| ##### Example wpa_supplicant configuration file ############################### |
| # |
| # This file describes configuration file format and lists all available option. |
| # Please also take a look at simpler configuration examples in 'examples' |
| # subdirectory. |
| # |
| # Empty lines and lines starting with # are ignored |
| |
| # NOTE! This file may contain password information and should probably be made |
| # readable only by root user on multiuser systems. |
| |
| # Note: All file paths in this configuration file should use full (absolute, |
| # not relative to working directory) path in order to allow working directory |
| # to be changed. This can happen if wpa_supplicant is run in the background. |
| |
| # Whether to allow wpa_supplicant to update (overwrite) configuration |
| # |
| # This option can be used to allow wpa_supplicant to overwrite configuration |
| # file whenever configuration is changed (e.g., new network block is added with |
| # wpa_cli or wpa_gui, or a password is changed). This is required for |
| # wpa_cli/wpa_gui to be able to store the configuration changes permanently. |
| # Please note that overwriting configuration file will remove the comments from |
| # it. |
| update_config=1 |
| |
| # global configuration (shared by all network blocks) |
| # |
| # Parameters for the control interface. If this is specified, wpa_supplicant |
| # will open a control interface that is available for external programs to |
| # manage wpa_supplicant. The meaning of this string depends on which control |
| # interface mechanism is used. For all cases, the existance of this parameter |
| # in configuration is used to determine whether the control interface is |
| # enabled. |
| # |
| # For UNIX domain sockets (default on Linux and BSD): This is a directory that |
| # will be created for UNIX domain sockets for listening to requests from |
| # external programs (CLI/GUI, etc.) for status information and configuration. |
| # The socket file will be named based on the interface name, so multiple |
| # wpa_supplicant processes can be run at the same time if more than one |
| # interface is used. |
| # /var/run/wpa_supplicant is the recommended directory for sockets and by |
| # default, wpa_cli will use it when trying to connect with wpa_supplicant. |
| # |
| # Access control for the control interface can be configured by setting the |
| # directory to allow only members of a group to use sockets. This way, it is |
| # possible to run wpa_supplicant as root (since it needs to change network |
| # configuration and open raw sockets) and still allow GUI/CLI components to be |
| # run as non-root users. However, since the control interface can be used to |
| # change the network configuration, this access needs to be protected in many |
| # cases. By default, wpa_supplicant is configured to use gid 0 (root). If you |
| # want to allow non-root users to use the control interface, add a new group |
| # and change this value to match with that group. Add users that should have |
| # control interface access to this group. If this variable is commented out or |
| # not included in the configuration file, group will not be changed from the |
| # value it got by default when the directory or socket was created. |
| # |
| # When configuring both the directory and group, use following format: |
| # DIR=/var/run/wpa_supplicant GROUP=wheel |
| # DIR=/var/run/wpa_supplicant GROUP=0 |
| # (group can be either group name or gid) |
| # |
| # For UDP connections (default on Windows): The value will be ignored. This |
| # variable is just used to select that the control interface is to be created. |
| # The value can be set to, e.g., udp (ctrl_interface=udp) |
| # |
| # For Windows Named Pipe: This value can be used to set the security descriptor |
| # for controlling access to the control interface. Security descriptor can be |
| # set using Security Descriptor String Format (see http://msdn.microsoft.com/ |
| # library/default.asp?url=/library/en-us/secauthz/security/ |
| # security_descriptor_string_format.asp). The descriptor string needs to be |
| # prefixed with SDDL=. For example, ctrl_interface=SDDL=D: would set an empty |
| # DACL (which will reject all connections). See README-Windows.txt for more |
| # information about SDDL string format. |
| # |
| ctrl_interface=wlan0 |
| |
| # IEEE 802.1X/EAPOL version |
| # wpa_supplicant is implemented based on IEEE Std 802.1X-2004 which defines |
| # EAPOL version 2. However, there are many APs that do not handle the new |
| # version number correctly (they seem to drop the frames completely). In order |
| # to make wpa_supplicant interoperate with these APs, the version number is set |
| # to 1 by default. This configuration value can be used to set it to the new |
| # version (2). |
| eapol_version=1 |
| |
| # AP scanning/selection |
| # By default, wpa_supplicant requests driver to perform AP scanning and then |
| # uses the scan results to select a suitable AP. Another alternative is to |
| # allow the driver to take care of AP scanning and selection and use |
| # wpa_supplicant just to process EAPOL frames based on IEEE 802.11 association |
| # information from the driver. |
| # 1: wpa_supplicant initiates scanning and AP selection |
| # 0: driver takes care of scanning, AP selection, and IEEE 802.11 association |
| # parameters (e.g., WPA IE generation); this mode can also be used with |
| # non-WPA drivers when using IEEE 802.1X mode; do not try to associate with |
| # APs (i.e., external program needs to control association). This mode must |
| # also be used when using wired Ethernet drivers. |
| # 2: like 0, but associate with APs using security policy and SSID (but not |
| # BSSID); this can be used, e.g., with ndiswrapper and NDIS drivers to |
| # enable operation with hidden SSIDs and optimized roaming; in this mode, |
| # the network blocks in the configuration file are tried one by one until |
| # the driver reports successful association; each network block should have |
| # explicit security policy (i.e., only one option in the lists) for |
| # key_mgmt, pairwise, group, proto variables |
| ap_scan=1 |
| |
| # EAP fast re-authentication |
| # By default, fast re-authentication is enabled for all EAP methods that |
| # support it. This variable can be used to disable fast re-authentication. |
| # Normally, there is no need to disable this. |
| fast_reauth=1 |
| |
| # OpenSSL Engine support |
| # These options can be used to load OpenSSL engines. |
| # The two engines that are supported currently are shown below: |
| # They are both from the opensc project (http://www.opensc.org/) |
| # By default no engines are loaded. |
| # make the opensc engine available |
| #opensc_engine_path=/usr/lib/opensc/engine_opensc.so |
| # make the pkcs11 engine available |
| #pkcs11_engine_path=/usr/lib/opensc/engine_pkcs11.so |
| # configure the path to the pkcs11 module required by the pkcs11 engine |
| #pkcs11_module_path=/usr/lib/pkcs11/opensc-pkcs11.so |
| |
| # Dynamic EAP methods |
| # If EAP methods were built dynamically as shared object files, they need to be |
| # loaded here before being used in the network blocks. By default, EAP methods |
| # are included statically in the build, so these lines are not needed |
| #load_dynamic_eap=/usr/lib/wpa_supplicant/eap_tls.so |
| #load_dynamic_eap=/usr/lib/wpa_supplicant/eap_md5.so |
| |
| # Driver interface parameters |
| # This field can be used to configure arbitrary driver interace parameters. The |
| # format is specific to the selected driver interface. This field is not used |
| # in most cases. |
| #driver_param="field=value" |
| |
| # Maximum lifetime for PMKSA in seconds; default 43200 |
| #dot11RSNAConfigPMKLifetime=43200 |
| # Threshold for reauthentication (percentage of PMK lifetime); default 70 |
| #dot11RSNAConfigPMKReauthThreshold=70 |
| # Timeout for security association negotiation in seconds; default 60 |
| #dot11RSNAConfigSATimeout=60 |
| |
| # network block |
| # |
| # Each network (usually AP's sharing the same SSID) is configured as a separate |
| # block in this configuration file. The network blocks are in preference order |
| # (the first match is used). |
| # |
| # network block fields: |
| # |
| # disabled: |
| # 0 = this network can be used (default) |
| # 1 = this network block is disabled (can be enabled through ctrl_iface, |
| # e.g., with wpa_cli or wpa_gui) |
| # |
| # id_str: Network identifier string for external scripts. This value is passed |
| # to external action script through wpa_cli as WPA_ID_STR environment |
| # variable to make it easier to do network specific configuration. |
| # |
| # ssid: SSID (mandatory); either as an ASCII string with double quotation or |
| # as hex string; network name |
| # |
| # scan_ssid: |
| # 0 = do not scan this SSID with specific Probe Request frames (default) |
| # 1 = scan with SSID-specific Probe Request frames (this can be used to |
| # find APs that do not accept broadcast SSID or use multiple SSIDs; |
| # this will add latency to scanning, so enable this only when needed) |
| # |
| # bssid: BSSID (optional); if set, this network block is used only when |
| # associating with the AP using the configured BSSID |
| # |
| # priority: priority group (integer) |
| # By default, all networks will get same priority group (0). If some of the |
| # networks are more desirable, this field can be used to change the order in |
| # which wpa_supplicant goes through the networks when selecting a BSS. The |
| # priority groups will be iterated in decreasing priority (i.e., the larger the |
| # priority value, the sooner the network is matched against the scan results). |
| # Within each priority group, networks will be selected based on security |
| # policy, signal strength, etc. |
| # Please note that AP scanning with scan_ssid=1 and ap_scan=2 mode are not |
| # using this priority to select the order for scanning. Instead, they try the |
| # networks in the order that used in the configuration file. |
| # |
| # mode: IEEE 802.11 operation mode |
| # 0 = infrastructure (Managed) mode, i.e., associate with an AP (default) |
| # 1 = IBSS (ad-hoc, peer-to-peer) |
| # Note: IBSS can only be used with key_mgmt NONE (plaintext and static WEP) |
| # and key_mgmt=WPA-NONE (fixed group key TKIP/CCMP). In addition, ap_scan has |
| # to be set to 2 for IBSS. WPA-None requires following network block options: |
| # proto=WPA, key_mgmt=WPA-NONE, pairwise=NONE, group=TKIP (or CCMP, but not |
| # both), and psk must also be set. |
| # |
| # frequency: Channel frequency in megahertz (MHz) for IBSS, e.g., |
| # 2412 = IEEE 802.11b/g channel 1. This value is used to configure the initial |
| # channel for IBSS (adhoc) networks. It is ignored in the infrastructure mode. |
| # In addition, this value is only used by the station that creates the IBSS. If |
| # an IBSS network with the configured SSID is already present, the frequency of |
| # the network will be used instead of this configured value. |
| # |
| # proto: list of accepted protocols |
| # WPA = WPA/IEEE 802.11i/D3.0 |
| # RSN = WPA2/IEEE 802.11i (also WPA2 can be used as an alias for RSN) |
| # If not set, this defaults to: WPA RSN |
| # |
| # key_mgmt: list of accepted authenticated key management protocols |
| # WPA-PSK = WPA pre-shared key (this requires 'psk' field) |
| # WPA-EAP = WPA using EAP authentication (this can use an external |
| # program, e.g., Xsupplicant, for IEEE 802.1X EAP Authentication |
| # IEEE8021X = IEEE 802.1X using EAP authentication and (optionally) dynamically |
| # generated WEP keys |
| # NONE = WPA is not used; plaintext or static WEP could be used |
| # If not set, this defaults to: WPA-PSK WPA-EAP |
| # |
| # auth_alg: list of allowed IEEE 802.11 authentication algorithms |
| # OPEN = Open System authentication (required for WPA/WPA2) |
| # SHARED = Shared Key authentication (requires static WEP keys) |
| # LEAP = LEAP/Network EAP (only used with LEAP) |
| # If not set, automatic selection is used (Open System with LEAP enabled if |
| # LEAP is allowed as one of the EAP methods). |
| # |
| # pairwise: list of accepted pairwise (unicast) ciphers for WPA |
| # CCMP = AES in Counter mode with CBC-MAC [RFC 3610, IEEE 802.11i/D7.0] |
| # TKIP = Temporal Key Integrity Protocol [IEEE 802.11i/D7.0] |
| # NONE = Use only Group Keys (deprecated, should not be included if APs support |
| # pairwise keys) |
| # If not set, this defaults to: CCMP TKIP |
| # |
| # group: list of accepted group (broadcast/multicast) ciphers for WPA |
| # CCMP = AES in Counter mode with CBC-MAC [RFC 3610, IEEE 802.11i/D7.0] |
| # TKIP = Temporal Key Integrity Protocol [IEEE 802.11i/D7.0] |
| # WEP104 = WEP (Wired Equivalent Privacy) with 104-bit key |
| # WEP40 = WEP (Wired Equivalent Privacy) with 40-bit key [IEEE 802.11] |
| # If not set, this defaults to: CCMP TKIP WEP104 WEP40 |
| # |
| # psk: WPA preshared key; 256-bit pre-shared key |
| # The key used in WPA-PSK mode can be entered either as 64 hex-digits, i.e., |
| # 32 bytes or as an ASCII passphrase (in which case, the real PSK will be |
| # generated using the passphrase and SSID). ASCII passphrase must be between |
| # 8 and 63 characters (inclusive). |
| # This field is not needed, if WPA-EAP is used. |
| # Note: Separate tool, wpa_passphrase, can be used to generate 256-bit keys |
| # from ASCII passphrase. This process uses lot of CPU and wpa_supplicant |
| # startup and reconfiguration time can be optimized by generating the PSK only |
| # only when the passphrase or SSID has actually changed. |
| # |
| # eapol_flags: IEEE 802.1X/EAPOL options (bit field) |
| # Dynamic WEP key required for non-WPA mode |
| # bit0 (1): require dynamically generated unicast WEP key |
| # bit1 (2): require dynamically generated broadcast WEP key |
| # (3 = require both keys; default) |
| # Note: When using wired authentication, eapol_flags must be set to 0 for the |
| # authentication to be completed successfully. |
| # |
| # mixed_cell: This option can be used to configure whether so called mixed |
| # cells, i.e., networks that use both plaintext and encryption in the same |
| # SSID, are allowed when selecting a BSS form scan results. |
| # 0 = disabled (default) |
| # 1 = enabled |
| # |
| # proactive_key_caching: |
| # Enable/disable opportunistic PMKSA caching for WPA2. |
| # 0 = disabled (default) |
| # 1 = enabled |
| # |
| # wep_key0..3: Static WEP key (ASCII in double quotation, e.g. "abcde" or |
| # hex without quotation, e.g., 0102030405) |
| # wep_tx_keyidx: Default WEP key index (TX) (0..3) |
| # |
| # peerkey: Whether PeerKey negotiation for direct links (IEEE 802.11e DLS) is |
| # allowed. This is only used with RSN/WPA2. |
| # 0 = disabled (default) |
| # 1 = enabled |
| #peerkey=1 |
| # |
| # Following fields are only used with internal EAP implementation. |
| # eap: space-separated list of accepted EAP methods |
| # MD5 = EAP-MD5 (unsecure and does not generate keying material -> |
| # cannot be used with WPA; to be used as a Phase 2 method |
| # with EAP-PEAP or EAP-TTLS) |
| # MSCHAPV2 = EAP-MSCHAPv2 (cannot be used separately with WPA; to be used |
| # as a Phase 2 method with EAP-PEAP or EAP-TTLS) |
| # OTP = EAP-OTP (cannot be used separately with WPA; to be used |
| # as a Phase 2 method with EAP-PEAP or EAP-TTLS) |
| # GTC = EAP-GTC (cannot be used separately with WPA; to be used |
| # as a Phase 2 method with EAP-PEAP or EAP-TTLS) |
| # TLS = EAP-TLS (client and server certificate) |
| # PEAP = EAP-PEAP (with tunnelled EAP authentication) |
| # TTLS = EAP-TTLS (with tunnelled EAP or PAP/CHAP/MSCHAP/MSCHAPV2 |
| # authentication) |
| # If not set, all compiled in methods are allowed. |
| # |
| # identity: Identity string for EAP |
| # anonymous_identity: Anonymous identity string for EAP (to be used as the |
| # unencrypted identity with EAP types that support different tunnelled |
| # identity, e.g., EAP-TTLS) |
| # password: Password string for EAP |
| # ca_cert: File path to CA certificate file (PEM/DER). This file can have one |
| # or more trusted CA certificates. If ca_cert and ca_path are not |
| # included, server certificate will not be verified. This is insecure and |
| # a trusted CA certificate should always be configured when using |
| # EAP-TLS/TTLS/PEAP. Full path should be used since working directory may |
| # change when wpa_supplicant is run in the background. |
| # On Windows, trusted CA certificates can be loaded from the system |
| # certificate store by setting this to cert_store://<name>, e.g., |
| # ca_cert="cert_store://CA" or ca_cert="cert_store://ROOT". |
| # Note that when running wpa_supplicant as an application, the user |
| # certificate store (My user account) is used, whereas computer store |
| # (Computer account) is used when running wpasvc as a service. |
| # ca_path: Directory path for CA certificate files (PEM). This path may |
| # contain multiple CA certificates in OpenSSL format. Common use for this |
| # is to point to system trusted CA list which is often installed into |
| # directory like /etc/ssl/certs. If configured, these certificates are |
| # added to the list of trusted CAs. ca_cert may also be included in that |
| # case, but it is not required. |
| # client_cert: File path to client certificate file (PEM/DER) |
| # Full path should be used since working directory may change when |
| # wpa_supplicant is run in the background. |
| # Alternatively, a named configuration blob can be used by setting this |
| # to blob://<blob name>. |
| # private_key: File path to client private key file (PEM/DER/PFX) |
| # When PKCS#12/PFX file (.p12/.pfx) is used, client_cert should be |
| # commented out. Both the private key and certificate will be read from |
| # the PKCS#12 file in this case. Full path should be used since working |
| # directory may change when wpa_supplicant is run in the background. |
| # Windows certificate store can be used by leaving client_cert out and |
| # configuring private_key in one of the following formats: |
| # cert://substring_to_match |
| # hash://certificate_thumbprint_in_hex |
| # for example: private_key="hash://63093aa9c47f56ae88334c7b65a4" |
| # Note that when running wpa_supplicant as an application, the user |
| # certificate store (My user account) is used, whereas computer store |
| # (Computer account) is used when running wpasvc as a service. |
| # Alternatively, a named configuration blob can be used by setting this |
| # to blob://<blob name>. |
| # private_key_passwd: Password for private key file (if left out, this will be |
| # asked through control interface) |
| # dh_file: File path to DH/DSA parameters file (in PEM format) |
| # This is an optional configuration file for setting parameters for an |
| # ephemeral DH key exchange. In most cases, the default RSA |
| # authentication does not use this configuration. However, it is possible |
| # setup RSA to use ephemeral DH key exchange. In addition, ciphers with |
| # DSA keys always use ephemeral DH keys. This can be used to achieve |
| # forward secrecy. If the file is in DSA parameters format, it will be |
| # automatically converted into DH params. |
| # subject_match: Substring to be matched against the subject of the |
| # authentication server certificate. If this string is set, the server |
| # sertificate is only accepted if it contains this string in the subject. |
| # The subject string is in following format: |
| # /C=US/ST=CA/L=San Francisco/CN=Test AS/[email protected] |
| # altsubject_match: Semicolon separated string of entries to be matched against |
| # the alternative subject name of the authentication server certificate. |
| # If this string is set, the server sertificate is only accepted if it |
| # contains one of the entries in an alternative subject name extension. |
| # altSubjectName string is in following format: TYPE:VALUE |
| # Example: EMAIL:[email protected] |
| # Example: DNS:server.example.com;DNS:server2.example.com |
| # Following types are supported: EMAIL, DNS, URI |
| # phase1: Phase1 (outer authentication, i.e., TLS tunnel) parameters |
| # (string with field-value pairs, e.g., "peapver=0" or |
| # "peapver=1 peaplabel=1") |
| # 'peapver' can be used to force which PEAP version (0 or 1) is used. |
| # 'peaplabel=1' can be used to force new label, "client PEAP encryption", |
| # to be used during key derivation when PEAPv1 or newer. Most existing |
| # PEAPv1 implementation seem to be using the old label, "client EAP |
| # encryption", and wpa_supplicant is now using that as the default value. |
| # Some servers, e.g., Radiator, may require peaplabel=1 configuration to |
| # interoperate with PEAPv1; see eap_testing.txt for more details. |
| # 'peap_outer_success=0' can be used to terminate PEAP authentication on |
| # tunneled EAP-Success. This is required with some RADIUS servers that |
| # implement draft-josefsson-pppext-eap-tls-eap-05.txt (e.g., |
| # Lucent NavisRadius v4.4.0 with PEAP in "IETF Draft 5" mode) |
| # include_tls_length=1 can be used to force wpa_supplicant to include |
| # TLS Message Length field in all TLS messages even if they are not |
| # fragmented. |
| # sim_min_num_chal=3 can be used to configure EAP-SIM to require three |
| # challenges (by default, it accepts 2 or 3) |
| # phase2: Phase2 (inner authentication with TLS tunnel) parameters |
| # (string with field-value pairs, e.g., "auth=MSCHAPV2" for EAP-PEAP or |
| # "autheap=MSCHAPV2 autheap=MD5" for EAP-TTLS) |
| # Following certificate/private key fields are used in inner Phase2 |
| # authentication when using EAP-TTLS or EAP-PEAP. |
| # ca_cert2: File path to CA certificate file. This file can have one or more |
| # trusted CA certificates. If ca_cert2 and ca_path2 are not included, |
| # server certificate will not be verified. This is insecure and a trusted |
| # CA certificate should always be configured. |
| # ca_path2: Directory path for CA certificate files (PEM) |
| # client_cert2: File path to client certificate file |
| # private_key2: File path to client private key file |
| # private_key2_passwd: Password for private key file |
| # dh_file2: File path to DH/DSA parameters file (in PEM format) |
| # subject_match2: Substring to be matched against the subject of the |
| # authentication server certificate. |
| # altsubject_match2: Substring to be matched against the alternative subject |
| # name of the authentication server certificate. |
| # |
| # fragment_size: Maximum EAP fragment size in bytes (default 1398). |
| # This value limits the fragment size for EAP methods that support |
| # fragmentation (e.g., EAP-TLS and EAP-PEAP). This value should be set |
| # small enough to make the EAP messages fit in MTU of the network |
| # interface used for EAPOL. The default value is suitable for most |
| # cases. |
| # |
| # EAP-PSK variables: |
| # eappsk: 16-byte (128-bit, 32 hex digits) pre-shared key in hex format |
| # nai: user NAI |
| # |
| # EAP-PAX variables: |
| # eappsk: 16-byte (128-bit, 32 hex digits) pre-shared key in hex format |
| # |
| # EAP-SAKE variables: |
| # eappsk: 32-byte (256-bit, 64 hex digits) pre-shared key in hex format |
| # (this is concatenation of Root-Secret-A and Root-Secret-B) |
| # nai: user NAI (PEERID) |
| # |
| # EAP-GPSK variables: |
| # eappsk: Pre-shared key in hex format (at least 128 bits, i.e., 32 hex digits) |
| # nai: user NAI (ID_Client) |
| # |
| # EAP-FAST variables: |
| # pac_file: File path for the PAC entries. wpa_supplicant will need to be able |
| # to create this file and write updates to it when PAC is being |
| # provisioned or refreshed. Full path to the file should be used since |
| # working directory may change when wpa_supplicant is run in the |
| # background. Alternatively, a named configuration blob can be used by |
| # setting this to blob://<blob name> |
| # phase1: fast_provisioning=1 option enables in-line provisioning of EAP-FAST |
| # credentials (PAC) |
| # |
| # wpa_supplicant supports number of "EAP workarounds" to work around |
| # interoperability issues with incorrectly behaving authentication servers. |
| # These are enabled by default because some of the issues are present in large |
| # number of authentication servers. Strict EAP conformance mode can be |
| # configured by disabling workarounds with eap_workaround=0. |
| |
| # Example blocks: |
| |
| # Simple case: WPA-PSK, PSK as an ASCII passphrase, allow all valid ciphers |
| #network={ |
| # ssid="simple" |
| # psk="very secret passphrase" |
| # priority=5 |
| #} |
| |
| # Same as previous, but request SSID-specific scanning (for APs that reject |
| # broadcast SSID) |
| #network={ |
| # ssid="second ssid" |
| # scan_ssid=1 |
| # psk="very secret passphrase" |
| # priority=2 |
| #} |
| |
| # Only WPA-PSK is used. Any valid cipher combination is accepted. |
| #network={ |
| # ssid="example" |
| # proto=WPA |
| # key_mgmt=WPA-PSK |
| # pairwise=CCMP TKIP |
| # group=CCMP TKIP WEP104 WEP40 |
| # psk=06b4be19da289f475aa46a33cb793029d4ab3db7a23ee92382eb0106c72ac7bb |
| # priority=2 |
| #} |
| |
| # Only WPA-EAP is used. Both CCMP and TKIP is accepted. An AP that used WEP104 |
| # or WEP40 as the group cipher will not be accepted. |
| #network={ |
| # ssid="example" |
| # proto=RSN |
| # key_mgmt=WPA-EAP |
| # pairwise=CCMP TKIP |
| # group=CCMP TKIP |
| # eap=TLS |
| # identity="[email protected]" |
| # ca_cert="/etc/cert/ca.pem" |
| # client_cert="/etc/cert/user.pem" |
| # private_key="/etc/cert/user.prv" |
| # private_key_passwd="password" |
| # priority=1 |
| #} |
| |
| # EAP-PEAP/MSCHAPv2 configuration for RADIUS servers that use the new peaplabel |
| # (e.g., Radiator) |
| #network={ |
| # ssid="example" |
| # key_mgmt=WPA-EAP |
| # eap=PEAP |
| # identity="[email protected]" |
| # password="foobar" |
| # ca_cert="/etc/cert/ca.pem" |
| # phase1="peaplabel=1" |
| # phase2="auth=MSCHAPV2" |
| # priority=10 |
| #} |
| |
| # EAP-TTLS/EAP-MD5-Challenge configuration with anonymous identity for the |
| # unencrypted use. Real identity is sent only within an encrypted TLS tunnel. |
| #network={ |
| # ssid="example" |
| # key_mgmt=WPA-EAP |
| # eap=TTLS |
| # identity="[email protected]" |
| # anonymous_identity="[email protected]" |
| # password="foobar" |
| # ca_cert="/etc/cert/ca.pem" |
| # priority=2 |
| #} |
| |
| # EAP-TTLS/MSCHAPv2 configuration with anonymous identity for the unencrypted |
| # use. Real identity is sent only within an encrypted TLS tunnel. |
| #network={ |
| # ssid="example" |
| # key_mgmt=WPA-EAP |
| # eap=TTLS |
| # identity="[email protected]" |
| # anonymous_identity="[email protected]" |
| # password="foobar" |
| # ca_cert="/etc/cert/ca.pem" |
| # phase2="auth=MSCHAPV2" |
| #} |
| |
| # WPA-EAP, EAP-TTLS with different CA certificate used for outer and inner |
| # authentication. |
| #network={ |
| # ssid="example" |
| # key_mgmt=WPA-EAP |
| # eap=TTLS |
| # # Phase1 / outer authentication |
| # anonymous_identity="[email protected]" |
| # ca_cert="/etc/cert/ca.pem" |
| # # Phase 2 / inner authentication |
| # phase2="autheap=TLS" |
| # ca_cert2="/etc/cert/ca2.pem" |
| # client_cert2="/etc/cer/user.pem" |
| # private_key2="/etc/cer/user.prv" |
| # private_key2_passwd="password" |
| # priority=2 |
| #} |
| |
| # Both WPA-PSK and WPA-EAP is accepted. Only CCMP is accepted as pairwise and |
| # group cipher. |
| #network={ |
| # ssid="example" |
| # bssid=00:11:22:33:44:55 |
| # proto=WPA RSN |
| # key_mgmt=WPA-PSK WPA-EAP |
| # pairwise=CCMP |
| # group=CCMP |
| # psk=06b4be19da289f475aa46a33cb793029d4ab3db7a23ee92382eb0106c72ac7bb |
| #} |
| |
| # Special characters in SSID, so use hex string. Default to WPA-PSK, WPA-EAP |
| # and all valid ciphers. |
| #network={ |
| # ssid=00010203 |
| # psk=000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f |
| #} |
| |
| |
| # EAP-SIM with a GSM SIM or USIM |
| #network={ |
| # ssid="eap-sim-test" |
| # key_mgmt=WPA-EAP |
| # eap=SIM |
| # pin="1234" |
| # pcsc="" |
| #} |
| |
| |
| # EAP-PSK |
| #network={ |
| # ssid="eap-psk-test" |
| # key_mgmt=WPA-EAP |
| # eap=PSK |
| # identity="eap_psk_user" |
| # eappsk=06b4be19da289f475aa46a33cb793029 |
| # nai="[email protected]" |
| #} |
| |
| |
| # IEEE 802.1X/EAPOL with dynamically generated WEP keys (i.e., no WPA) using |
| # EAP-TLS for authentication and key generation; require both unicast and |
| # broadcast WEP keys. |
| #network={ |
| # ssid="1x-test" |
| # key_mgmt=IEEE8021X |
| # eap=TLS |
| # identity="[email protected]" |
| # ca_cert="/etc/cert/ca.pem" |
| # client_cert="/etc/cert/user.pem" |
| # private_key="/etc/cert/user.prv" |
| # private_key_passwd="password" |
| # eapol_flags=3 |
| #} |
| |
| |
| # LEAP with dynamic WEP keys |
| #network={ |
| # ssid="leap-example" |
| # key_mgmt=IEEE8021X |
| # eap=LEAP |
| # identity="user" |
| # password="foobar" |
| #} |
| |
| # EAP-FAST with WPA (WPA or WPA2) |
| #network={ |
| # ssid="eap-fast-test" |
| # key_mgmt=WPA-EAP |
| # eap=FAST |
| # anonymous_identity="FAST-000102030405" |
| # identity="username" |
| # password="password" |
| # phase1="fast_provisioning=1" |
| # pac_file="/etc/wpa_supplicant.eap-fast-pac" |
| #} |
| |
| #network={ |
| # ssid="eap-fast-test" |
| # key_mgmt=WPA-EAP |
| # eap=FAST |
| # anonymous_identity="FAST-000102030405" |
| # identity="username" |
| # password="password" |
| # phase1="fast_provisioning=1" |
| # pac_file="blob://eap-fast-pac" |
| #} |
| |
| # Plaintext connection (no WPA, no IEEE 802.1X) |
| #network={ |
| # ssid="plaintext-test" |
| # key_mgmt=NONE |
| #} |
| |
| |
| # Shared WEP key connection (no WPA, no IEEE 802.1X) |
| #network={ |
| # ssid="static-wep-test" |
| # key_mgmt=NONE |
| # wep_key0="abcde" |
| # wep_key1=0102030405 |
| # wep_key2="1234567890123" |
| # wep_tx_keyidx=0 |
| # priority=5 |
| #} |
| |
| |
| # Shared WEP key connection (no WPA, no IEEE 802.1X) using Shared Key |
| # IEEE 802.11 authentication |
| #network={ |
| # ssid="static-wep-test2" |
| # key_mgmt=NONE |
| # wep_key0="abcde" |
| # wep_key1=0102030405 |
| # wep_key2="1234567890123" |
| # wep_tx_keyidx=0 |
| # priority=5 |
| # auth_alg=SHARED |
| #} |
| |
| |
| # IBSS/ad-hoc network with WPA-None/TKIP. |
| #network={ |
| # ssid="test adhoc" |
| # mode=1 |
| # frequency=2412 |
| # proto=WPA |
| # key_mgmt=WPA-NONE |
| # pairwise=NONE |
| # group=TKIP |
| # psk="secret passphrase" |
| #} |
| |
| |
| # Catch all example that allows more or less all configuration modes |
| #network={ |
| # ssid="example" |
| # scan_ssid=1 |
| # key_mgmt=WPA-EAP WPA-PSK IEEE8021X NONE |
| # pairwise=CCMP TKIP |
| # group=CCMP TKIP WEP104 WEP40 |
| # psk="very secret passphrase" |
| # eap=TTLS PEAP TLS |
| # identity="[email protected]" |
| # password="foobar" |
| # ca_cert="/etc/cert/ca.pem" |
| # client_cert="/etc/cert/user.pem" |
| # private_key="/etc/cert/user.prv" |
| # private_key_passwd="password" |
| # phase1="peaplabel=0" |
| #} |
| |
| # Example of EAP-TLS with smartcard (openssl engine) |
| #network={ |
| # ssid="example" |
| # key_mgmt=WPA-EAP |
| # eap=TLS |
| # proto=RSN |
| # pairwise=CCMP TKIP |
| # group=CCMP TKIP |
| # identity="[email protected]" |
| # ca_cert="/etc/cert/ca.pem" |
| # client_cert="/etc/cert/user.pem" |
| # |
| # engine=1 |
| # |
| # The engine configured here must be available. Look at |
| # OpenSSL engine support in the global section. |
| # The key available through the engine must be the private key |
| # matching the client certificate configured above. |
| |
| # use the opensc engine |
| #engine_id="opensc" |
| #key_id="45" |
| |
| # use the pkcs11 engine |
| # engine_id="pkcs11" |
| # key_id="id_45" |
| |
| # Optional PIN configuration; this can be left out and PIN will be |
| # asked through the control interface |
| # pin="1234" |
| #} |
| |
| # Example configuration showing how to use an inlined blob as a CA certificate |
| # data instead of using external file |
| #network={ |
| # ssid="example" |
| # key_mgmt=WPA-EAP |
| # eap=TTLS |
| # identity="[email protected]" |
| # anonymous_identity="[email protected]" |
| # password="foobar" |
| # ca_cert="blob://exampleblob" |
| # priority=20 |
| #} |
| |
| #blob-base64-exampleblob={ |
| #SGVsbG8gV29ybGQhCg== |
| #} |
| |
| # Wildcard match for SSID (plaintext APs only). This example selects any |
| # open AP regardless of its SSID. |
| #network={ |
| # key_mgmt=NONE |
| #} |