| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <stdio.h> |
| |
| #include <utils/Log.h> |
| |
| #include "Fusion.h" |
| |
| namespace android { |
| |
| // ----------------------------------------------------------------------- |
| |
| template <typename TYPE> |
| static inline TYPE sqr(TYPE x) { |
| return x*x; |
| } |
| |
| template <typename T> |
| static inline T clamp(T v) { |
| return v < 0 ? 0 : v; |
| } |
| |
| template <typename TYPE, size_t C, size_t R> |
| static mat<TYPE, R, R> scaleCovariance( |
| const mat<TYPE, C, R>& A, |
| const mat<TYPE, C, C>& P) { |
| // A*P*transpose(A); |
| mat<TYPE, R, R> APAt; |
| for (size_t r=0 ; r<R ; r++) { |
| for (size_t j=r ; j<R ; j++) { |
| double apat(0); |
| for (size_t c=0 ; c<C ; c++) { |
| double v(A[c][r]*P[c][c]*0.5); |
| for (size_t k=c+1 ; k<C ; k++) |
| v += A[k][r] * P[c][k]; |
| apat += 2 * v * A[c][j]; |
| } |
| APAt[j][r] = apat; |
| APAt[r][j] = apat; |
| } |
| } |
| return APAt; |
| } |
| |
| template <typename TYPE, typename OTHER_TYPE> |
| static mat<TYPE, 3, 3> crossMatrix(const vec<TYPE, 3>& p, OTHER_TYPE diag) { |
| mat<TYPE, 3, 3> r; |
| r[0][0] = diag; |
| r[1][1] = diag; |
| r[2][2] = diag; |
| r[0][1] = p.z; |
| r[1][0] =-p.z; |
| r[0][2] =-p.y; |
| r[2][0] = p.y; |
| r[1][2] = p.x; |
| r[2][1] =-p.x; |
| return r; |
| } |
| |
| template <typename TYPE> |
| static mat<TYPE, 3, 3> MRPsToMatrix(const vec<TYPE, 3>& p) { |
| mat<TYPE, 3, 3> res(1); |
| const mat<TYPE, 3, 3> px(crossMatrix(p, 0)); |
| const TYPE ptp(dot_product(p,p)); |
| const TYPE t = 4/sqr(1+ptp); |
| res -= t * (1-ptp) * px; |
| res += t * 2 * sqr(px); |
| return res; |
| } |
| |
| template <typename TYPE> |
| vec<TYPE, 3> matrixToMRPs(const mat<TYPE, 3, 3>& R) { |
| // matrix to MRPs |
| vec<TYPE, 3> q; |
| const float Hx = R[0].x; |
| const float My = R[1].y; |
| const float Az = R[2].z; |
| const float w = 1 / (1 + sqrtf( clamp( Hx + My + Az + 1) * 0.25f )); |
| q.x = sqrtf( clamp( Hx - My - Az + 1) * 0.25f ) * w; |
| q.y = sqrtf( clamp(-Hx + My - Az + 1) * 0.25f ) * w; |
| q.z = sqrtf( clamp(-Hx - My + Az + 1) * 0.25f ) * w; |
| q.x = copysignf(q.x, R[2].y - R[1].z); |
| q.y = copysignf(q.y, R[0].z - R[2].x); |
| q.z = copysignf(q.z, R[1].x - R[0].y); |
| return q; |
| } |
| |
| template<typename TYPE, size_t SIZE> |
| class Covariance { |
| mat<TYPE, SIZE, SIZE> mSumXX; |
| vec<TYPE, SIZE> mSumX; |
| size_t mN; |
| public: |
| Covariance() : mSumXX(0.0f), mSumX(0.0f), mN(0) { } |
| void update(const vec<TYPE, SIZE>& x) { |
| mSumXX += x*transpose(x); |
| mSumX += x; |
| mN++; |
| } |
| mat<TYPE, SIZE, SIZE> operator()() const { |
| const float N = 1.0f / mN; |
| return mSumXX*N - (mSumX*transpose(mSumX))*(N*N); |
| } |
| void reset() { |
| mN = 0; |
| mSumXX = 0; |
| mSumX = 0; |
| } |
| size_t getCount() const { |
| return mN; |
| } |
| }; |
| |
| // ----------------------------------------------------------------------- |
| |
| Fusion::Fusion() { |
| // process noise covariance matrix |
| const float w1 = gyroSTDEV; |
| const float w2 = biasSTDEV; |
| Q[0] = w1*w1; |
| Q[1] = w2*w2; |
| |
| Ba.x = 0; |
| Ba.y = 0; |
| Ba.z = 1; |
| |
| Bm.x = 0; |
| Bm.y = 1; |
| Bm.z = 0; |
| |
| init(); |
| } |
| |
| void Fusion::init() { |
| // initial estimate: E{ x(t0) } |
| x = 0; |
| |
| // initial covariance: Var{ x(t0) } |
| P = 0; |
| |
| mInitState = 0; |
| mCount[0] = 0; |
| mCount[1] = 0; |
| mCount[2] = 0; |
| mData = 0; |
| } |
| |
| bool Fusion::hasEstimate() const { |
| return (mInitState == (MAG|ACC|GYRO)); |
| } |
| |
| bool Fusion::checkInitComplete(int what, const vec3_t& d) { |
| if (mInitState == (MAG|ACC|GYRO)) |
| return true; |
| |
| if (what == ACC) { |
| mData[0] += d * (1/length(d)); |
| mCount[0]++; |
| mInitState |= ACC; |
| } else if (what == MAG) { |
| mData[1] += d * (1/length(d)); |
| mCount[1]++; |
| mInitState |= MAG; |
| } else if (what == GYRO) { |
| mData[2] += d; |
| mCount[2]++; |
| if (mCount[2] == 64) { |
| // 64 samples is good enough to estimate the gyro drift and |
| // doesn't take too much time. |
| mInitState |= GYRO; |
| } |
| } |
| |
| if (mInitState == (MAG|ACC|GYRO)) { |
| // Average all the values we collected so far |
| mData[0] *= 1.0f/mCount[0]; |
| mData[1] *= 1.0f/mCount[1]; |
| mData[2] *= 1.0f/mCount[2]; |
| |
| // calculate the MRPs from the data collection, this gives us |
| // a rough estimate of our initial state |
| mat33_t R; |
| vec3_t up(mData[0]); |
| vec3_t east(cross_product(mData[1], up)); |
| east *= 1/length(east); |
| vec3_t north(cross_product(up, east)); |
| R << east << north << up; |
| x[0] = matrixToMRPs(R); |
| |
| // NOTE: we could try to use the average of the gyro data |
| // to estimate the initial bias, but this only works if |
| // the device is not moving. For now, we don't use that value |
| // and start with a bias of 0. |
| x[1] = 0; |
| |
| // initial covariance |
| P = 0; |
| } |
| |
| return false; |
| } |
| |
| void Fusion::handleGyro(const vec3_t& w, float dT) { |
| const vec3_t wdT(w * dT); // rad/s * s -> rad |
| if (!checkInitComplete(GYRO, wdT)) |
| return; |
| |
| predict(wdT); |
| } |
| |
| status_t Fusion::handleAcc(const vec3_t& a) { |
| if (length(a) < 0.981f) |
| return BAD_VALUE; |
| |
| if (!checkInitComplete(ACC, a)) |
| return BAD_VALUE; |
| |
| // ignore acceleration data if we're close to free-fall |
| const float l = 1/length(a); |
| update(a*l, Ba, accSTDEV*l); |
| return NO_ERROR; |
| } |
| |
| status_t Fusion::handleMag(const vec3_t& m) { |
| // the geomagnetic-field should be between 30uT and 60uT |
| // reject obviously wrong magnetic-fields |
| if (length(m) > 100) |
| return BAD_VALUE; |
| |
| if (!checkInitComplete(MAG, m)) |
| return BAD_VALUE; |
| |
| const vec3_t up( getRotationMatrix() * Ba ); |
| const vec3_t east( cross_product(m, up) ); |
| vec3_t north( cross_product(up, east) ); |
| |
| const float l = 1 / length(north); |
| north *= l; |
| |
| #if 0 |
| // in practice the magnetic-field sensor is so wrong |
| // that there is no point trying to use it to constantly |
| // correct the gyro. instead, we use the mag-sensor only when |
| // the device points north (just to give us a reference). |
| // We're hoping that it'll actually point north, if it doesn't |
| // we'll be offset, but at least the instantaneous posture |
| // of the device will be correct. |
| |
| const float cos_30 = 0.8660254f; |
| if (dot_product(north, Bm) < cos_30) |
| return BAD_VALUE; |
| #endif |
| |
| update(north, Bm, magSTDEV*l); |
| return NO_ERROR; |
| } |
| |
| bool Fusion::checkState(const vec3_t& v) { |
| if (isnanf(length(v))) { |
| LOGW("9-axis fusion diverged. reseting state."); |
| P = 0; |
| x[1] = 0; |
| mInitState = 0; |
| mCount[0] = 0; |
| mCount[1] = 0; |
| mCount[2] = 0; |
| mData = 0; |
| return false; |
| } |
| return true; |
| } |
| |
| vec3_t Fusion::getAttitude() const { |
| return x[0]; |
| } |
| |
| vec3_t Fusion::getBias() const { |
| return x[1]; |
| } |
| |
| mat33_t Fusion::getRotationMatrix() const { |
| return MRPsToMatrix(x[0]); |
| } |
| |
| mat33_t Fusion::getF(const vec3_t& p) { |
| const float p0 = p.x; |
| const float p1 = p.y; |
| const float p2 = p.z; |
| |
| // f(p, w) |
| const float p0p1 = p0*p1; |
| const float p0p2 = p0*p2; |
| const float p1p2 = p1*p2; |
| const float p0p0 = p0*p0; |
| const float p1p1 = p1*p1; |
| const float p2p2 = p2*p2; |
| const float pp = 0.5f * (1 - (p0p0 + p1p1 + p2p2)); |
| |
| mat33_t F; |
| F[0][0] = 0.5f*(p0p0 + pp); |
| F[0][1] = 0.5f*(p0p1 + p2); |
| F[0][2] = 0.5f*(p0p2 - p1); |
| F[1][0] = 0.5f*(p0p1 - p2); |
| F[1][1] = 0.5f*(p1p1 + pp); |
| F[1][2] = 0.5f*(p1p2 + p0); |
| F[2][0] = 0.5f*(p0p2 + p1); |
| F[2][1] = 0.5f*(p1p2 - p0); |
| F[2][2] = 0.5f*(p2p2 + pp); |
| return F; |
| } |
| |
| mat33_t Fusion::getdFdp(const vec3_t& p, const vec3_t& we) { |
| |
| // dF = | A = df/dp -F | |
| // | 0 0 | |
| |
| mat33_t A; |
| A[0][0] = A[1][1] = A[2][2] = 0.5f * (p.x*we.x + p.y*we.y + p.z*we.z); |
| A[0][1] = 0.5f * (p.y*we.x - p.x*we.y - we.z); |
| A[0][2] = 0.5f * (p.z*we.x - p.x*we.z + we.y); |
| A[1][2] = 0.5f * (p.z*we.y - p.y*we.z - we.x); |
| A[1][0] = -A[0][1]; |
| A[2][0] = -A[0][2]; |
| A[2][1] = -A[1][2]; |
| return A; |
| } |
| |
| void Fusion::predict(const vec3_t& w) { |
| // f(p, w) |
| vec3_t& p(x[0]); |
| |
| // There is a discontinuity at 2.pi, to avoid it we need to switch to |
| // the shadow of p when pT.p gets too big. |
| const float ptp(dot_product(p,p)); |
| if (ptp >= 2.0f) { |
| p = -p * (1/ptp); |
| } |
| |
| const mat33_t F(getF(p)); |
| |
| // compute w with the bias correction: |
| // w_estimated = w - b_estimated |
| const vec3_t& b(x[1]); |
| const vec3_t we(w - b); |
| |
| // prediction |
| const vec3_t dX(F*we); |
| |
| if (!checkState(dX)) |
| return; |
| |
| p += dX; |
| |
| const mat33_t A(getdFdp(p, we)); |
| |
| // G = | G0 0 | = | -F 0 | |
| // | 0 1 | | 0 1 | |
| |
| // P += A*P + P*At + F*Q*Ft |
| const mat33_t AP(A*transpose(P[0][0])); |
| const mat33_t PAt(P[0][0]*transpose(A)); |
| const mat33_t FPSt(F*transpose(P[1][0])); |
| const mat33_t PSFt(P[1][0]*transpose(F)); |
| const mat33_t FQFt(scaleCovariance(F, Q[0])); |
| P[0][0] += AP + PAt - FPSt - PSFt + FQFt; |
| P[1][0] += A*P[1][0] - F*P[1][1]; |
| P[1][1] += Q[1]; |
| } |
| |
| void Fusion::update(const vec3_t& z, const vec3_t& Bi, float sigma) { |
| const vec3_t p(x[0]); |
| // measured vector in body space: h(p) = A(p)*Bi |
| const mat33_t A(MRPsToMatrix(p)); |
| const vec3_t Bb(A*Bi); |
| |
| // Sensitivity matrix H = dh(p)/dp |
| // H = [ L 0 ] |
| const float ptp(dot_product(p,p)); |
| const mat33_t px(crossMatrix(p, 0.5f*(ptp-1))); |
| const mat33_t ppt(p*transpose(p)); |
| const mat33_t L((8 / sqr(1+ptp))*crossMatrix(Bb, 0)*(ppt-px)); |
| |
| // update... |
| const mat33_t R(sigma*sigma); |
| const mat33_t S(scaleCovariance(L, P[0][0]) + R); |
| const mat33_t Si(invert(S)); |
| const mat33_t LtSi(transpose(L)*Si); |
| |
| vec<mat33_t, 2> K; |
| K[0] = P[0][0] * LtSi; |
| K[1] = transpose(P[1][0])*LtSi; |
| |
| const vec3_t e(z - Bb); |
| const vec3_t K0e(K[0]*e); |
| const vec3_t K1e(K[1]*e); |
| |
| if (!checkState(K0e)) |
| return; |
| |
| if (!checkState(K1e)) |
| return; |
| |
| x[0] += K0e; |
| x[1] += K1e; |
| |
| // P -= K*H*P; |
| const mat33_t K0L(K[0] * L); |
| const mat33_t K1L(K[1] * L); |
| P[0][0] -= K0L*P[0][0]; |
| P[1][1] -= K1L*P[1][0]; |
| P[1][0] -= K0L*P[1][0]; |
| } |
| |
| // ----------------------------------------------------------------------- |
| |
| }; // namespace android |
| |