blob: 44fa677b59f74af926d7c79f7c97b695efe2091b [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "perf_hint"
#include <aidl/android/hardware/power/SessionHint.h>
#include <aidl/android/hardware/power/SessionMode.h>
#include <aidl/android/hardware/power/SessionTag.h>
#include <aidl/android/hardware/power/WorkDuration.h>
#include <aidl/android/os/IHintManager.h>
#include <aidl/android/os/IHintSession.h>
#include <android-base/stringprintf.h>
#include <android/binder_manager.h>
#include <android/binder_status.h>
#include <android/performance_hint.h>
#include <android/trace.h>
#include <inttypes.h>
#include <performance_hint_private.h>
#include <utils/SystemClock.h>
#include <chrono>
#include <set>
#include <utility>
#include <vector>
using namespace android;
using namespace aidl::android::os;
using namespace std::chrono_literals;
// Namespace for AIDL types coming from the PowerHAL
namespace hal = aidl::android::hardware::power;
using android::base::StringPrintf;
struct APerformanceHintSession;
constexpr int64_t SEND_HINT_TIMEOUT = std::chrono::nanoseconds(100ms).count();
struct AWorkDuration : public hal::WorkDuration {};
// Shared lock for the whole PerformanceHintManager and sessions
static std::mutex sHintMutex = std::mutex{};
struct APerformanceHintManager {
public:
static APerformanceHintManager* getInstance();
APerformanceHintManager(std::shared_ptr<IHintManager> service, int64_t preferredRateNanos);
APerformanceHintManager() = delete;
~APerformanceHintManager() = default;
APerformanceHintSession* createSession(const int32_t* threadIds, size_t size,
int64_t initialTargetWorkDurationNanos,
hal::SessionTag tag = hal::SessionTag::APP);
int64_t getPreferredRateNanos() const;
private:
// Necessary to create an empty binder object
static void* tokenStubOnCreate(void*) {
return nullptr;
}
static void tokenStubOnDestroy(void*) {}
static binder_status_t tokenStubOnTransact(AIBinder*, transaction_code_t, const AParcel*,
AParcel*) {
return STATUS_OK;
}
static APerformanceHintManager* create(std::shared_ptr<IHintManager> iHintManager);
std::shared_ptr<IHintManager> mHintManager;
ndk::SpAIBinder mToken;
const int64_t mPreferredRateNanos;
};
struct APerformanceHintSession {
public:
APerformanceHintSession(std::shared_ptr<IHintManager> hintManager,
std::shared_ptr<IHintSession> session, int64_t preferredRateNanos,
int64_t targetDurationNanos,
std::optional<hal::SessionConfig> sessionConfig);
APerformanceHintSession() = delete;
~APerformanceHintSession();
int updateTargetWorkDuration(int64_t targetDurationNanos);
int reportActualWorkDuration(int64_t actualDurationNanos);
int sendHint(SessionHint hint);
int setThreads(const int32_t* threadIds, size_t size);
int getThreadIds(int32_t* const threadIds, size_t* size);
int setPreferPowerEfficiency(bool enabled);
int reportActualWorkDuration(AWorkDuration* workDuration);
private:
friend struct APerformanceHintManager;
int reportActualWorkDurationInternal(AWorkDuration* workDuration);
std::shared_ptr<IHintManager> mHintManager;
std::shared_ptr<IHintSession> mHintSession;
// HAL preferred update rate
const int64_t mPreferredRateNanos;
// Target duration for choosing update rate
int64_t mTargetDurationNanos;
// First target hit timestamp
int64_t mFirstTargetMetTimestamp;
// Last target hit timestamp
int64_t mLastTargetMetTimestamp;
// Last hint reported from sendHint indexed by hint value
std::vector<int64_t> mLastHintSentTimestamp;
// Cached samples
std::vector<hal::WorkDuration> mActualWorkDurations;
std::string mSessionName;
static int64_t sIDCounter;
// The most recent set of thread IDs
std::vector<int32_t> mLastThreadIDs;
std::optional<hal::SessionConfig> mSessionConfig;
// Tracing helpers
void traceThreads(std::vector<int32_t>& tids);
void tracePowerEfficient(bool powerEfficient);
void traceActualDuration(int64_t actualDuration);
void traceBatchSize(size_t batchSize);
void traceTargetDuration(int64_t targetDuration);
};
static std::shared_ptr<IHintManager>* gIHintManagerForTesting = nullptr;
static APerformanceHintManager* gHintManagerForTesting = nullptr;
// Start above the int32 range so we don't collide with config sessions
int64_t APerformanceHintSession::sIDCounter = INT32_MAX;
// ===================================== APerformanceHintManager implementation
APerformanceHintManager::APerformanceHintManager(std::shared_ptr<IHintManager> manager,
int64_t preferredRateNanos)
: mHintManager(std::move(manager)), mPreferredRateNanos(preferredRateNanos) {
static AIBinder_Class* tokenBinderClass =
AIBinder_Class_define("phm_token", tokenStubOnCreate, tokenStubOnDestroy,
tokenStubOnTransact);
mToken = ndk::SpAIBinder(AIBinder_new(tokenBinderClass, nullptr));
}
APerformanceHintManager* APerformanceHintManager::getInstance() {
if (gHintManagerForTesting) return gHintManagerForTesting;
if (gIHintManagerForTesting) {
APerformanceHintManager* manager = create(*gIHintManagerForTesting);
gIHintManagerForTesting = nullptr;
return manager;
}
static APerformanceHintManager* instance = create(nullptr);
return instance;
}
APerformanceHintManager* APerformanceHintManager::create(std::shared_ptr<IHintManager> manager) {
if (!manager) {
manager = IHintManager::fromBinder(
ndk::SpAIBinder(AServiceManager_waitForService("performance_hint")));
}
if (manager == nullptr) {
ALOGE("%s: PerformanceHint service is not ready ", __FUNCTION__);
return nullptr;
}
int64_t preferredRateNanos = -1L;
ndk::ScopedAStatus ret = manager->getHintSessionPreferredRate(&preferredRateNanos);
if (!ret.isOk()) {
ALOGE("%s: PerformanceHint cannot get preferred rate. %s", __FUNCTION__, ret.getMessage());
return nullptr;
}
if (preferredRateNanos <= 0) {
preferredRateNanos = -1L;
}
return new APerformanceHintManager(std::move(manager), preferredRateNanos);
}
APerformanceHintSession* APerformanceHintManager::createSession(
const int32_t* threadIds, size_t size, int64_t initialTargetWorkDurationNanos,
hal::SessionTag tag) {
std::vector<int32_t> tids(threadIds, threadIds + size);
std::shared_ptr<IHintSession> session;
ndk::ScopedAStatus ret;
std::optional<hal::SessionConfig> sessionConfig;
ret = mHintManager->createHintSessionWithConfig(mToken, tids, initialTargetWorkDurationNanos,
tag, &sessionConfig, &session);
if (!ret.isOk() || !session) {
return nullptr;
}
auto out = new APerformanceHintSession(mHintManager, std::move(session), mPreferredRateNanos,
initialTargetWorkDurationNanos, sessionConfig);
std::scoped_lock lock(sHintMutex);
out->traceThreads(tids);
out->traceTargetDuration(initialTargetWorkDurationNanos);
out->tracePowerEfficient(false);
return out;
}
int64_t APerformanceHintManager::getPreferredRateNanos() const {
return mPreferredRateNanos;
}
// ===================================== APerformanceHintSession implementation
APerformanceHintSession::APerformanceHintSession(std::shared_ptr<IHintManager> hintManager,
std::shared_ptr<IHintSession> session,
int64_t preferredRateNanos,
int64_t targetDurationNanos,
std::optional<hal::SessionConfig> sessionConfig)
: mHintManager(hintManager),
mHintSession(std::move(session)),
mPreferredRateNanos(preferredRateNanos),
mTargetDurationNanos(targetDurationNanos),
mFirstTargetMetTimestamp(0),
mLastTargetMetTimestamp(0),
mSessionConfig(sessionConfig) {
if (sessionConfig->id > INT32_MAX) {
ALOGE("Session ID too large, must fit 32-bit integer");
}
std::scoped_lock lock(sHintMutex);
constexpr int numEnums =
ndk::enum_range<hal::SessionHint>().end() - ndk::enum_range<hal::SessionHint>().begin();
mLastHintSentTimestamp = std::vector<int64_t>(numEnums, 0);
int64_t traceId = sessionConfig.has_value() ? sessionConfig->id : ++sIDCounter;
mSessionName = android::base::StringPrintf("ADPF Session %" PRId64, traceId);
}
APerformanceHintSession::~APerformanceHintSession() {
ndk::ScopedAStatus ret = mHintSession->close();
if (!ret.isOk()) {
ALOGE("%s: HintSession close failed: %s", __FUNCTION__, ret.getMessage());
}
}
int APerformanceHintSession::updateTargetWorkDuration(int64_t targetDurationNanos) {
if (targetDurationNanos <= 0) {
ALOGE("%s: targetDurationNanos must be positive", __FUNCTION__);
return EINVAL;
}
ndk::ScopedAStatus ret = mHintSession->updateTargetWorkDuration(targetDurationNanos);
if (!ret.isOk()) {
ALOGE("%s: HintSession updateTargetWorkDuration failed: %s", __FUNCTION__,
ret.getMessage());
return EPIPE;
}
std::scoped_lock lock(sHintMutex);
mTargetDurationNanos = targetDurationNanos;
/**
* Most of the workload is target_duration dependent, so now clear the cached samples
* as they are most likely obsolete.
*/
mActualWorkDurations.clear();
traceBatchSize(0);
traceTargetDuration(targetDurationNanos);
mFirstTargetMetTimestamp = 0;
mLastTargetMetTimestamp = 0;
return 0;
}
int APerformanceHintSession::reportActualWorkDuration(int64_t actualDurationNanos) {
hal::WorkDuration workDuration{.durationNanos = actualDurationNanos,
.workPeriodStartTimestampNanos = 0,
.cpuDurationNanos = actualDurationNanos,
.gpuDurationNanos = 0};
return reportActualWorkDurationInternal(static_cast<AWorkDuration*>(&workDuration));
}
int APerformanceHintSession::sendHint(SessionHint hint) {
std::scoped_lock lock(sHintMutex);
if (hint < 0 || hint >= static_cast<int32_t>(mLastHintSentTimestamp.size())) {
ALOGE("%s: invalid session hint %d", __FUNCTION__, hint);
return EINVAL;
}
int64_t now = uptimeNanos();
// Limit sendHint to a pre-detemined rate for safety
if (now < (mLastHintSentTimestamp[hint] + SEND_HINT_TIMEOUT)) {
return 0;
}
ndk::ScopedAStatus ret = mHintSession->sendHint(hint);
if (!ret.isOk()) {
ALOGE("%s: HintSession sendHint failed: %s", __FUNCTION__, ret.getMessage());
return EPIPE;
}
mLastHintSentTimestamp[hint] = now;
return 0;
}
int APerformanceHintSession::setThreads(const int32_t* threadIds, size_t size) {
if (size == 0) {
ALOGE("%s: the list of thread ids must not be empty.", __FUNCTION__);
return EINVAL;
}
std::vector<int32_t> tids(threadIds, threadIds + size);
ndk::ScopedAStatus ret = mHintManager->setHintSessionThreads(mHintSession, tids);
if (!ret.isOk()) {
ALOGE("%s: failed: %s", __FUNCTION__, ret.getMessage());
if (ret.getExceptionCode() == EX_ILLEGAL_ARGUMENT) {
return EINVAL;
} else if (ret.getExceptionCode() == EX_SECURITY) {
return EPERM;
}
return EPIPE;
}
std::scoped_lock lock(sHintMutex);
traceThreads(tids);
return 0;
}
int APerformanceHintSession::getThreadIds(int32_t* const threadIds, size_t* size) {
std::vector<int32_t> tids;
ndk::ScopedAStatus ret = mHintManager->getHintSessionThreadIds(mHintSession, &tids);
if (!ret.isOk()) {
ALOGE("%s: failed: %s", __FUNCTION__, ret.getMessage());
return EPIPE;
}
// When threadIds is nullptr, this is the first call to determine the size
// of the thread ids list.
if (threadIds == nullptr) {
*size = tids.size();
return 0;
}
// Second call to return the actual list of thread ids.
*size = tids.size();
for (size_t i = 0; i < *size; ++i) {
threadIds[i] = tids[i];
}
return 0;
}
int APerformanceHintSession::setPreferPowerEfficiency(bool enabled) {
ndk::ScopedAStatus ret =
mHintSession->setMode(static_cast<int32_t>(hal::SessionMode::POWER_EFFICIENCY),
enabled);
if (!ret.isOk()) {
ALOGE("%s: HintSession setPreferPowerEfficiency failed: %s", __FUNCTION__,
ret.getMessage());
return EPIPE;
}
std::scoped_lock lock(sHintMutex);
tracePowerEfficient(enabled);
return OK;
}
int APerformanceHintSession::reportActualWorkDuration(AWorkDuration* workDuration) {
return reportActualWorkDurationInternal(workDuration);
}
int APerformanceHintSession::reportActualWorkDurationInternal(AWorkDuration* workDuration) {
int64_t actualTotalDurationNanos = workDuration->durationNanos;
int64_t now = uptimeNanos();
workDuration->timeStampNanos = now;
std::scoped_lock lock(sHintMutex);
traceActualDuration(workDuration->durationNanos);
mActualWorkDurations.push_back(std::move(*workDuration));
if (actualTotalDurationNanos >= mTargetDurationNanos) {
// Reset timestamps if we are equal or over the target.
mFirstTargetMetTimestamp = 0;
} else {
// Set mFirstTargetMetTimestamp for first time meeting target.
if (!mFirstTargetMetTimestamp || !mLastTargetMetTimestamp ||
(now - mLastTargetMetTimestamp > 2 * mPreferredRateNanos)) {
mFirstTargetMetTimestamp = now;
}
/**
* Rate limit the change if the update is over mPreferredRateNanos since first
* meeting target and less than mPreferredRateNanos since last meeting target.
*/
if (now - mFirstTargetMetTimestamp > mPreferredRateNanos &&
now - mLastTargetMetTimestamp <= mPreferredRateNanos) {
traceBatchSize(mActualWorkDurations.size());
return 0;
}
mLastTargetMetTimestamp = now;
}
ndk::ScopedAStatus ret = mHintSession->reportActualWorkDuration2(mActualWorkDurations);
if (!ret.isOk()) {
ALOGE("%s: HintSession reportActualWorkDuration failed: %s", __FUNCTION__,
ret.getMessage());
mFirstTargetMetTimestamp = 0;
mLastTargetMetTimestamp = 0;
traceBatchSize(mActualWorkDurations.size());
return ret.getExceptionCode() == EX_ILLEGAL_ARGUMENT ? EINVAL : EPIPE;
}
mActualWorkDurations.clear();
traceBatchSize(0);
return 0;
}
// ===================================== Tracing helpers
void APerformanceHintSession::traceThreads(std::vector<int32_t>& tids) {
std::set<int32_t> tidSet{tids.begin(), tids.end()};
// Disable old TID tracing
for (int32_t tid : mLastThreadIDs) {
if (!tidSet.count(tid)) {
std::string traceName =
android::base::StringPrintf("%s TID: %" PRId32, mSessionName.c_str(), tid);
ATrace_setCounter(traceName.c_str(), 0);
}
}
// Add new TID tracing
for (int32_t tid : tids) {
std::string traceName =
android::base::StringPrintf("%s TID: %" PRId32, mSessionName.c_str(), tid);
ATrace_setCounter(traceName.c_str(), 1);
}
mLastThreadIDs = std::move(tids);
}
void APerformanceHintSession::tracePowerEfficient(bool powerEfficient) {
ATrace_setCounter((mSessionName + " power efficiency mode").c_str(), powerEfficient);
}
void APerformanceHintSession::traceActualDuration(int64_t actualDuration) {
ATrace_setCounter((mSessionName + " actual duration").c_str(), actualDuration);
}
void APerformanceHintSession::traceBatchSize(size_t batchSize) {
std::string traceName = StringPrintf("%s batch size", mSessionName.c_str());
ATrace_setCounter((mSessionName + " batch size").c_str(), batchSize);
}
void APerformanceHintSession::traceTargetDuration(int64_t targetDuration) {
ATrace_setCounter((mSessionName + " target duration").c_str(), targetDuration);
}
// ===================================== C API
APerformanceHintManager* APerformanceHint_getManager() {
return APerformanceHintManager::getInstance();
}
#define VALIDATE_PTR(ptr) \
LOG_ALWAYS_FATAL_IF(ptr == nullptr, "%s: " #ptr " is nullptr", __FUNCTION__);
#define VALIDATE_INT(value, cmp) \
if (!(value cmp)) { \
ALOGE("%s: Invalid value. Check failed: (" #value " " #cmp ") with value: %" PRIi64, \
__FUNCTION__, value); \
return EINVAL; \
}
#define WARN_INT(value, cmp) \
if (!(value cmp)) { \
ALOGE("%s: Invalid value. Check failed: (" #value " " #cmp ") with value: %" PRIi64, \
__FUNCTION__, value); \
}
APerformanceHintSession* APerformanceHint_createSession(APerformanceHintManager* manager,
const int32_t* threadIds, size_t size,
int64_t initialTargetWorkDurationNanos) {
VALIDATE_PTR(manager)
VALIDATE_PTR(threadIds)
return manager->createSession(threadIds, size, initialTargetWorkDurationNanos);
}
APerformanceHintSession* APerformanceHint_createSessionInternal(
APerformanceHintManager* manager, const int32_t* threadIds, size_t size,
int64_t initialTargetWorkDurationNanos, SessionTag tag) {
VALIDATE_PTR(manager)
VALIDATE_PTR(threadIds)
return manager->createSession(threadIds, size, initialTargetWorkDurationNanos,
static_cast<hal::SessionTag>(tag));
}
int64_t APerformanceHint_getPreferredUpdateRateNanos(APerformanceHintManager* manager) {
VALIDATE_PTR(manager)
return manager->getPreferredRateNanos();
}
int APerformanceHint_updateTargetWorkDuration(APerformanceHintSession* session,
int64_t targetDurationNanos) {
VALIDATE_PTR(session)
return session->updateTargetWorkDuration(targetDurationNanos);
}
int APerformanceHint_reportActualWorkDuration(APerformanceHintSession* session,
int64_t actualDurationNanos) {
VALIDATE_PTR(session)
VALIDATE_INT(actualDurationNanos, > 0)
return session->reportActualWorkDuration(actualDurationNanos);
}
void APerformanceHint_closeSession(APerformanceHintSession* session) {
VALIDATE_PTR(session)
delete session;
}
int APerformanceHint_sendHint(APerformanceHintSession* session, SessionHint hint) {
VALIDATE_PTR(session)
return session->sendHint(hint);
}
int APerformanceHint_setThreads(APerformanceHintSession* session, const pid_t* threadIds,
size_t size) {
VALIDATE_PTR(session)
VALIDATE_PTR(threadIds)
return session->setThreads(threadIds, size);
}
int APerformanceHint_getThreadIds(APerformanceHintSession* session, int32_t* const threadIds,
size_t* const size) {
VALIDATE_PTR(session)
return session->getThreadIds(threadIds, size);
}
int APerformanceHint_setPreferPowerEfficiency(APerformanceHintSession* session, bool enabled) {
VALIDATE_PTR(session)
return session->setPreferPowerEfficiency(enabled);
}
int APerformanceHint_reportActualWorkDuration2(APerformanceHintSession* session,
AWorkDuration* workDurationPtr) {
VALIDATE_PTR(session)
VALIDATE_PTR(workDurationPtr)
VALIDATE_INT(workDurationPtr->durationNanos, > 0)
VALIDATE_INT(workDurationPtr->workPeriodStartTimestampNanos, > 0)
VALIDATE_INT(workDurationPtr->cpuDurationNanos, >= 0)
VALIDATE_INT(workDurationPtr->gpuDurationNanos, >= 0)
VALIDATE_INT(workDurationPtr->gpuDurationNanos + workDurationPtr->cpuDurationNanos, > 0)
return session->reportActualWorkDuration(workDurationPtr);
}
AWorkDuration* AWorkDuration_create() {
return new AWorkDuration();
}
void AWorkDuration_release(AWorkDuration* aWorkDuration) {
VALIDATE_PTR(aWorkDuration)
delete aWorkDuration;
}
void AWorkDuration_setActualTotalDurationNanos(AWorkDuration* aWorkDuration,
int64_t actualTotalDurationNanos) {
VALIDATE_PTR(aWorkDuration)
WARN_INT(actualTotalDurationNanos, > 0)
aWorkDuration->durationNanos = actualTotalDurationNanos;
}
void AWorkDuration_setWorkPeriodStartTimestampNanos(AWorkDuration* aWorkDuration,
int64_t workPeriodStartTimestampNanos) {
VALIDATE_PTR(aWorkDuration)
WARN_INT(workPeriodStartTimestampNanos, > 0)
aWorkDuration->workPeriodStartTimestampNanos = workPeriodStartTimestampNanos;
}
void AWorkDuration_setActualCpuDurationNanos(AWorkDuration* aWorkDuration,
int64_t actualCpuDurationNanos) {
VALIDATE_PTR(aWorkDuration)
WARN_INT(actualCpuDurationNanos, >= 0)
aWorkDuration->cpuDurationNanos = actualCpuDurationNanos;
}
void AWorkDuration_setActualGpuDurationNanos(AWorkDuration* aWorkDuration,
int64_t actualGpuDurationNanos) {
VALIDATE_PTR(aWorkDuration)
WARN_INT(actualGpuDurationNanos, >= 0)
aWorkDuration->gpuDurationNanos = actualGpuDurationNanos;
}
void APerformanceHint_setIHintManagerForTesting(void* iManager) {
delete gHintManagerForTesting;
gHintManagerForTesting = nullptr;
gIHintManagerForTesting = static_cast<std::shared_ptr<IHintManager>*>(iManager);
}