memset(&gd, 0, sizeof(gd));
wpa_hexdump_key(MSG_DEBUG, "RSN: received GTK in pairwise handshake",
gtk, gtk_len);
if (gtk_len < 2 || gtk_len - 2 > sizeof(gd.gtk))
return -1;
gd.keyidx = gtk[0] & 0x3;
gd.tx = wpa_supplicant_gtk_tx_bit_workaround(sm,
!!(gtk[0] & BIT(2)));
gtk += 2;
gtk_len -= 2;
os_memcpy(gd.gtk, gtk, gtk_len);
gd.gtk_len = gtk_len;
if (wpa_supplicant_check_group_cipher(sm->group_cipher,
gtk_len, gtk_len,
&gd.key_rsc_len, &gd.alg) ||
wpa_supplicant_install_gtk(sm, &gd, key->key_rsc)) {
wpa_printf(MSG_DEBUG, "RSN: Failed to install GTK");
return -1;
}
wpa_supplicant_key_neg_complete(sm, sm->bssid,
key_info & WPA_KEY_INFO_SECURE);
return 0;
#else /* CONFIG_NO_WPA2 */
return -1;
#endif /* CONFIG_NO_WPA2 */
}
static int ieee80211w_set_keys(struct wpa_sm *sm,
struct wpa_eapol_ie_parse *ie)
{
#ifdef CONFIG_IEEE80211W
if (sm->mgmt_group_cipher != WPA_CIPHER_AES_128_CMAC)
return 0;
if (ie->igtk) {
const struct wpa_igtk_kde *igtk;
u16 keyidx;
if (ie->igtk_len != sizeof(*igtk))
return -1;
igtk = (const struct wpa_igtk_kde *) ie->igtk;
keyidx = WPA_GET_LE16(igtk->keyid);
wpa_printf(MSG_DEBUG, "WPA: IGTK keyid %d "
"pn %02x%02x%02x%02x%02x%02x",
keyidx, MAC2STR(igtk->pn));
wpa_hexdump_key(MSG_DEBUG, "WPA: IGTK",
igtk->igtk, WPA_IGTK_LEN);
if (keyidx > 4095) {
wpa_printf(MSG_WARNING, "WPA: Invalid IGTK KeyID %d",
keyidx);
return -1;
}
if (wpa_sm_set_key(sm, WPA_ALG_IGTK,
(u8 *) "\xff\xff\xff\xff\xff\xff",
keyidx, 0, igtk->pn, sizeof(igtk->pn),
igtk->igtk, WPA_IGTK_LEN) < 0) {
wpa_printf(MSG_WARNING, "WPA: Failed to configure IGTK"
" to the driver");
return -1;
}
}
if (ie->dhv) {
const struct wpa_dhv_kde *dhv;
if (ie->dhv_len != sizeof(*dhv))
return -1;
dhv = (const struct wpa_dhv_kde *) ie->dhv;
wpa_hexdump_key(MSG_DEBUG, "WPA: DHV", dhv->dhv, WPA_DHV_LEN);
if (wpa_sm_set_key(sm, WPA_ALG_DHV,
(u8 *) "\xff\xff\xff\xff\xff\xff", 0, 0,
NULL, 0, dhv->dhv, WPA_DHV_LEN) < 0) {
wpa_printf(MSG_WARNING, "WPA: Failed to configure DHV "
"to the driver");
return -1;
}
}
return 0;
#else /* CONFIG_IEEE80211W */
return 0;
#endif /* CONFIG_IEEE80211W */
}
static void wpa_report_ie_mismatch(struct wpa_sm *sm,
const char *reason, const u8 *src_addr,
const u8 *wpa_ie, size_t wpa_ie_len,
const u8 *rsn_ie, size_t rsn_ie_len)
{
wpa_msg(sm->ctx->ctx, MSG_WARNING, "WPA: %s (src=" MACSTR ")",
reason, MAC2STR(src_addr));
if (sm->ap_wpa_ie) {
wpa_hexdump(MSG_INFO, "WPA: WPA IE in Beacon/ProbeResp",
sm->ap_wpa_ie, sm->ap_wpa_ie_len);
}
if (wpa_ie) {
if (!sm->ap_wpa_ie) {
wpa_printf(MSG_INFO, "WPA: No WPA IE in "
"Beacon/ProbeResp");
}
wpa_hexdump(MSG_INFO, "WPA: WPA IE in 3/4 msg",
wpa_ie, wpa_ie_len);
}
if (sm->ap_rsn_ie) {
wpa_hexdump(MSG_INFO, "WPA: RSN IE in Beacon/ProbeResp",
sm->ap_rsn_ie, sm->ap_rsn_ie_len);
}
if (rsn_ie) {
if (!sm->ap_rsn_ie) {
wpa_printf(MSG_INFO, "WPA: No RSN IE in "
"Beacon/ProbeResp");
}
wpa_hexdump(MSG_INFO, "WPA: RSN IE in 3/4 msg",
rsn_ie, rsn_ie_len);
}
wpa_sm_disassociate(sm, REASON_IE_IN_4WAY_DIFFERS);
}
static int wpa_supplicant_validate_ie(struct wpa_sm *sm,
const unsigned char *src_addr,
struct wpa_eapol_ie_parse *ie)
{
struct wpa_ssid *ssid = sm->cur_ssid;
if (sm->ap_wpa_ie == NULL && sm->ap_rsn_ie == NULL) {
wpa_printf(MSG_DEBUG, "WPA: No WPA/RSN IE for this AP known. "
"Trying to get from scan results");
if (wpa_sm_get_beacon_ie(sm) < 0) {
wpa_printf(MSG_WARNING, "WPA: Could not find AP from "
"the scan results");
} else {
wpa_printf(MSG_DEBUG, "WPA: Found the current AP from "
"updated scan results");
}
}
if (ie->wpa_ie == NULL && ie->rsn_ie == NULL &&
(sm->ap_wpa_ie || sm->ap_rsn_ie)) {
wpa_report_ie_mismatch(sm, "IE in 3/4 msg does not match "
"with IE in Beacon/ProbeResp (no IE?)",
src_addr, ie->wpa_ie, ie->wpa_ie_len,
ie->rsn_ie, ie->rsn_ie_len);
return -1;
}
if ((ie->wpa_ie && sm->ap_wpa_ie &&
(ie->wpa_ie_len != sm->ap_wpa_ie_len ||
os_memcmp(ie->wpa_ie, sm->ap_wpa_ie, ie->wpa_ie_len) != 0)) ||
(ie->rsn_ie && sm->ap_rsn_ie &&
(ie->rsn_ie_len != sm->ap_rsn_ie_len ||
os_memcmp(ie->rsn_ie, sm->ap_rsn_ie, ie->rsn_ie_len) != 0))) {
wpa_report_ie_mismatch(sm, "IE in 3/4 msg does not match "
"with IE in Beacon/ProbeResp",
src_addr, ie->wpa_ie, ie->wpa_ie_len,
ie->rsn_ie, ie->rsn_ie_len);
return -1;
}
if (sm->proto == WPA_PROTO_WPA &&
ie->rsn_ie && sm->ap_rsn_ie == NULL &&
ssid && (ssid->proto & WPA_PROTO_RSN)) {
wpa_report_ie_mismatch(sm, "Possible downgrade attack "
"detected - RSN was enabled and RSN IE "
"was in msg 3/4, but not in "
"Beacon/ProbeResp",
src_addr, ie->wpa_ie, ie->wpa_ie_len,
ie->rsn_ie, ie->rsn_ie_len);
return -1;
}
return 0;
}
static int wpa_supplicant_send_4_of_4(struct wpa_sm *sm,
const unsigned char *dst,
const struct wpa_eapol_key *key,
u16 ver, u16 key_info,
const u8 *kde, size_t kde_len,
struct wpa_ptk *ptk)
{
size_t rlen;
struct wpa_eapol_key *reply;
u8 *rbuf;
if (kde)
wpa_hexdump(MSG_DEBUG, "WPA: KDE for msg 4/4", kde, kde_len);
rbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY, NULL,
sizeof(*reply) + kde_len,
&rlen, (void *) &reply);
if (rbuf == NULL)
return -1;
reply->type = sm->proto == WPA_PROTO_RSN ?
EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA;
key_info &= WPA_KEY_INFO_SECURE;
key_info |= ver | WPA_KEY_INFO_KEY_TYPE | WPA_KEY_INFO_MIC;
WPA_PUT_BE16(reply->key_info, key_info);
if (sm->proto == WPA_PROTO_RSN)
WPA_PUT_BE16(reply->key_length, 0);
else
os_memcpy(reply->key_length, key->key_length, 2);
os_memcpy(reply->replay_counter, key->replay_counter,
WPA_REPLAY_COUNTER_LEN);
WPA_PUT_BE16(reply->key_data_length, kde_len);
if (kde)
os_memcpy(reply + 1, kde, kde_len);
wpa_printf(MSG_DEBUG, "WPA: Sending EAPOL-Key 4/4");
wpa_eapol_key_send(sm, ptk->kck, ver, dst, ETH_P_EAPOL,
rbuf, rlen, reply->key_mic);
return 0;
}
static void wpa_supplicant_process_3_of_4(struct wpa_sm *sm,
const struct wpa_eapol_key *key,
u16 ver)
{
u16 key_info, keylen, len;
const u8 *pos;
struct wpa_eapol_ie_parse ie;
wpa_sm_set_state(sm, WPA_4WAY_HANDSHAKE);
wpa_printf(MSG_DEBUG, "WPA: RX message 3 of 4-Way Handshake from "
MACSTR " (ver=%d)", MAC2STR(sm->bssid), ver);
key_info = WPA_GET_BE16(key->key_info);
pos = (const u8 *) (key + 1);
len = WPA_GET_BE16(key->key_data_length);
wpa_hexdump(MSG_DEBUG, "WPA: IE KeyData", pos, len);
wpa_supplicant_parse_ies(pos, len, &ie);
if (ie.gtk && !(key_info & WPA_KEY_INFO_ENCR_KEY_DATA)) {
wpa_printf(MSG_WARNING, "WPA: GTK IE in unencrypted key data");
return;
}
#ifdef CONFIG_IEEE80211W
if ((ie.dhv || ie.igtk) && !(key_info & WPA_KEY_INFO_ENCR_KEY_DATA)) {
wpa_printf(MSG_WARNING, "WPA: DHV/IGTK KDE in unencrypted key "
"data");
return;
}
if (ie.dhv && ie.dhv_len != sizeof(struct wpa_dhv_kde)) {
wpa_printf(MSG_WARNING, "WPA: Invalid DHV KDE length %lu",
(unsigned long) ie.dhv_len);
return;
}
if (ie.igtk && ie.igtk_len != sizeof(struct wpa_igtk_kde)) {
wpa_printf(MSG_WARNING, "WPA: Invalid IGTK KDE length %lu",
(unsigned long) ie.igtk_len);
return;
}
#endif /* CONFIG_IEEE80211W */
if (wpa_supplicant_validate_ie(sm, sm->bssid, &ie) < 0)
return;
if (os_memcmp(sm->anonce, key->key_nonce, WPA_NONCE_LEN) != 0) {
wpa_printf(MSG_WARNING, "WPA: ANonce from message 1 of 4-Way "
"Handshake differs from 3 of 4-Way Handshake - drop"
" packet (src=" MACSTR ")", MAC2STR(sm->bssid));
return;
}
keylen = WPA_GET_BE16(key->key_length);
switch (sm->pairwise_cipher) {
case WPA_CIPHER_CCMP:
if (keylen != 16) {
wpa_printf(MSG_WARNING, "WPA: Invalid CCMP key length "
"%d (src=" MACSTR ")",
keylen, MAC2STR(sm->bssid));
return;
}
break;
case WPA_CIPHER_TKIP:
if (keylen != 32) {
wpa_printf(MSG_WARNING, "WPA: Invalid TKIP key length "
"%d (src=" MACSTR ")",
keylen, MAC2STR(sm->bssid));
return;
}
break;
}
if (wpa_supplicant_send_4_of_4(sm, sm->bssid, key, ver, key_info,
NULL, 0, &sm->ptk))
return;
/* SNonce was successfully used in msg 3/4, so mark it to be renewed
* for the next 4-Way Handshake. If msg 3 is received again, the old
* SNonce will still be used to avoid changing PTK. */
sm->renew_snonce = 1;
if (key_info & WPA_KEY_INFO_INSTALL) {
wpa_supplicant_install_ptk(sm, key);
}
if (key_info & WPA_KEY_INFO_SECURE) {
wpa_sm_mlme_setprotection(
sm, sm->bssid, MLME_SETPROTECTION_PROTECT_TYPE_RX,
MLME_SETPROTECTION_KEY_TYPE_PAIRWISE);
eapol_sm_notify_portValid(sm->eapol, TRUE);
}
wpa_sm_set_state(sm, WPA_GROUP_HANDSHAKE);
if (ie.gtk &&
wpa_supplicant_pairwise_gtk(sm, key,
ie.gtk, ie.gtk_len, key_info) < 0) {
wpa_printf(MSG_INFO, "RSN: Failed to configure GTK");
}
if (ieee80211w_set_keys(sm, &ie) < 0)
wpa_printf(MSG_INFO, "RSN: Failed to configure DHV/IGTK");
}
#ifdef CONFIG_PEERKEY
static void wpa_supplicant_smk_timeout(void *eloop_ctx, void *timeout_ctx)
{
#if 0
struct wpa_sm *sm = eloop_ctx;
struct wpa_peerkey *peerkey = timeout_ctx;
#endif
/* TODO: time out SMK and any STK that was generated using this SMK */
}
static void wpa_supplicant_peerkey_free(struct wpa_sm *sm,
struct wpa_peerkey *peerkey)
{
eloop_cancel_timeout(wpa_supplicant_smk_timeout, sm, peerkey);
os_free(peerkey);
}
static int wpa_supplicant_send_smk_error(struct wpa_sm *sm, const u8 *dst,
const u8 *peer,
u16 mui, u16 error_type, int ver)
{
#ifndef CONFIG_NO_WPA2
size_t rlen;
struct wpa_eapol_key *err;
struct rsn_error_kde error;
u8 *rbuf, *pos;
size_t kde_len;
u16 key_info;
kde_len = 2 + RSN_SELECTOR_LEN + sizeof(error);
if (peer)
kde_len += 2 + RSN_SELECTOR_LEN + ETH_ALEN;
rbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY,
NULL, sizeof(*err) + kde_len, &rlen,
(void *) &err);
if (rbuf == NULL)
return -1;
err->type = EAPOL_KEY_TYPE_RSN;
key_info = ver | WPA_KEY_INFO_SMK_MESSAGE | WPA_KEY_INFO_MIC |
WPA_KEY_INFO_SECURE | WPA_KEY_INFO_ERROR |
WPA_KEY_INFO_REQUEST;
WPA_PUT_BE16(err->key_info, key_info);
WPA_PUT_BE16(err->key_length, 0);
os_memcpy(err->replay_counter, sm->request_counter,
WPA_REPLAY_COUNTER_LEN);
inc_byte_array(sm->request_counter, WPA_REPLAY_COUNTER_LEN);
WPA_PUT_BE16(err->key_data_length, (u16) kde_len);
pos = (u8 *) (err + 1);
if (peer) {
/* Peer MAC Address KDE */
pos = wpa_add_kde(pos, RSN_KEY_DATA_MAC_ADDR, peer, ETH_ALEN);
}
/* Error KDE */
error.mui = host_to_be16(mui);
error.error_type = host_to_be16(error_type);
pos = wpa_add_kde(pos, RSN_KEY_DATA_ERROR,
(u8 *) &error, sizeof(error));
if (peer) {
wpa_printf(MSG_DEBUG, "RSN: Sending EAPOL-Key SMK Error (peer "
MACSTR " mui %d error_type %d)",
MAC2STR(peer), mui, error_type);
} else {
wpa_printf(MSG_DEBUG, "RSN: Sending EAPOL-Key SMK Error "
"(mui %d error_type %d)", mui, error_type);
}
wpa_eapol_key_send(sm, sm->ptk.kck, ver, dst, ETH_P_EAPOL,
rbuf, rlen, err->key_mic);
return 0;
#else /* CONFIG_NO_WPA2 */
return -1;
#endif /* CONFIG_NO_WPA2 */
}
static int wpa_supplicant_send_smk_m3(struct wpa_sm *sm,
const unsigned char *src_addr,
const struct wpa_eapol_key *key,
int ver, struct wpa_peerkey *peerkey)
{
size_t rlen;
struct wpa_eapol_key *reply;
u8 *rbuf, *pos;
size_t kde_len;
u16 key_info;
/* KDEs: Peer RSN IE, Initiator MAC Address, Initiator Nonce */
kde_len = peerkey->rsnie_p_len +
2 + RSN_SELECTOR_LEN + ETH_ALEN +
2 + RSN_SELECTOR_LEN + WPA_NONCE_LEN;
rbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY,
NULL, sizeof(*reply) + kde_len, &rlen,
(void *) &reply);
if (rbuf == NULL)
return -1;
reply->type = EAPOL_KEY_TYPE_RSN;
key_info = ver | WPA_KEY_INFO_SMK_MESSAGE | WPA_KEY_INFO_MIC |
WPA_KEY_INFO_SECURE;
WPA_PUT_BE16(reply->key_info, key_info);
WPA_PUT_BE16(reply->key_length, 0);
os_memcpy(reply->replay_counter, key->replay_counter,
WPA_REPLAY_COUNTER_LEN);
os_memcpy(reply->key_nonce, peerkey->pnonce, WPA_NONCE_LEN);
WPA_PUT_BE16(reply->key_data_length, (u16) kde_len);
pos = (u8 *) (reply + 1);
/* Peer RSN IE */
pos = wpa_add_ie(pos, peerkey->rsnie_p, peerkey->rsnie_p_len);
/* Initiator MAC Address KDE */
pos = wpa_add_kde(pos, RSN_KEY_DATA_MAC_ADDR, peerkey->addr, ETH_ALEN);
/* Initiator Nonce */
pos = wpa_add_kde(pos, RSN_KEY_DATA_NONCE,
peerkey->inonce, WPA_NONCE_LEN);
wpa_printf(MSG_DEBUG, "RSN: Sending EAPOL-Key SMK M3");
wpa_eapol_key_send(sm, sm->ptk.kck, ver, src_addr, ETH_P_EAPOL,
rbuf, rlen, reply->key_mic);
return 0;
}
static int wpa_supplicant_process_smk_m2(
struct wpa_sm *sm, const unsigned char *src_addr,
const struct wpa_eapol_key *key, size_t extra_len, int ver)
{
struct wpa_ssid *ssid = sm->cur_ssid;
struct wpa_peerkey *peerkey;
struct wpa_eapol_ie_parse kde;
struct wpa_ie_data ie;
int cipher;
struct rsn_ie_hdr *hdr;
u8 *pos;
wpa_printf(MSG_DEBUG, "RSN: Received SMK M2");
if (ssid == NULL || !ssid->peerkey || sm->proto != WPA_PROTO_RSN) {
wpa_printf(MSG_INFO, "RSN: SMK handshake not allowed for "
"the current network");
return -1;
}
if (wpa_supplicant_parse_ies((const u8 *) (key + 1), extra_len, &kde) <
0) {
wpa_printf(MSG_INFO, "RSN: Failed to parse KDEs in SMK M2");
return -1;
}
if (kde.rsn_ie == NULL || kde.mac_addr == NULL ||
kde.mac_addr_len < ETH_ALEN) {
wpa_printf(MSG_INFO, "RSN: No RSN IE or MAC address KDE in "
"SMK M2");
return -1;
}
wpa_printf(MSG_DEBUG, "RSN: SMK M2 - SMK initiator " MACSTR,
MAC2STR(kde.mac_addr));
if (kde.rsn_ie_len > PEERKEY_MAX_IE_LEN) {
wpa_printf(MSG_INFO, "RSN: Too long Initiator RSN IE in SMK "
"M2");
return -1;
}
if (wpa_parse_wpa_ie_rsn(kde.rsn_ie, kde.rsn_ie_len, &ie) < 0) {
wpa_printf(MSG_INFO, "RSN: Failed to parse RSN IE in SMK M2");
return -1;
}
cipher = ie.pairwise_cipher & ssid->pairwise_cipher;
if (cipher & WPA_CIPHER_CCMP) {
wpa_printf(MSG_DEBUG, "RSN: Using CCMP for PeerKey");
cipher = WPA_CIPHER_CCMP;
} else if (cipher & WPA_CIPHER_TKIP) {
wpa_printf(MSG_DEBUG, "RSN: Using TKIP for PeerKey");
cipher = WPA_CIPHER_TKIP;
} else {
wpa_printf(MSG_INFO, "RSN: No acceptable cipher in SMK M2");
wpa_supplicant_send_smk_error(sm, src_addr, kde.mac_addr,
STK_MUI_SMK, STK_ERR_CPHR_NS,
ver);
return -1;
}
/* TODO: find existing entry and if found, use that instead of adding
* a new one; how to handle the case where both ends initiate at the
* same time? */
peerkey = os_malloc(sizeof(*peerkey));
if (peerkey == NULL)
return -1;
os_memset(peerkey, 0, sizeof(*peerkey));
os_memcpy(peerkey->addr, kde.mac_addr, ETH_ALEN);
os_memcpy(peerkey->inonce, key->key_nonce, WPA_NONCE_LEN);
os_memcpy(peerkey->rsnie_i, kde.rsn_ie, kde.rsn_ie_len);
peerkey->rsnie_i_len = kde.rsn_ie_len;
peerkey->cipher = cipher;
if (hostapd_get_rand(peerkey->pnonce, WPA_NONCE_LEN)) {
wpa_msg(sm->ctx->ctx, MSG_WARNING,
"WPA: Failed to get random data for PNonce");
wpa_supplicant_peerkey_free(sm, peerkey);
return -1;
}
hdr = (struct rsn_ie_hdr *) peerkey->rsnie_p;
hdr->elem_id = RSN_INFO_ELEM;
WPA_PUT_LE16(hdr->version, RSN_VERSION);
pos = (u8 *) (hdr + 1);
/* Group Suite can be anything for SMK RSN IE; receiver will just
* ignore it. */
os_memcpy(pos, RSN_CIPHER_SUITE_CCMP, RSN_SELECTOR_LEN);
pos += RSN_SELECTOR_LEN;
/* Include only the selected cipher in pairwise cipher suite */
WPA_PUT_LE16(pos, 1);
pos += 2;
if (cipher == WPA_CIPHER_CCMP)
os_memcpy(pos, RSN_CIPHER_SUITE_CCMP, RSN_SELECTOR_LEN);
else if (cipher == WPA_CIPHER_TKIP)
os_memcpy(pos, RSN_CIPHER_SUITE_TKIP, RSN_SELECTOR_LEN);
pos += RSN_SELECTOR_LEN;
hdr->len = (pos - peerkey->rsnie_p) - 2;
peerkey->rsnie_p_len = pos - peerkey->rsnie_p;
wpa_hexdump(MSG_DEBUG, "WPA: RSN IE for SMK handshake",
peerkey->rsnie_p, peerkey->rsnie_p_len);
wpa_supplicant_send_smk_m3(sm, src_addr, key, ver, peerkey);
peerkey->next = sm->peerkey;
sm->peerkey = peerkey;
return 0;
}
/**
* rsn_smkid - Derive SMK identifier
* @smk: Station master key (32 bytes)
* @pnonce: Peer Nonce
* @mac_p: Peer MAC address
* @inonce: Initiator Nonce
* @mac_i: Initiator MAC address
*
* 8.5.1.4 Station to station (STK) key hierarchy
* SMKID = HMAC-SHA1-128(SMK, "SMK Name" || PNonce || MAC_P || INonce || MAC_I)
*/
static void rsn_smkid(const u8 *smk, const u8 *pnonce, const u8 *mac_p,
const u8 *inonce, const u8 *mac_i, u8 *smkid)
{
char *title = "SMK Name";
const u8 *addr[5];
const size_t len[5] = { 8, WPA_NONCE_LEN, ETH_ALEN, WPA_NONCE_LEN,
ETH_ALEN };
unsigned char hash[SHA1_MAC_LEN];
addr[0] = (u8 *) title;
addr[1] = pnonce;
addr[2] = mac_p;
addr[3] = inonce;
addr[4] = mac_i;
hmac_sha1_vector(smk, PMK_LEN, 5, addr, len, hash);
os_memcpy(smkid, hash, PMKID_LEN);
}
static void wpa_supplicant_send_stk_1_of_4(struct wpa_sm *sm,
struct wpa_peerkey *peerkey)
{
size_t mlen;
struct wpa_eapol_key *msg;
u8 *mbuf;
size_t kde_len;
u16 key_info, ver;
kde_len = 2 + RSN_SELECTOR_LEN + PMKID_LEN;
mbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY, NULL,
sizeof(*msg) + kde_len, &mlen,
(void *) &msg);
if (mbuf == NULL)
return;
msg->type = EAPOL_KEY_TYPE_RSN;
if (peerkey->cipher == WPA_CIPHER_CCMP)
ver = WPA_KEY_INFO_TYPE_HMAC_SHA1_AES;
else
ver = WPA_KEY_INFO_TYPE_HMAC_MD5_RC4;
key_info = ver | WPA_KEY_INFO_KEY_TYPE | WPA_KEY_INFO_ACK;
WPA_PUT_BE16(msg->key_info, key_info);
if (peerkey->cipher == WPA_CIPHER_CCMP)
WPA_PUT_BE16(msg->key_length, 16);
else
WPA_PUT_BE16(msg->key_length, 32);
os_memcpy(msg->replay_counter, peerkey->replay_counter,
WPA_REPLAY_COUNTER_LEN);
inc_byte_array(peerkey->replay_counter, WPA_REPLAY_COUNTER_LEN);
WPA_PUT_BE16(msg->key_data_length, kde_len);
wpa_add_kde((u8 *) (msg + 1), RSN_KEY_DATA_PMKID,
peerkey->smkid, PMKID_LEN);
if (hostapd_get_rand(peerkey->inonce, WPA_NONCE_LEN)) {
wpa_msg(sm->ctx->ctx, MSG_WARNING,
"RSN: Failed to get random data for INonce (STK)");
os_free(mbuf);
return;
}
wpa_hexdump(MSG_DEBUG, "RSN: INonce for STK 4-Way Handshake",
peerkey->inonce, WPA_NONCE_LEN);
os_memcpy(msg->key_nonce, peerkey->inonce, WPA_NONCE_LEN);
wpa_printf(MSG_DEBUG, "RSN: Sending EAPOL-Key STK 1/4 to " MACSTR,
MAC2STR(peerkey->addr));
wpa_eapol_key_send(sm, NULL, ver, peerkey->addr, ETH_P_EAPOL,
mbuf, mlen, NULL);
}
static void wpa_supplicant_send_stk_3_of_4(struct wpa_sm *sm,
struct wpa_peerkey *peerkey)
{
size_t mlen;
struct wpa_eapol_key *msg;
u8 *mbuf, *pos;
size_t kde_len;
u16 key_info, ver;
u32 lifetime;
kde_len = peerkey->rsnie_i_len +
2 + RSN_SELECTOR_LEN + sizeof(lifetime);
mbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY, NULL,
sizeof(*msg) + kde_len, &mlen,
(void *) &msg);
if (mbuf == NULL)
return;
msg->type = EAPOL_KEY_TYPE_RSN;
if (peerkey->cipher == WPA_CIPHER_CCMP)
ver = WPA_KEY_INFO_TYPE_HMAC_SHA1_AES;
else
ver = WPA_KEY_INFO_TYPE_HMAC_MD5_RC4;
key_info = ver | WPA_KEY_INFO_KEY_TYPE | WPA_KEY_INFO_ACK |
WPA_KEY_INFO_MIC | WPA_KEY_INFO_SECURE;
WPA_PUT_BE16(msg->key_info, key_info);
if (peerkey->cipher == WPA_CIPHER_CCMP)
WPA_PUT_BE16(msg->key_length, 16);
else
WPA_PUT_BE16(msg->key_length, 32);
os_memcpy(msg->replay_counter, peerkey->replay_counter,
WPA_REPLAY_COUNTER_LEN);
inc_byte_array(peerkey->replay_counter, WPA_REPLAY_COUNTER_LEN);
WPA_PUT_BE16(msg->key_data_length, kde_len);
pos = (u8 *) (msg + 1);
pos = wpa_add_ie(pos, peerkey->rsnie_i, peerkey->rsnie_i_len);
lifetime = host_to_be32(peerkey->lifetime);
pos = wpa_add_kde(pos, RSN_KEY_DATA_LIFETIME,
(u8 *) &lifetime, sizeof(lifetime));
os_memcpy(msg->key_nonce, peerkey->inonce, WPA_NONCE_LEN);
wpa_printf(MSG_DEBUG, "RSN: Sending EAPOL-Key STK 3/4 to " MACSTR,
MAC2STR(peerkey->addr));
wpa_eapol_key_send(sm, peerkey->stk.kck, ver, peerkey->addr,
ETH_P_EAPOL, mbuf, mlen, msg->key_mic);
}
static int wpa_supplicant_process_smk_m45(
struct wpa_sm *sm, const unsigned char *src_addr,
const struct wpa_eapol_key *key, size_t extra_len, int ver)
{
struct wpa_ssid *ssid = sm->cur_ssid;
struct wpa_peerkey *peerkey;
struct wpa_eapol_ie_parse kde;
u32 lifetime;
struct os_time now;
struct wpa_ie_data ie;
if (ssid == NULL || !ssid->peerkey || sm->proto != WPA_PROTO_RSN) {
wpa_printf(MSG_DEBUG, "RSN: SMK handshake not allowed for "
"the current network");
return -1;
}
if (wpa_supplicant_parse_ies((const u8 *) (key + 1), extra_len, &kde) <
0) {
wpa_printf(MSG_INFO, "RSN: Failed to parse KDEs in SMK M4/M5");
return -1;
}
if (kde.mac_addr == NULL || kde.mac_addr_len < ETH_ALEN ||
kde.nonce == NULL || kde.nonce_len < WPA_NONCE_LEN ||
kde.smk == NULL || kde.smk_len < PMK_LEN + WPA_NONCE_LEN ||
kde.lifetime == NULL || kde.lifetime_len < 4) {
wpa_printf(MSG_INFO, "RSN: No MAC Address, Nonce, SMK, or "
"Lifetime KDE in SMK M4/M5");
return -1;
}
for (peerkey = sm->peerkey; peerkey; peerkey = peerkey->next) {
if (os_memcmp(peerkey->addr, kde.mac_addr, ETH_ALEN) == 0 &&
os_memcmp(peerkey->initiator ? peerkey->inonce :
peerkey->pnonce,
key->key_nonce, WPA_NONCE_LEN) == 0)
break;
}
if (peerkey == NULL) {
wpa_printf(MSG_INFO, "RSN: No matching SMK handshake found "
"for SMK M4/M5: peer " MACSTR,
MAC2STR(kde.mac_addr));
return -1;
}
if (peerkey->initiator) {
int cipher;
wpa_printf(MSG_DEBUG, "RSN: Received SMK M5 (Peer " MACSTR ")",
MAC2STR(kde.mac_addr));
if (kde.rsn_ie == NULL || kde.rsn_ie_len > PEERKEY_MAX_IE_LEN
|| wpa_parse_wpa_ie_rsn(kde.rsn_ie, kde.rsn_ie_len, &ie) <
0) {
wpa_printf(MSG_INFO, "RSN: No RSN IE in SMK M5");
/* TODO: abort negotiation */
return -1;
}
if (os_memcmp(key->key_nonce, peerkey->inonce, WPA_NONCE_LEN)
!= 0) {
wpa_printf(MSG_INFO, "RSN: Key Nonce in SMK M5 does "
"not match with INonce used in SMK M1");
return -1;
}
if (os_memcmp(kde.smk + PMK_LEN, peerkey->inonce,
WPA_NONCE_LEN) != 0) {
wpa_printf(MSG_INFO, "RSN: INonce in SMK KDE does not "
"match with the one used in SMK M1");
return -1;
}
os_memcpy(peerkey->rsnie_p, kde.rsn_ie, kde.rsn_ie_len);
peerkey->rsnie_p_len = kde.rsn_ie_len;
os_memcpy(peerkey->pnonce, kde.nonce, WPA_NONCE_LEN);
cipher = ie.pairwise_cipher & ssid->pairwise_cipher;
if (cipher & WPA_CIPHER_CCMP) {
wpa_printf(MSG_DEBUG, "RSN: Using CCMP for PeerKey");
peerkey->cipher = WPA_CIPHER_CCMP;
} else if (cipher & WPA_CIPHER_TKIP) {
wpa_printf(MSG_DEBUG, "RSN: Using TKIP for PeerKey");
peerkey->cipher = WPA_CIPHER_TKIP;
} else {
wpa_printf(MSG_INFO, "RSN: SMK Peer STA " MACSTR
" selected unacceptable cipher",
MAC2STR(kde.mac_addr));
wpa_supplicant_send_smk_error(
sm, src_addr, kde.mac_addr,
STK_MUI_SMK, STK_ERR_CPHR_NS, ver);
/* TODO: abort negotiation */
return -1;
}
} else {
wpa_printf(MSG_DEBUG, "RSN: Received SMK M4 (Initiator "
MACSTR ")", MAC2STR(kde.mac_addr));
if (os_memcmp(kde.smk + PMK_LEN, peerkey->pnonce,
WPA_NONCE_LEN) != 0) {
wpa_printf(MSG_INFO, "RSN: PNonce in SMK KDE does not "
"match with the one used in SMK M3");
return -1;
}
if (os_memcmp(kde.nonce, peerkey->inonce, WPA_NONCE_LEN) != 0)
{
wpa_printf(MSG_INFO, "RSN: INonce in SMK M5 did not "
"match with the one received in SMK M2");
return -1;
}
}
os_memcpy(peerkey->smk, kde.smk, PMK_LEN);
peerkey->smk_complete = 1;
wpa_hexdump_key(MSG_DEBUG, "RSN: SMK", peerkey->smk, PMK_LEN);
lifetime = WPA_GET_BE32(kde.lifetime);
wpa_printf(MSG_DEBUG, "RSN: SMK lifetime %u seconds", lifetime);
if (lifetime > 1000000000)
lifetime = 1000000000; /* avoid overflowing expiration time */
peerkey->lifetime = lifetime;
os_get_time(&now);
peerkey->expiration = now.sec + lifetime;
eloop_register_timeout(lifetime, 0, wpa_supplicant_smk_timeout,
sm, peerkey);
if (peerkey->initiator) {
rsn_smkid(peerkey->smk, peerkey->pnonce, peerkey->addr,
peerkey->inonce, sm->own_addr, peerkey->smkid);
wpa_supplicant_send_stk_1_of_4(sm, peerkey);
} else {
rsn_smkid(peerkey->smk, peerkey->pnonce, sm->own_addr,
peerkey->inonce, peerkey->addr, peerkey->smkid);
}
wpa_hexdump(MSG_DEBUG, "RSN: SMKID", peerkey->smkid, PMKID_LEN);
return 0;
}
static int wpa_supplicant_process_smk_error(
struct wpa_sm *sm, const unsigned char *src_addr,
const struct wpa_eapol_key *key, size_t extra_len)
{
struct wpa_ssid *ssid = sm->cur_ssid;
struct wpa_eapol_ie_parse kde;
struct rsn_error_kde error;
u8 peer[ETH_ALEN];
u16 error_type;
wpa_printf(MSG_DEBUG, "RSN: Received SMK Error");
if (ssid == NULL || !ssid->peerkey || sm->proto != WPA_PROTO_RSN) {
wpa_printf(MSG_DEBUG, "RSN: SMK handshake not allowed for "
"the current network");
return -1;
}
if (wpa_supplicant_parse_ies((const u8 *) (key + 1), extra_len, &kde) <
0) {
wpa_printf(MSG_INFO, "RSN: Failed to parse KDEs in SMK Error");
return -1;
}
if (kde.error == NULL || kde.error_len < sizeof(error)) {
wpa_printf(MSG_INFO, "RSN: No Error KDE in SMK Error");
return -1;
}
if (kde.mac_addr && kde.mac_addr_len >= ETH_ALEN)
os_memcpy(peer, kde.mac_addr, ETH_ALEN);
os_memcpy(&error, kde.error, sizeof(error));
error_type = be_to_host16(error.error_type);
wpa_msg(sm->ctx->ctx, MSG_INFO,
"RSN: SMK Error KDE received: MUI %d error_type %d peer "
MACSTR,
be_to_host16(error.mui), error_type,
MAC2STR(peer));
if (kde.mac_addr &&
(error_type == STK_ERR_STA_NR || error_type == STK_ERR_STA_NRSN ||
error_type == STK_ERR_CPHR_NS)) {
struct wpa_peerkey *peerkey;
for (peerkey = sm->peerkey; peerkey; peerkey = peerkey->next) {
if (os_memcmp(peerkey->addr, kde.mac_addr, ETH_ALEN) ==
0)
break;
}
if (peerkey == NULL) {
wpa_printf(MSG_DEBUG, "RSN: No matching SMK handshake "
"found for SMK Error");
return -1;
}
/* TODO: abort SMK/STK handshake and remove all related keys */
}
return 0;
}
static void wpa_supplicant_process_stk_1_of_4(struct wpa_sm *sm,
struct wpa_peerkey *peerkey,
const struct wpa_eapol_key *key,
u16 ver)
{
struct wpa_eapol_ie_parse ie;
const u8 *kde;
size_t len, kde_buf_len;
struct wpa_ptk *stk;
u8 buf[8], *kde_buf, *pos;
u32 lifetime;
wpa_printf(MSG_DEBUG, "RSN: RX message 1 of STK 4-Way Handshake from "
MACSTR " (ver=%d)", MAC2STR(peerkey->addr), ver);
os_memset(&ie, 0, sizeof(ie));
/* RSN: msg 1/4 should contain SMKID for the selected SMK */
kde = (const u8 *) (key + 1);
len = WPA_GET_BE16(key->key_data_length);
wpa_hexdump(MSG_DEBUG, "RSN: msg 1/4 key data", kde, len);
if (wpa_supplicant_parse_ies(kde, len, &ie) < 0 || ie.pmkid == NULL) {
wpa_printf(MSG_DEBUG, "RSN: No SMKID in STK 1/4");
return;
}
if (os_memcmp(ie.pmkid, peerkey->smkid, PMKID_LEN) != 0) {
wpa_hexdump(MSG_DEBUG, "RSN: Unknown SMKID in STK 1/4",
ie.pmkid, PMKID_LEN);
return;
}
if (hostapd_get_rand(peerkey->pnonce, WPA_NONCE_LEN)) {
wpa_msg(sm->ctx->ctx, MSG_WARNING,
"RSN: Failed to get random data for PNonce");
return;
}
wpa_hexdump(MSG_DEBUG, "WPA: Renewed PNonce",
peerkey->pnonce, WPA_NONCE_LEN);
/* Calculate STK which will be stored as a temporary STK until it has
* been verified when processing message 3/4. */
stk = &peerkey->tstk;
wpa_pmk_to_ptk(peerkey->smk, PMK_LEN, "Peer key expansion",
sm->own_addr, peerkey->addr,
peerkey->pnonce, key->key_nonce,
(u8 *) stk, sizeof(*stk));
/* Supplicant: swap tx/rx Mic keys */
os_memcpy(buf, stk->u.auth.tx_mic_key, 8);
os_memcpy(stk->u.auth.tx_mic_key, stk->u.auth.rx_mic_key, 8);
os_memcpy(stk->u.auth.rx_mic_key, buf, 8);
peerkey->tstk_set = 1;
kde_buf_len = peerkey->rsnie_p_len +
2 + RSN_SELECTOR_LEN + sizeof(lifetime) +
2 + RSN_SELECTOR_LEN + PMKID_LEN;
kde_buf = os_malloc(kde_buf_len);
if (kde_buf == NULL)
return;
pos = kde_buf;
pos = wpa_add_ie(pos, peerkey->rsnie_p, peerkey->rsnie_p_len);
lifetime = host_to_be32(peerkey->lifetime);
pos = wpa_add_kde(pos, RSN_KEY_DATA_LIFETIME,
(u8 *) &lifetime, sizeof(lifetime));
pos = wpa_add_kde(pos, RSN_KEY_DATA_PMKID, peerkey->smkid, PMKID_LEN);
if (wpa_supplicant_send_2_of_4(sm, peerkey->addr, key, ver,
peerkey->pnonce, kde_buf, kde_buf_len,
stk)) {
os_free(kde_buf);
return;
}
os_free(kde_buf);
os_memcpy(peerkey->inonce, key->key_nonce, WPA_NONCE_LEN);
}
static void wpa_supplicant_update_smk_lifetime(struct wpa_sm *sm,
struct wpa_peerkey *peerkey,
struct wpa_eapol_ie_parse *kde)
{
u32 lifetime;
struct os_time now;
if (kde->lifetime == NULL || kde->lifetime_len < sizeof(lifetime))
return;
lifetime = WPA_GET_BE32(kde->lifetime);
if (lifetime >= peerkey->lifetime) {
wpa_printf(MSG_DEBUG, "RSN: Peer used SMK lifetime %u seconds "
"which is larger than or equal to own value %u "
"seconds - ignored", lifetime, peerkey->lifetime);
return;
}
wpa_printf(MSG_DEBUG, "RSN: Peer used shorter SMK lifetime %u seconds "
"(own was %u seconds) - updated",
lifetime, peerkey->lifetime);
peerkey->lifetime = lifetime;
os_get_time(&now);
peerkey->expiration = now.sec + lifetime;
eloop_cancel_timeout(wpa_supplicant_smk_timeout, sm, peerkey);
eloop_register_timeout(lifetime, 0, wpa_supplicant_smk_timeout,
sm, peerkey);
}
static void wpa_supplicant_process_stk_2_of_4(struct wpa_sm *sm,
struct wpa_peerkey *peerkey,
const struct wpa_eapol_key *key,
u16 ver)
{
struct wpa_eapol_ie_parse kde;
const u8 *keydata;
size_t len;
wpa_printf(MSG_DEBUG, "RSN: RX message 2 of STK 4-Way Handshake from "
MACSTR " (ver=%d)", MAC2STR(peerkey->addr), ver);
os_memset(&kde, 0, sizeof(kde));
/* RSN: msg 2/4 should contain SMKID for the selected SMK and RSN IE
* from the peer. It may also include Lifetime KDE. */
keydata = (const u8 *) (key + 1);
len = WPA_GET_BE16(key->key_data_length);
wpa_hexdump(MSG_DEBUG, "RSN: msg 2/4 key data", keydata, len);
if (wpa_supplicant_parse_ies(keydata, len, &kde) < 0 ||
kde.pmkid == NULL || kde.rsn_ie == NULL) {
wpa_printf(MSG_DEBUG, "RSN: No SMKID or RSN IE in STK 2/4");
return;
}
if (os_memcmp(kde.pmkid, peerkey->smkid, PMKID_LEN) != 0) {
wpa_hexdump(MSG_DEBUG, "RSN: Unknown SMKID in STK 2/4",
kde.pmkid, PMKID_LEN);
return;
}
if (kde.rsn_ie_len != peerkey->rsnie_p_len ||
os_memcmp(kde.rsn_ie, peerkey->rsnie_p, kde.rsn_ie_len) != 0) {
wpa_printf(MSG_INFO, "RSN: Peer RSN IE in SMK and STK "
"handshakes did not match");
wpa_hexdump(MSG_DEBUG, "RSN: Peer RSN IE in SMK handshake",
peerkey->rsnie_p, peerkey->rsnie_p_len);
wpa_hexdump(MSG_DEBUG, "RSN: Peer RSN IE in STK handshake",
kde.rsn_ie, kde.rsn_ie_len);
return;
}
wpa_supplicant_update_smk_lifetime(sm, peerkey, &kde);
wpa_supplicant_send_stk_3_of_4(sm, peerkey);
os_memcpy(peerkey->pnonce, key->key_nonce, WPA_NONCE_LEN);
}
static void wpa_supplicant_process_stk_3_of_4(struct wpa_sm *sm,
struct wpa_peerkey *peerkey,
const struct wpa_eapol_key *key,
u16 ver)
{
struct wpa_eapol_ie_parse kde;
const u8 *keydata;
size_t len, key_len;
const u8 *_key;
u8 key_buf[32], rsc[6];
wpa_printf(MSG_DEBUG, "RSN: RX message 3 of STK 4-Way Handshake from "
MACSTR " (ver=%d)", MAC2STR(peerkey->addr), ver);
os_memset(&kde, 0, sizeof(kde));
/* RSN: msg 3/4 should contain Initiator RSN IE. It may also include
* Lifetime KDE. */
keydata = (const u8 *) (key + 1);
len = WPA_GET_BE16(key->key_data_length);
wpa_hexdump(MSG_DEBUG, "RSN: msg 3/4 key data", keydata, len);
if (wpa_supplicant_parse_ies(keydata, len, &kde) < 0) {
wpa_printf(MSG_DEBUG, "RSN: Failed to parse key data in "
"STK 3/4");
return;
}
if (kde.rsn_ie_len != peerkey->rsnie_i_len ||
os_memcmp(kde.rsn_ie, peerkey->rsnie_i, kde.rsn_ie_len) != 0) {
wpa_printf(MSG_INFO, "RSN: Initiator RSN IE in SMK and STK "
"handshakes did not match");
wpa_hexdump(MSG_DEBUG, "RSN: Initiator RSN IE in SMK "
"handshake",
peerkey->rsnie_i, peerkey->rsnie_i_len);
wpa_hexdump(MSG_DEBUG, "RSN: Initiator RSN IE in STK "
"handshake",
kde.rsn_ie, kde.rsn_ie_len);
return;
}
if (os_memcmp(peerkey->inonce, key->key_nonce, WPA_NONCE_LEN) != 0) {
wpa_printf(MSG_WARNING, "RSN: INonce from message 1 of STK "
"4-Way Handshake differs from 3 of STK 4-Way "
"Handshake - drop packet (src=" MACSTR ")",
MAC2STR(peerkey->addr));
return;
}
wpa_supplicant_update_smk_lifetime(sm, peerkey, &kde);
if (wpa_supplicant_send_4_of_4(sm, peerkey->addr, key, ver,
WPA_GET_BE16(key->key_info),
NULL, 0, &peerkey->stk))
return;
_key = (u8 *) peerkey->stk.tk1;
if (peerkey->cipher == WPA_CIPHER_TKIP) {
/* Swap Tx/Rx keys for Michael MIC */
os_memcpy(key_buf, _key, 16);
os_memcpy(key_buf + 16, _key + 24, 8);
os_memcpy(key_buf + 24, _key + 16, 8);
_key = key_buf;
key_len = 32;
} else
key_len = 16;
os_memset(rsc, 0, 6);
if (wpa_sm_set_key(sm, peerkey->cipher, peerkey->addr, 0, 1,
rsc, sizeof(rsc), _key, key_len) < 0) {
wpa_printf(MSG_WARNING, "RSN: Failed to set STK to the "
"driver.");
return;
}
}
static void wpa_supplicant_process_stk_4_of_4(struct wpa_sm *sm,
struct wpa_peerkey *peerkey,
const struct wpa_eapol_key *key,
u16 ver)
{
u8 rsc[6];
wpa_printf(MSG_DEBUG, "RSN: RX message 4 of STK 4-Way Handshake from "
MACSTR " (ver=%d)", MAC2STR(peerkey->addr), ver);
os_memset(rsc, 0, 6);
if (wpa_sm_set_key(sm, peerkey->cipher, peerkey->addr, 0, 1,
rsc, sizeof(rsc), (u8 *) peerkey->stk.tk1,
peerkey->cipher == WPA_CIPHER_TKIP ? 32 : 16) < 0) {
wpa_printf(MSG_WARNING, "RSN: Failed to set STK to the "
"driver.");
return;
}
}
#endif /* CONFIG_PEERKEY */
static int wpa_supplicant_process_1_of_2_rsn(struct wpa_sm *sm,
const u8 *keydata,
size_t keydatalen,
u16 key_info,
struct wpa_gtk_data *gd)
{
int maxkeylen;
struct wpa_eapol_ie_parse ie;
wpa_hexdump(MSG_DEBUG, "RSN: msg 1/2 key data", keydata, keydatalen);
wpa_supplicant_parse_ies(keydata, keydatalen, &ie);
if (ie.gtk && !(key_info & WPA_KEY_INFO_ENCR_KEY_DATA)) {
wpa_printf(MSG_WARNING, "WPA: GTK IE in unencrypted key data");
return -1;
}
if (ie.gtk == NULL) {
wpa_printf(MSG_INFO, "WPA: No GTK IE in Group Key msg 1/2");
return -1;
}
maxkeylen = gd->gtk_len = ie.gtk_len - 2;
if (wpa_supplicant_check_group_cipher(sm->group_cipher,
gd->gtk_len, maxkeylen,
&gd->key_rsc_len, &gd->alg))
return -1;
wpa_hexdump(MSG_DEBUG, "RSN: received GTK in group key handshake",
ie.gtk, ie.gtk_len);
gd->keyidx = ie.gtk[0] & 0x3;
gd->tx = wpa_supplicant_gtk_tx_bit_workaround(sm,
!!(ie.gtk[0] & BIT(2)));
if (ie.gtk_len - 2 > sizeof(gd->gtk)) {
wpa_printf(MSG_INFO, "RSN: Too long GTK in GTK IE "
"(len=%lu)", (unsigned long) ie.gtk_len - 2);
return -1;
}
os_memcpy(gd->gtk, ie.gtk + 2, ie.gtk_len - 2);
if (ieee80211w_set_keys(sm, &ie) < 0)
wpa_printf(MSG_INFO, "RSN: Failed to configure DHV/IGTK");
return 0;
}
static int wpa_supplicant_process_1_of_2_wpa(struct wpa_sm *sm,
const struct wpa_eapol_key *key,
size_t keydatalen, int key_info,
size_t extra_len, u16 ver,
struct wpa_gtk_data *gd)
{
size_t maxkeylen;
u8 ek[32];
gd->gtk_len = WPA_GET_BE16(key->key_length);
maxkeylen = keydatalen;
if (keydatalen > extra_len) {
wpa_printf(MSG_INFO, "WPA: Truncated EAPOL-Key packet:"
" key_data_length=%lu > extra_len=%lu",
(unsigned long) keydatalen,
(unsigned long) extra_len);
return -1;
}
if (ver == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) {
if (maxkeylen < 8) {
wpa_printf(MSG_INFO, "WPA: Too short maxkeylen (%lu)",
(unsigned long) maxkeylen);
return -1;
}
maxkeylen -= 8;
}
if (wpa_supplicant_check_group_cipher(sm->group_cipher,
gd->gtk_len, maxkeylen,
&gd->key_rsc_len, &gd->alg))
return -1;
gd->keyidx = (key_info & WPA_KEY_INFO_KEY_INDEX_MASK) >>
WPA_KEY_INFO_KEY_INDEX_SHIFT;
if (ver == WPA_KEY_INFO_TYPE_HMAC_MD5_RC4) {
os_memcpy(ek, key->key_iv, 16);
os_memcpy(ek + 16, sm->ptk.kek, 16);
if (keydatalen > sizeof(gd->gtk)) {
wpa_printf(MSG_WARNING, "WPA: RC4 key data "
"too long (%lu)",
(unsigned long) keydatalen);
return -1;
}
os_memcpy(gd->gtk, key + 1, keydatalen);
rc4_skip(ek, 32, 256, gd->gtk, keydatalen);
} else if (ver == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) {
if (keydatalen % 8) {
wpa_printf(MSG_WARNING, "WPA: Unsupported AES-WRAP "
"len %lu", (unsigned long) keydatalen);
return -1;
}
if (maxkeylen > sizeof(gd->gtk)) {
wpa_printf(MSG_WARNING, "WPA: AES-WRAP key data "
"too long (keydatalen=%lu maxkeylen=%lu)",
(unsigned long) keydatalen,
(unsigned long) maxkeylen);
return -1;
}
if (aes_unwrap(sm->ptk.kek, maxkeylen / 8,
(const u8 *) (key + 1), gd->gtk)) {
wpa_printf(MSG_WARNING, "WPA: AES unwrap "
"failed - could not decrypt GTK");
return -1;
}
}
gd->tx = wpa_supplicant_gtk_tx_bit_workaround(
sm, !!(key_info & WPA_KEY_INFO_TXRX));
return 0;
}
static int wpa_supplicant_send_2_of_2(struct wpa_sm *sm,
const struct wpa_eapol_key *key,
int ver, u16 key_info)
{
size_t rlen;
struct wpa_eapol_key *reply;
u8 *rbuf;
rbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY, NULL,
sizeof(*reply), &rlen, (void *) &reply);
if (rbuf == NULL)
return -1;
reply->type = sm->proto == WPA_PROTO_RSN ?
EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA;
key_info &= WPA_KEY_INFO_KEY_INDEX_MASK;
key_info |= ver | WPA_KEY_INFO_MIC | WPA_KEY_INFO_SECURE;
WPA_PUT_BE16(reply->key_info, key_info);
if (sm->proto == WPA_PROTO_RSN)
WPA_PUT_BE16(reply->key_length, 0);
else
os_memcpy(reply->key_length, key->key_length, 2);
os_memcpy(reply->replay_counter, key->replay_counter,
WPA_REPLAY_COUNTER_LEN);
WPA_PUT_BE16(reply->key_data_length, 0);
wpa_printf(MSG_DEBUG, "WPA: Sending EAPOL-Key 2/2");
wpa_eapol_key_send(sm, sm->ptk.kck, ver, sm->bssid, ETH_P_EAPOL,
rbuf, rlen, reply->key_mic);
return 0;
}
static void wpa_supplicant_process_1_of_2(struct wpa_sm *sm,
const unsigned char *src_addr,
const struct wpa_eapol_key *key,
int extra_len, u16 ver)
{
u16 key_info, keydatalen;
int rekey, ret;
struct wpa_gtk_data gd;
os_memset(&gd, 0, sizeof(gd));
rekey = wpa_sm_get_state(sm) == WPA_COMPLETED;
wpa_printf(MSG_DEBUG, "WPA: RX message 1 of Group Key Handshake from "
MACSTR " (ver=%d)", MAC2STR(src_addr), ver);
key_info = WPA_GET_BE16(key->key_info);
keydatalen = WPA_GET_BE16(key->key_data_length);
if (sm->proto == WPA_PROTO_RSN) {
ret = wpa_supplicant_process_1_of_2_rsn(sm,
(const u8 *) (key + 1),
keydatalen, key_info,
&gd);
} else {
ret = wpa_supplicant_process_1_of_2_wpa(sm, key, keydatalen,
key_info, extra_len,
ver, &gd);
}
wpa_sm_set_state(sm, WPA_GROUP_HANDSHAKE);
if (ret)
return;
if (wpa_supplicant_install_gtk(sm, &gd, key->key_rsc) ||
wpa_supplicant_send_2_of_2(sm, key, ver, key_info))
return;
if (rekey) {
wpa_msg(sm->ctx->ctx, MSG_INFO, "WPA: Group rekeying "
"completed with " MACSTR " [GTK=%s]",
MAC2STR(sm->bssid), wpa_cipher_txt(sm->group_cipher));
wpa_sm_set_state(sm, WPA_COMPLETED);
} else {
wpa_supplicant_key_neg_complete(sm, sm->bssid,
key_info &
WPA_KEY_INFO_SECURE);
}
}
static int wpa_supplicant_verify_eapol_key_mic(struct wpa_sm *sm,
struct wpa_eapol_key *key,
u16 ver,
const u8 *buf, size_t len)
{
u8 mic[16];
int ok = 0;
os_memcpy(mic, key->key_mic, 16);
if (sm->tptk_set) {
os_memset(key->key_mic, 0, 16);
wpa_eapol_key_mic(sm->tptk.kck, ver, buf, len,
key->key_mic);
if (os_memcmp(mic, key->key_mic, 16) != 0) {
wpa_printf(MSG_WARNING, "WPA: Invalid EAPOL-Key MIC "
"when using TPTK - ignoring TPTK");
} else {
ok = 1;
sm->tptk_set = 0;
sm->ptk_set = 1;
os_memcpy(&sm->ptk, &sm->tptk, sizeof(sm->ptk));
}
}
if (!ok && sm->ptk_set) {
os_memset(key->key_mic, 0, 16);
wpa_eapol_key_mic(sm->ptk.kck, ver, buf, len,
key->key_mic);
if (os_memcmp(mic, key->key_mic, 16) != 0) {
wpa_printf(MSG_WARNING, "WPA: Invalid EAPOL-Key MIC "
"- dropping packet");
return -1;
}
ok = 1;
}
if (!ok) {
wpa_printf(MSG_WARNING, "WPA: Could not verify EAPOL-Key MIC "
"- dropping packet");
return -1;
}
os_memcpy(sm->rx_replay_counter, key->replay_counter,
WPA_REPLAY_COUNTER_LEN);
sm->rx_replay_counter_set = 1;
return 0;
}
#ifdef CONFIG_PEERKEY
static int wpa_supplicant_verify_eapol_key_mic_peerkey(
struct wpa_sm *sm, struct wpa_peerkey *peerkey,
struct wpa_eapol_key *key, u16 ver, const u8 *buf, size_t len)
{
u8 mic[16];
int ok = 0;
if (peerkey->initiator && !peerkey->stk_set) {
wpa_pmk_to_ptk(peerkey->smk, PMK_LEN, "Peer key expansion",
sm->own_addr, peerkey->addr,
peerkey->inonce, key->key_nonce,
(u8 *) &peerkey->stk, sizeof(peerkey->stk));
peerkey->stk_set = 1;
}
os_memcpy(mic, key->key_mic, 16);
if (peerkey->tstk_set) {
os_memset(key->key_mic, 0, 16);
wpa_eapol_key_mic(peerkey->tstk.kck, ver, buf, len,
key->key_mic);
if (os_memcmp(mic, key->key_mic, 16) != 0) {
wpa_printf(MSG_WARNING, "RSN: Invalid EAPOL-Key MIC "
"when using TSTK - ignoring TSTK");
} else {
ok = 1;
peerkey->tstk_set = 0;
peerkey->stk_set = 1;
os_memcpy(&peerkey->stk, &peerkey->tstk,
sizeof(peerkey->stk));
}
}
if (!ok && peerkey->stk_set) {
os_memset(key->key_mic, 0, 16);
wpa_eapol_key_mic(peerkey->stk.kck, ver, buf, len,
key->key_mic);
if (os_memcmp(mic, key->key_mic, 16) != 0) {
wpa_printf(MSG_WARNING, "RSN: Invalid EAPOL-Key MIC "
"- dropping packet");
return -1;
}
ok = 1;
}
if (!ok) {
wpa_printf(MSG_WARNING, "RSN: Could not verify EAPOL-Key MIC "
"- dropping packet");
return -1;
}
os_memcpy(peerkey->replay_counter, key->replay_counter,
WPA_REPLAY_COUNTER_LEN);
peerkey->replay_counter_set = 1;
return 0;
}
#endif /* CONFIG_PEERKEY */
/* Decrypt RSN EAPOL-Key key data (RC4 or AES-WRAP) */
static int wpa_supplicant_decrypt_key_data(struct wpa_sm *sm,
struct wpa_eapol_key *key, u16 ver)
{
u16 keydatalen = WPA_GET_BE16(key->key_data_length);
wpa_hexdump(MSG_DEBUG, "RSN: encrypted key data",
(u8 *) (key + 1), keydatalen);
if (!sm->ptk_set) {
wpa_printf(MSG_WARNING, "WPA: PTK not available, "
"cannot decrypt EAPOL-Key key data.");
return -1;
}
/* Decrypt key data here so that this operation does not need
* to be implemented separately for each message type. */
if (ver == WPA_KEY_INFO_TYPE_HMAC_MD5_RC4) {
u8 ek[32];
os_memcpy(ek, key->key_iv, 16);
os_memcpy(ek + 16, sm->ptk.kek, 16);
rc4_skip(ek, 32, 256, (u8 *) (key + 1), keydatalen);
} else if (ver == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) {
u8 *buf;
if (keydatalen % 8) {
wpa_printf(MSG_WARNING, "WPA: Unsupported "
"AES-WRAP len %d", keydatalen);
return -1;
}
keydatalen -= 8; /* AES-WRAP adds 8 bytes */
buf = os_malloc(keydatalen);
if (buf == NULL) {
wpa_printf(MSG_WARNING, "WPA: No memory for "
"AES-UNWRAP buffer");
return -1;
}
if (aes_unwrap(sm->ptk.kek, keydatalen / 8,
(u8 *) (key + 1), buf)) {
os_free(buf);
wpa_printf(MSG_WARNING, "WPA: AES unwrap failed - "
"could not decrypt EAPOL-Key key data");
return -1;
}
os_memcpy(key + 1, buf, keydatalen);
os_free(buf);
WPA_PUT_BE16(key->key_data_length, keydatalen);
}
wpa_hexdump_key(MSG_DEBUG, "WPA: decrypted EAPOL-Key key data",
(u8 *) (key + 1), keydatalen);
return 0;
}
/**
* wpa_sm_aborted_cached - Notify WPA that PMKSA caching was aborted
* @sm: Pointer to WPA state machine data from wpa_sm_init()
*/
void wpa_sm_aborted_cached(struct wpa_sm *sm)
{
if (sm && sm->cur_pmksa) {
wpa_printf(MSG_DEBUG, "RSN: Cancelling PMKSA caching attempt");
sm->cur_pmksa = NULL;
}
}
static void wpa_eapol_key_dump(const struct wpa_eapol_key *key)
{
#ifndef CONFIG_NO_STDOUT_DEBUG
u16 key_info = WPA_GET_BE16(key->key_info);
wpa_printf(MSG_DEBUG, " EAPOL-Key type=%d", key->type);
wpa_printf(MSG_DEBUG, " key_info 0x%x (ver=%d keyidx=%d rsvd=%d %s"
"%s%s%s%s%s%s%s)",
key_info, key_info & WPA_KEY_INFO_TYPE_MASK,
(key_info & WPA_KEY_INFO_KEY_INDEX_MASK) >>
WPA_KEY_INFO_KEY_INDEX_SHIFT,
(key_info & (BIT(13) | BIT(14) | BIT(15))) >> 13,
key_info & WPA_KEY_INFO_KEY_TYPE ? "Pairwise" : "Group",
key_info & WPA_KEY_INFO_INSTALL ? " Install" : "",
key_info & WPA_KEY_INFO_ACK ? " Ack" : "",
key_info & WPA_KEY_INFO_MIC ? " MIC" : "",
key_info & WPA_KEY_INFO_SECURE ? " Secure" : "",
key_info & WPA_KEY_INFO_ERROR ? " Error" : "",
key_info & WPA_KEY_INFO_REQUEST ? " Request" : "",
key_info & WPA_KEY_INFO_ENCR_KEY_DATA ? " Encr" : "");
wpa_printf(MSG_DEBUG, " key_length=%u key_data_length=%u",
WPA_GET_BE16(key->key_length),
WPA_GET_BE16(key->key_data_length));
wpa_hexdump(MSG_DEBUG, " replay_counter",
key->replay_counter, WPA_REPLAY_COUNTER_LEN);
wpa_hexdump(MSG_DEBUG, " key_nonce", key->key_nonce, WPA_NONCE_LEN);
wpa_hexdump(MSG_DEBUG, " key_iv", key->key_iv, 16);
wpa_hexdump(MSG_DEBUG, " key_rsc", key->key_rsc, 8);
wpa_hexdump(MSG_DEBUG, " key_id (reserved)", key->key_id, 8);
wpa_hexdump(MSG_DEBUG, " key_mic", key->key_mic, 16);
#endif /* CONFIG_NO_STDOUT_DEBUG */
}
/**
* wpa_sm_rx_eapol - Process received WPA EAPOL frames
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @src_addr: Source MAC address of the EAPOL packet
* @buf: Pointer to the beginning of the EAPOL data (EAPOL header)
* @len: Length of the EAPOL frame
* Returns: 1 = WPA EAPOL-Key processed, 0 = not a WPA EAPOL-Key, -1 failure
*
* This function is called for each received EAPOL frame. Other than EAPOL-Key
* frames can be skipped if filtering is done elsewhere. wpa_sm_rx_eapol() is
* only processing WPA and WPA2 EAPOL-Key frames.
*
* The received EAPOL-Key packets are validated and valid packets are replied
* to. In addition, key material (PTK, GTK) is configured at the end of a
* successful key handshake.
*/
int wpa_sm_rx_eapol(struct wpa_sm *sm, const u8 *src_addr,
const u8 *buf, size_t len)
{
size_t plen, data_len, extra_len;
struct ieee802_1x_hdr *hdr;
struct wpa_eapol_key *key;
u16 key_info, ver;
u8 *tmp;
int ret = -1;
struct wpa_peerkey *peerkey = NULL;
if (len < sizeof(*hdr) + sizeof(*key)) {
wpa_printf(MSG_DEBUG, "WPA: EAPOL frame too short to be a WPA "
"EAPOL-Key (len %lu, expecting at least %lu)",
(unsigned long) len,
(unsigned long) sizeof(*hdr) + sizeof(*key));
return 0;
}
tmp = os_malloc(len);
if (tmp == NULL)
return -1;
os_memcpy(tmp, buf, len);
hdr = (struct ieee802_1x_hdr *) tmp;
key = (struct wpa_eapol_key *) (hdr + 1);
plen = be_to_host16(hdr->length);
data_len = plen + sizeof(*hdr);
wpa_printf(MSG_DEBUG, "IEEE 802.1X RX: version=%d type=%d length=%lu",
hdr->version, hdr->type, (unsigned long) plen);
if (hdr->version < EAPOL_VERSION) {
/* TODO: backwards compatibility */
}
if (hdr->type != IEEE802_1X_TYPE_EAPOL_KEY) {
wpa_printf(MSG_DEBUG, "WPA: EAPOL frame (type %u) discarded, "
"not a Key frame", hdr->type);
ret = 0;
goto out;
}
if (plen > len - sizeof(*hdr) || plen < sizeof(*key)) {
wpa_printf(MSG_DEBUG, "WPA: EAPOL frame payload size %lu "
"invalid (frame size %lu)",
(unsigned long) plen, (unsigned long) len);
ret = 0;
goto out;
}
if (key->type != EAPOL_KEY_TYPE_WPA && key->type != EAPOL_KEY_TYPE_RSN)
{
wpa_printf(MSG_DEBUG, "WPA: EAPOL-Key type (%d) unknown, "
"discarded", key->type);
ret = 0;
goto out;
}
wpa_eapol_key_dump(key);
eapol_sm_notify_lower_layer_success(sm->eapol);
wpa_hexdump(MSG_MSGDUMP, "WPA: RX EAPOL-Key", tmp, len);
if (data_len < len) {
wpa_printf(MSG_DEBUG, "WPA: ignoring %lu bytes after the IEEE "
"802.1X data", (unsigned long) len - data_len);
}
key_info = WPA_GET_BE16(key->key_info);
ver = key_info & WPA_KEY_INFO_TYPE_MASK;
if (ver != WPA_KEY_INFO_TYPE_HMAC_MD5_RC4 &&
ver != WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) {
wpa_printf(MSG_INFO, "WPA: Unsupported EAPOL-Key descriptor "
"version %d.", ver);
goto out;
}
if (sm->pairwise_cipher == WPA_CIPHER_CCMP &&
ver != WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) {
wpa_printf(MSG_INFO, "WPA: CCMP is used, but EAPOL-Key "
"descriptor version (%d) is not 2.", ver);
if (sm->group_cipher != WPA_CIPHER_CCMP &&
!(key_info & WPA_KEY_INFO_KEY_TYPE)) {
/* Earlier versions of IEEE 802.11i did not explicitly
* require version 2 descriptor for all EAPOL-Key
* packets, so allow group keys to use version 1 if
* CCMP is not used for them. */
wpa_printf(MSG_INFO, "WPA: Backwards compatibility: "
"allow invalid version for non-CCMP group "
"keys");
} else
goto out;
}
#ifdef CONFIG_PEERKEY
for (peerkey = sm->peerkey; peerkey; peerkey = peerkey->next) {
if (os_memcmp(peerkey->addr, src_addr, ETH_ALEN) == 0)
break;
}
if (!(key_info & WPA_KEY_INFO_SMK_MESSAGE) && peerkey) {
if (!peerkey->initiator && peerkey->replay_counter_set &&
os_memcmp(key->replay_counter, peerkey->replay_counter,
WPA_REPLAY_COUNTER_LEN) <= 0) {
wpa_printf(MSG_WARNING, "RSN: EAPOL-Key Replay "
"Counter did not increase (STK) - dropping "
"packet");
goto out;
} else if (peerkey->initiator) {
u8 _tmp[WPA_REPLAY_COUNTER_LEN];
os_memcpy(_tmp, key->replay_counter,
WPA_REPLAY_COUNTER_LEN);
inc_byte_array(_tmp, WPA_REPLAY_COUNTER_LEN);
if (os_memcmp(_tmp, peerkey->replay_counter,
WPA_REPLAY_COUNTER_LEN) != 0) {
wpa_printf(MSG_DEBUG, "RSN: EAPOL-Key Replay "
"Counter did not match (STK) - "
"dropping packet");
goto out;
}
}
}
if (peerkey && peerkey->initiator && (key_info & WPA_KEY_INFO_ACK)) {
wpa_printf(MSG_INFO, "RSN: Ack bit in key_info from STK peer");
goto out;
}
#endif /* CONFIG_PEERKEY */
if (!peerkey && sm->rx_replay_counter_set &&
os_memcmp(key->replay_counter, sm->rx_replay_counter,
WPA_REPLAY_COUNTER_LEN) <= 0) {
wpa_printf(MSG_WARNING, "WPA: EAPOL-Key Replay Counter did not"
" increase - dropping packet");
goto out;
}
if (!(key_info & (WPA_KEY_INFO_ACK | WPA_KEY_INFO_SMK_MESSAGE))
#ifdef CONFIG_PEERKEY
&& (peerkey == NULL || !peerkey->initiator)
#endif /* CONFIG_PEERKEY */
) {
wpa_printf(MSG_INFO, "WPA: No Ack bit in key_info");
goto out;
}
if (key_info & WPA_KEY_INFO_REQUEST) {
wpa_printf(MSG_INFO, "WPA: EAPOL-Key with Request bit - "
"dropped");
goto out;
}
if ((key_info & WPA_KEY_INFO_MIC) && !peerkey &&
wpa_supplicant_verify_eapol_key_mic(sm, key, ver, tmp, data_len))
goto out;
#ifdef CONFIG_PEERKEY
if ((key_info & WPA_KEY_INFO_MIC) && peerkey &&
wpa_supplicant_verify_eapol_key_mic_peerkey(
sm, peerkey, key, ver, tmp, data_len))
goto out;
#endif /* CONFIG_PEERKEY */
extra_len = data_len - sizeof(*hdr) - sizeof(*key);
if (WPA_GET_BE16(key->key_data_length) > extra_len) {
wpa_msg(sm->ctx->ctx, MSG_INFO, "WPA: Invalid EAPOL-Key "
"frame - key_data overflow (%d > %lu)",
WPA_GET_BE16(key->key_data_length),
(unsigned long) extra_len);
goto out;
}
extra_len = WPA_GET_BE16(key->key_data_length);
if (sm->proto == WPA_PROTO_RSN &&
(key_info & WPA_KEY_INFO_ENCR_KEY_DATA)) {
if (wpa_supplicant_decrypt_key_data(sm, key, ver))
goto out;
extra_len = WPA_GET_BE16(key->key_data_length);
}
if (key_info & WPA_KEY_INFO_KEY_TYPE) {
if (key_info & WPA_KEY_INFO_KEY_INDEX_MASK) {
wpa_printf(MSG_WARNING, "WPA: Ignored EAPOL-Key "
"(Pairwise) with non-zero key index");
goto out;
}
#ifdef CONFIG_PEERKEY
if (peerkey) {
if ((key_info & (WPA_KEY_INFO_MIC | WPA_KEY_INFO_ACK))
== (WPA_KEY_INFO_MIC | WPA_KEY_INFO_ACK)) {
/* 3/4 STK 4-Way Handshake */
wpa_supplicant_process_stk_3_of_4(sm, peerkey,
key, ver);
} else if (key_info & WPA_KEY_INFO_ACK) {
/* 1/4 STK 4-Way Handshake */
wpa_supplicant_process_stk_1_of_4(sm, peerkey,
key, ver);
} else if (key_info & WPA_KEY_INFO_SECURE) {
/* 4/4 STK 4-Way Handshake */
wpa_supplicant_process_stk_4_of_4(sm, peerkey,
key, ver);
} else {
/* 2/4 STK 4-Way Handshake */
wpa_supplicant_process_stk_2_of_4(sm, peerkey,
key, ver);
}
} else
#endif /* CONFIG_PEERKEY */
if (key_info & WPA_KEY_INFO_MIC) {
/* 3/4 4-Way Handshake */
wpa_supplicant_process_3_of_4(sm, key, ver);
} else {
/* 1/4 4-Way Handshake */
wpa_supplicant_process_1_of_4(sm, src_addr, key,
ver);
}
} else if (key_info & WPA_KEY_INFO_SMK_MESSAGE) {
#ifdef CONFIG_PEERKEY
if (key_info & WPA_KEY_INFO_ERROR) {
/* SMK Error */
wpa_supplicant_process_smk_error(sm, src_addr, key,
extra_len);
} else if (key_info & WPA_KEY_INFO_ACK) {
/* SMK M2 */
wpa_supplicant_process_smk_m2(sm, src_addr, key,
extra_len, ver);
} else {
/* SMK M4 or M5 */
wpa_supplicant_process_smk_m45(sm, src_addr, key,
extra_len, ver);
}
#endif /* CONFIG_PEERKEY */
} else {
if (key_info & WPA_KEY_INFO_MIC) {
/* 1/2 Group Key Handshake */
wpa_supplicant_process_1_of_2(sm, src_addr, key,
extra_len, ver);
} else {
wpa_printf(MSG_WARNING, "WPA: EAPOL-Key (Group) "
"without Mic bit - dropped");
}
}
ret = 1;
out:
os_free(tmp);
return ret;
}
#ifdef CONFIG_CTRL_IFACE
static int wpa_cipher_bits(int cipher)
{
switch (cipher) {
case WPA_CIPHER_CCMP:
return 128;
case WPA_CIPHER_TKIP:
return 256;
case WPA_CIPHER_WEP104:
return 104;
case WPA_CIPHER_WEP40:
return 40;
default:
return 0;
}
}
static const u8 * wpa_key_mgmt_suite(struct wpa_sm *sm)
{
static const u8 *dummy = (u8 *) "\x00\x00\x00\x00";
switch (sm->key_mgmt) {
case WPA_KEY_MGMT_IEEE8021X:
return (sm->proto == WPA_PROTO_RSN ?
RSN_AUTH_KEY_MGMT_UNSPEC_802_1X :
WPA_AUTH_KEY_MGMT_UNSPEC_802_1X);
case WPA_KEY_MGMT_PSK:
return (sm->proto == WPA_PROTO_RSN ?
RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X :
WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X);
case WPA_KEY_MGMT_WPA_NONE:
return WPA_AUTH_KEY_MGMT_NONE;
default:
return dummy;
}
}
static const u8 * wpa_cipher_suite(struct wpa_sm *sm, int cipher)
{
static const u8 *dummy = (u8 *) "\x00\x00\x00\x00";
switch (cipher) {
case WPA_CIPHER_CCMP:
return (sm->proto == WPA_PROTO_RSN ?
RSN_CIPHER_SUITE_CCMP : WPA_CIPHER_SUITE_CCMP);
case WPA_CIPHER_TKIP:
return (sm->proto == WPA_PROTO_RSN ?
RSN_CIPHER_SUITE_TKIP : WPA_CIPHER_SUITE_TKIP);
case WPA_CIPHER_WEP104:
return (sm->proto == WPA_PROTO_RSN ?
RSN_CIPHER_SUITE_WEP104 : WPA_CIPHER_SUITE_WEP104);
case WPA_CIPHER_WEP40:
return (sm->proto == WPA_PROTO_RSN ?
RSN_CIPHER_SUITE_WEP40 : WPA_CIPHER_SUITE_WEP40);
case WPA_CIPHER_NONE:
return (sm->proto == WPA_PROTO_RSN ?
RSN_CIPHER_SUITE_NONE : WPA_CIPHER_SUITE_NONE);
default:
return dummy;
}
}
#define RSN_SUITE "%02x-%02x-%02x-%d"
#define RSN_SUITE_ARG(s) (s)[0], (s)[1], (s)[2], (s)[3]
/**
* wpa_sm_get_mib - Dump text list of MIB entries
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @buf: Buffer for the list
* @buflen: Length of the buffer
* Returns: Number of bytes written to buffer
*
* This function is used fetch dot11 MIB variables.
*/
int wpa_sm_get_mib(struct wpa_sm *sm, char *buf, size_t buflen)
{
char pmkid_txt[PMKID_LEN * 2 + 1];
int rsna, ret;
size_t len;
if (sm->cur_pmksa) {
wpa_snprintf_hex(pmkid_txt, sizeof(pmkid_txt),
sm->cur_pmksa->pmkid, PMKID_LEN);
} else
pmkid_txt[0] = '\0';
if ((sm->key_mgmt == WPA_KEY_MGMT_PSK ||
sm->key_mgmt == WPA_KEY_MGMT_IEEE8021X) &&
sm->proto == WPA_PROTO_RSN)
rsna = 1;
else
rsna = 0;
ret = os_snprintf(buf, buflen,
"dot11RSNAOptionImplemented=TRUE\n"
"dot11RSNAPreauthenticationImplemented=TRUE\n"
"dot11RSNAEnabled=%s\n"
"dot11RSNAPreauthenticationEnabled=%s\n"
"dot11RSNAConfigVersion=%d\n"
"dot11RSNAConfigPairwiseKeysSupported=5\n"
"dot11RSNAConfigGroupCipherSize=%d\n"
"dot11RSNAConfigPMKLifetime=%d\n"
"dot11RSNAConfigPMKReauthThreshold=%d\n"
"dot11RSNAConfigNumberOfPTKSAReplayCounters=1\n"
"dot11RSNAConfigSATimeout=%d\n",
rsna ? "TRUE" : "FALSE",
rsna ? "TRUE" : "FALSE",
RSN_VERSION,
wpa_cipher_bits(sm->group_cipher),
sm->dot11RSNAConfigPMKLifetime,
sm->dot11RSNAConfigPMKReauthThreshold,
sm->dot11RSNAConfigSATimeout);
if (ret < 0 || (size_t) ret >= buflen)
return 0;
len = ret;
ret = os_snprintf(
buf + len, buflen - len,
"dot11RSNAAuthenticationSuiteSelected=" RSN_SUITE "\n"
"dot11RSNAPairwiseCipherSelected=" RSN_SUITE "\n"
"dot11RSNAGroupCipherSelected=" RSN_SUITE "\n"
"dot11RSNAPMKIDUsed=%s\n"
"dot11RSNAAuthenticationSuiteRequested=" RSN_SUITE "\n"
"dot11RSNAPairwiseCipherRequested=" RSN_SUITE "\n"
"dot11RSNAGroupCipherRequested=" RSN_SUITE "\n"
"dot11RSNAConfigNumberOfGTKSAReplayCounters=0\n"
"dot11RSNA4WayHandshakeFailures=%u\n",
RSN_SUITE_ARG(wpa_key_mgmt_suite(sm)),
RSN_SUITE_ARG(wpa_cipher_suite(sm, sm->pairwise_cipher)),
RSN_SUITE_ARG(wpa_cipher_suite(sm, sm->group_cipher)),
pmkid_txt,
RSN_SUITE_ARG(wpa_key_mgmt_suite(sm)),
RSN_SUITE_ARG(wpa_cipher_suite(sm, sm->pairwise_cipher)),
RSN_SUITE_ARG(wpa_cipher_suite(sm, sm->group_cipher)),
sm->dot11RSNA4WayHandshakeFailures);
if (ret >= 0 && (size_t) ret < buflen)
len += ret;
return (int) len;
}
#endif /* CONFIG_CTRL_IFACE */
static void wpa_sm_pmksa_free_cb(struct rsn_pmksa_cache_entry *entry,
void *ctx, int replace)
{
struct wpa_sm *sm = ctx;
if (sm->cur_pmksa == entry ||
(sm->pmk_len == entry->pmk_len &&
os_memcmp(sm->pmk, entry->pmk, sm->pmk_len) == 0)) {
wpa_printf(MSG_DEBUG, "RSN: removed current PMKSA entry");
sm->cur_pmksa = NULL;
if (replace) {
/* A new entry is being added, so no need to
* deauthenticate in this case. This happens when EAP
* authentication is completed again (reauth or failed
* PMKSA caching attempt). */
return;
}
os_memset(sm->pmk, 0, sizeof(sm->pmk));
wpa_sm_deauthenticate(sm, REASON_UNSPECIFIED);
}
}
/**
* wpa_sm_init - Initialize WPA state machine
* @ctx: Context pointer for callbacks; this needs to be an allocated buffer
* Returns: Pointer to the allocated WPA state machine data
*
* This function is used to allocate a new WPA state machine and the returned
* value is passed to all WPA state machine calls.
*/
struct wpa_sm * wpa_sm_init(struct wpa_sm_ctx *ctx)
{
struct wpa_sm *sm;
sm = os_zalloc(sizeof(*sm));
if (sm == NULL)
return NULL;
sm->renew_snonce = 1;
sm->ctx = ctx;
sm->dot11RSNAConfigPMKLifetime = 43200;
sm->dot11RSNAConfigPMKReauthThreshold = 70;
sm->dot11RSNAConfigSATimeout = 60;
sm->pmksa = pmksa_cache_init(wpa_sm_pmksa_free_cb, sm, sm);
if (sm->pmksa == NULL) {
wpa_printf(MSG_ERROR, "RSN: PMKSA cache initialization "
"failed");
os_free(sm);
return NULL;
}
return sm;
}
/**
* wpa_sm_deinit - Deinitialize WPA state machine
* @sm: Pointer to WPA state machine data from wpa_sm_init()
*/
void wpa_sm_deinit(struct wpa_sm *sm)
{
if (sm == NULL)
return;
pmksa_cache_deinit(sm->pmksa);
eloop_cancel_timeout(wpa_sm_start_preauth, sm, NULL);
os_free(sm->assoc_wpa_ie);
os_free(sm->ap_wpa_ie);
os_free(sm->ap_rsn_ie);
os_free(sm->ctx);
#ifdef CONFIG_PEERKEY
{
struct wpa_peerkey *prev, *peerkey = sm->peerkey;
while (peerkey) {
prev = peerkey;
peerkey = peerkey->next;
os_free(prev);
}
}
#endif /* CONFIG_PEERKEY */
os_free(sm);
}
/**
* wpa_sm_notify_assoc - Notify WPA state machine about association
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @bssid: The BSSID of the new association
*
* This function is called to let WPA state machine know that the connection
* was established.
*/
void wpa_sm_notify_assoc(struct wpa_sm *sm, const u8 *bssid)
{
if (sm == NULL)
return;
wpa_printf(MSG_DEBUG, "WPA: Association event - clear replay counter");
os_memcpy(sm->bssid, bssid, ETH_ALEN);
os_memset(sm->rx_replay_counter, 0, WPA_REPLAY_COUNTER_LEN);
sm->rx_replay_counter_set = 0;
sm->renew_snonce = 1;
if (os_memcmp(sm->preauth_bssid, bssid, ETH_ALEN) == 0)
rsn_preauth_deinit(sm);
}
/**
* wpa_sm_notify_disassoc - Notify WPA state machine about disassociation
* @sm: Pointer to WPA state machine data from wpa_sm_init()
*
* This function is called to let WPA state machine know that the connection
* was lost. This will abort any existing pre-authentication session.
*/
void wpa_sm_notify_disassoc(struct wpa_sm *sm)
{
rsn_preauth_deinit(sm);
if (wpa_sm_get_state(sm) == WPA_4WAY_HANDSHAKE)
sm->dot11RSNA4WayHandshakeFailures++;
}
/**
* wpa_sm_set_pmk - Set PMK
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @pmk: The new PMK
* @pmk_len: The length of the new PMK in bytes
*
* Configure the PMK for WPA state machine.
*/
void wpa_sm_set_pmk(struct wpa_sm *sm, const u8 *pmk, size_t pmk_len)
{
if (sm == NULL)
return;
sm->pmk_len = pmk_len;
os_memcpy(sm->pmk, pmk, pmk_len);
}
/**
* wpa_sm_set_pmk_from_pmksa - Set PMK based on the current PMKSA
* @sm: Pointer to WPA state machine data from wpa_sm_init()
*
* Take the PMK from the current PMKSA into use. If no PMKSA is active, the PMK
* will be cleared.
*/
void wpa_sm_set_pmk_from_pmksa(struct wpa_sm *sm)
{
if (sm == NULL)
return;
if (sm->cur_pmksa) {
sm->pmk_len = sm->cur_pmksa->pmk_len;
os_memcpy(sm->pmk, sm->cur_pmksa->pmk, sm->pmk_len);
} else {
sm->pmk_len = PMK_LEN;
os_memset(sm->pmk, 0, PMK_LEN);
}
}
/**
* wpa_sm_set_fast_reauth - Set fast reauthentication (EAP) enabled/disabled
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @fast_reauth: Whether fast reauthentication (EAP) is allowed
*/
void wpa_sm_set_fast_reauth(struct wpa_sm *sm, int fast_reauth)
{
if (sm)
sm->fast_reauth = fast_reauth;
}
/**
* wpa_sm_set_scard_ctx - Set context pointer for smartcard callbacks
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @scard_ctx: Context pointer for smartcard related callback functions
*/
void wpa_sm_set_scard_ctx(struct wpa_sm *sm, void *scard_ctx)
{
if (sm == NULL)
return;
sm->scard_ctx = scard_ctx;
if (sm->preauth_eapol)
eapol_sm_register_scard_ctx(sm->preauth_eapol, scard_ctx);
}
/**
* wpa_sm_set_config - Notification of current configration change
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @config: Pointer to current network configuration
*
* Notify WPA state machine that configuration has changed. config will be
* stored as a backpointer to network configuration. This can be %NULL to clear
* the stored pointed.
*/
void wpa_sm_set_config(struct wpa_sm *sm, struct wpa_ssid *config)
{
if (sm) {
sm->cur_ssid = config;
pmksa_cache_notify_reconfig(sm->pmksa);
}
}
/**
* wpa_sm_set_own_addr - Set own MAC address
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @addr: Own MAC address
*/
void wpa_sm_set_own_addr(struct wpa_sm *sm, const u8 *addr)
{
if (sm)
os_memcpy(sm->own_addr, addr, ETH_ALEN);
}
/**
* wpa_sm_set_ifname - Set network interface name
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @ifname: Interface name
* @bridge_ifname: Optional bridge interface name (for pre-auth)
*/
void wpa_sm_set_ifname(struct wpa_sm *sm, const char *ifname,
const char *bridge_ifname)
{
if (sm) {
sm->ifname = ifname;
sm->bridge_ifname = bridge_ifname;
}
}
/**
* wpa_sm_set_eapol - Set EAPOL state machine pointer
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @eapol: Pointer to EAPOL state machine allocated with eapol_sm_init()
*/
void wpa_sm_set_eapol(struct wpa_sm *sm, struct eapol_sm *eapol)
{
if (sm)
sm->eapol = eapol;
}
/**
* wpa_sm_set_param - Set WPA state machine parameters
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @param: Parameter field
* @value: Parameter value
* Returns: 0 on success, -1 on failure
*/
int wpa_sm_set_param(struct wpa_sm *sm, enum wpa_sm_conf_params param,
unsigned int value)
{
int ret = 0;
if (sm == NULL)
return -1;
switch (param) {
case RSNA_PMK_LIFETIME:
if (value > 0)
sm->dot11RSNAConfigPMKLifetime = value;
else
ret = -1;
break;
case RSNA_PMK_REAUTH_THRESHOLD:
if (value > 0 && value <= 100)
sm->dot11RSNAConfigPMKReauthThreshold = value;
else
ret = -1;
break;
case RSNA_SA_TIMEOUT:
if (value > 0)
sm->dot11RSNAConfigSATimeout = value;
else
ret = -1;
break;
case WPA_PARAM_PROTO:
sm->proto = value;
break;
case WPA_PARAM_PAIRWISE:
sm->pairwise_cipher = value;
break;
case WPA_PARAM_GROUP:
sm->group_cipher = value;
break;
case WPA_PARAM_KEY_MGMT:
sm->key_mgmt = value;
break;
#ifdef CONFIG_IEEE80211W
case WPA_PARAM_MGMT_GROUP:
sm->mgmt_group_cipher = value;
break;
#endif /* CONFIG_IEEE80211W */
default:
break;
}
return ret;
}
/**
* wpa_sm_get_param - Get WPA state machine parameters
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @param: Parameter field
* Returns: Parameter value
*/
unsigned int wpa_sm_get_param(struct wpa_sm *sm, enum wpa_sm_conf_params param)
{
if (sm == NULL)
return 0;
switch (param) {
case RSNA_PMK_LIFETIME:
return sm->dot11RSNAConfigPMKLifetime;
case RSNA_PMK_REAUTH_THRESHOLD:
return sm->dot11RSNAConfigPMKReauthThreshold;
case RSNA_SA_TIMEOUT:
return sm->dot11RSNAConfigSATimeout;
case WPA_PARAM_PROTO:
return sm->proto;
case WPA_PARAM_PAIRWISE:
return sm->pairwise_cipher;
case WPA_PARAM_GROUP:
return sm->group_cipher;
case WPA_PARAM_KEY_MGMT:
return sm->key_mgmt;
#ifdef CONFIG_IEEE80211W
case WPA_PARAM_MGMT_GROUP:
return sm->mgmt_group_cipher;
#endif /* CONFIG_IEEE80211W */
default:
return 0;
}
}
/**
* wpa_sm_get_status - Get WPA state machine
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @buf: Buffer for status information
* @buflen: Maximum buffer length
* @verbose: Whether to include verbose status information
* Returns: Number of bytes written to buf.
*
* Query WPA state machine for status information. This function fills in
* a text area with current status information. If the buffer (buf) is not
* large enough, status information will be truncated to fit the buffer.
*/
int wpa_sm_get_status(struct wpa_sm *sm, char *buf, size_t buflen,
int verbose)
{
char *pos = buf, *end = buf + buflen;
int ret;
ret = os_snprintf(pos, end - pos,
"pairwise_cipher=%s\n"
"group_cipher=%s\n"
"key_mgmt=%s\n",
wpa_cipher_txt(sm->pairwise_cipher),
wpa_cipher_txt(sm->group_cipher),
wpa_key_mgmt_txt(sm->key_mgmt, sm->proto));
if (ret < 0 || ret >= end - pos)
return pos - buf;
pos += ret;
return pos - buf;
}
/**
* wpa_sm_set_assoc_wpa_ie_default - Generate own WPA/RSN IE from configuration
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @wpa_ie: Pointer to buffer for WPA/RSN IE
* @wpa_ie_len: Pointer to the length of the wpa_ie buffer
* Returns: 0 on success, -1 on failure
*/
int wpa_sm_set_assoc_wpa_ie_default(struct wpa_sm *sm, u8 *wpa_ie,
size_t *wpa_ie_len)
{
int res;
if (sm == NULL)
return -1;
res = wpa_gen_wpa_ie(sm, wpa_ie, *wpa_ie_len);
if (res < 0)
return -1;
*wpa_ie_len = res;
wpa_hexdump(MSG_DEBUG, "WPA: Set own WPA IE default",
wpa_ie, *wpa_ie_len);
if (sm->assoc_wpa_ie == NULL) {
/*
* Make a copy of the WPA/RSN IE so that 4-Way Handshake gets
* the correct version of the IE even if PMKSA caching is
* aborted (which would remove PMKID from IE generation).
*/
sm->assoc_wpa_ie = os_malloc(*wpa_ie_len);
if (sm->assoc_wpa_ie == NULL)
return -1;
os_memcpy(sm->assoc_wpa_ie, wpa_ie, *wpa_ie_len);
sm->assoc_wpa_ie_len = *wpa_ie_len;
}
return 0;
}
/**
* wpa_sm_set_assoc_wpa_ie - Set own WPA/RSN IE from (Re)AssocReq
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @ie: Pointer to IE data (starting from id)
* @len: IE length
* Returns: 0 on success, -1 on failure
*
* Inform WPA state machine about the WPA/RSN IE used in (Re)Association
* Request frame. The IE will be used to override the default value generated
* with wpa_sm_set_assoc_wpa_ie_default().
*/
int wpa_sm_set_assoc_wpa_ie(struct wpa_sm *sm, const u8 *ie, size_t len)
{
if (sm == NULL)
return -1;
os_free(sm->assoc_wpa_ie);
if (ie == NULL || len == 0) {
wpa_printf(MSG_DEBUG, "WPA: clearing own WPA/RSN IE");
sm->assoc_wpa_ie = NULL;
sm->assoc_wpa_ie_len = 0;
} else {
wpa_hexdump(MSG_DEBUG, "WPA: set own WPA/RSN IE", ie, len);
sm->assoc_wpa_ie = os_malloc(len);
if (sm->assoc_wpa_ie == NULL)
return -1;
os_memcpy(sm->assoc_wpa_ie, ie, len);
sm->assoc_wpa_ie_len = len;
}
return 0;
}
/**
* wpa_sm_set_ap_wpa_ie - Set AP WPA IE from Beacon/ProbeResp
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @ie: Pointer to IE data (starting from id)
* @len: IE length
* Returns: 0 on success, -1 on failure
*
* Inform WPA state machine about the WPA IE used in Beacon / Probe Response
* frame.
*/
int wpa_sm_set_ap_wpa_ie(struct wpa_sm *sm, const u8 *ie, size_t len)
{
if (sm == NULL)
return -1;
os_free(sm->ap_wpa_ie);
if (ie == NULL || len == 0) {
wpa_printf(MSG_DEBUG, "WPA: clearing AP WPA IE");
sm->ap_wpa_ie = NULL;
sm->ap_wpa_ie_len = 0;
} else {
wpa_hexdump(MSG_DEBUG, "WPA: set AP WPA IE", ie, len);
sm->ap_wpa_ie = os_malloc(len);
if (sm->ap_wpa_ie == NULL)
return -1;
os_memcpy(sm->ap_wpa_ie, ie, len);
sm->ap_wpa_ie_len = len;
}
return 0;
}
/**
* wpa_sm_set_ap_rsn_ie - Set AP RSN IE from Beacon/ProbeResp
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @ie: Pointer to IE data (starting from id)
* @len: IE length
* Returns: 0 on success, -1 on failure
*
* Inform WPA state machine about the RSN IE used in Beacon / Probe Response
* frame.
*/
int wpa_sm_set_ap_rsn_ie(struct wpa_sm *sm, const u8 *ie, size_t len)
{
if (sm == NULL)
return -1;
os_free(sm->ap_rsn_ie);
if (ie == NULL || len == 0) {
wpa_printf(MSG_DEBUG, "WPA: clearing AP RSN IE");
sm->ap_rsn_ie = NULL;
sm->ap_rsn_ie_len = 0;
} else {
wpa_hexdump(MSG_DEBUG, "WPA: set AP RSN IE", ie, len);
sm->ap_rsn_ie = os_malloc(len);
if (sm->ap_rsn_ie == NULL)
return -1;
os_memcpy(sm->ap_rsn_ie, ie, len);
sm->ap_rsn_ie_len = len;
}
return 0;
}
/**
* wpa_sm_parse_own_wpa_ie - Parse own WPA/RSN IE
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @data: Pointer to data area for parsing results
* Returns: 0 on success, -1 if IE is not known, or -2 on parsing failure
*
* Parse the contents of the own WPA or RSN IE from (Re)AssocReq and write the
* parsed data into data.
*/
int wpa_sm_parse_own_wpa_ie(struct wpa_sm *sm, struct wpa_ie_data *data)
{
if (sm == NULL || sm->assoc_wpa_ie == NULL) {
wpa_printf(MSG_DEBUG, "WPA: No WPA/RSN IE available from "
"association info");
return -1;
}
if (wpa_parse_wpa_ie(sm->assoc_wpa_ie, sm->assoc_wpa_ie_len, data))
return -2;
return 0;
}