blob: 629f14683b192d33ae071bea31aa942557f36be4 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <androidfw/BigBuffer.h>
#include <androidfw/StringPool.h>
#include <algorithm>
#include <memory>
#include <string>
#include "android-base/logging.h"
#include "androidfw/ResourceTypes.h"
#include "androidfw/StringPiece.h"
#include "androidfw/Util.h"
using ::android::StringPiece;
namespace android {
StringPool::Ref::Ref() : entry_(nullptr) {
}
StringPool::Ref::Ref(const StringPool::Ref& rhs) : entry_(rhs.entry_) {
if (entry_ != nullptr) {
entry_->ref_++;
}
}
StringPool::Ref::Ref(StringPool::Entry* entry) : entry_(entry) {
if (entry_ != nullptr) {
entry_->ref_++;
}
}
StringPool::Ref::~Ref() {
if (entry_ != nullptr) {
entry_->ref_--;
}
}
StringPool::Ref& StringPool::Ref::operator=(const StringPool::Ref& rhs) {
if (rhs.entry_ != nullptr) {
rhs.entry_->ref_++;
}
if (entry_ != nullptr) {
entry_->ref_--;
}
entry_ = rhs.entry_;
return *this;
}
bool StringPool::Ref::operator==(const Ref& rhs) const {
return entry_->value == rhs.entry_->value;
}
bool StringPool::Ref::operator!=(const Ref& rhs) const {
return entry_->value != rhs.entry_->value;
}
const std::string* StringPool::Ref::operator->() const {
return &entry_->value;
}
const std::string& StringPool::Ref::operator*() const {
return entry_->value;
}
size_t StringPool::Ref::index() const {
// Account for the styles, which *always* come first.
return entry_->pool_->styles_.size() + entry_->index_;
}
const StringPool::Context& StringPool::Ref::GetContext() const {
return entry_->context;
}
StringPool::StyleRef::StyleRef() : entry_(nullptr) {
}
StringPool::StyleRef::StyleRef(const StringPool::StyleRef& rhs) : entry_(rhs.entry_) {
if (entry_ != nullptr) {
entry_->ref_++;
}
}
StringPool::StyleRef::StyleRef(StringPool::StyleEntry* entry) : entry_(entry) {
if (entry_ != nullptr) {
entry_->ref_++;
}
}
StringPool::StyleRef::~StyleRef() {
if (entry_ != nullptr) {
entry_->ref_--;
}
}
StringPool::StyleRef& StringPool::StyleRef::operator=(const StringPool::StyleRef& rhs) {
if (rhs.entry_ != nullptr) {
rhs.entry_->ref_++;
}
if (entry_ != nullptr) {
entry_->ref_--;
}
entry_ = rhs.entry_;
return *this;
}
bool StringPool::StyleRef::operator==(const StyleRef& rhs) const {
if (entry_->value != rhs.entry_->value) {
return false;
}
if (entry_->spans.size() != rhs.entry_->spans.size()) {
return false;
}
auto rhs_iter = rhs.entry_->spans.begin();
for (const Span& span : entry_->spans) {
const Span& rhs_span = *rhs_iter++;
if (span.first_char != rhs_span.first_char || span.last_char != rhs_span.last_char ||
span.name != rhs_span.name) {
return false;
}
}
return true;
}
bool StringPool::StyleRef::operator!=(const StyleRef& rhs) const {
return !operator==(rhs);
}
const StringPool::StyleEntry* StringPool::StyleRef::operator->() const {
return entry_;
}
const StringPool::StyleEntry& StringPool::StyleRef::operator*() const {
return *entry_;
}
size_t StringPool::StyleRef::index() const {
return entry_->index_;
}
const StringPool::Context& StringPool::StyleRef::GetContext() const {
return entry_->context;
}
StringPool::Ref StringPool::MakeRef(StringPiece str) {
return MakeRefImpl(str, Context{}, true);
}
StringPool::Ref StringPool::MakeRef(StringPiece str, const Context& context) {
return MakeRefImpl(str, context, true);
}
StringPool::Ref StringPool::MakeRefImpl(StringPiece str, const Context& context, bool unique) {
if (unique) {
auto range = indexed_strings_.equal_range(str);
for (auto iter = range.first; iter != range.second; ++iter) {
if (context.priority == iter->second->context.priority) {
return Ref(iter->second);
}
}
}
std::unique_ptr<Entry> entry(new Entry());
entry->value = std::string(str);
entry->context = context;
entry->index_ = strings_.size();
entry->ref_ = 0;
entry->pool_ = this;
Entry* borrow = entry.get();
strings_.emplace_back(std::move(entry));
indexed_strings_.insert(std::make_pair(StringPiece(borrow->value), borrow));
return Ref(borrow);
}
StringPool::Ref StringPool::MakeRef(const Ref& ref) {
if (ref.entry_->pool_ == this) {
return ref;
}
return MakeRef(ref.entry_->value, ref.entry_->context);
}
StringPool::StyleRef StringPool::MakeRef(const StyleString& str) {
return MakeRef(str, Context{});
}
StringPool::StyleRef StringPool::MakeRef(const StyleString& str, const Context& context) {
std::unique_ptr<StyleEntry> entry(new StyleEntry());
entry->value = str.str;
entry->context = context;
entry->index_ = styles_.size();
entry->ref_ = 0;
for (const android::Span& span : str.spans) {
entry->spans.emplace_back(Span{MakeRef(span.name), span.first_char, span.last_char});
}
StyleEntry* borrow = entry.get();
styles_.emplace_back(std::move(entry));
return StyleRef(borrow);
}
StringPool::StyleRef StringPool::MakeRef(const StyleRef& ref) {
std::unique_ptr<StyleEntry> entry(new StyleEntry());
entry->value = ref.entry_->value;
entry->context = ref.entry_->context;
entry->index_ = styles_.size();
entry->ref_ = 0;
for (const Span& span : ref.entry_->spans) {
entry->spans.emplace_back(Span{MakeRef(*span.name), span.first_char, span.last_char});
}
StyleEntry* borrow = entry.get();
styles_.emplace_back(std::move(entry));
return StyleRef(borrow);
}
void StringPool::ReAssignIndices() {
// Assign the style indices.
const size_t style_len = styles_.size();
for (size_t index = 0; index < style_len; index++) {
styles_[index]->index_ = index;
}
// Assign the string indices.
const size_t string_len = strings_.size();
for (size_t index = 0; index < string_len; index++) {
strings_[index]->index_ = index;
}
}
void StringPool::Merge(StringPool&& pool) {
// First, change the owning pool for the incoming strings.
for (std::unique_ptr<Entry>& entry : pool.strings_) {
entry->pool_ = this;
}
// Now move the styles, strings, and indices over.
std::move(pool.styles_.begin(), pool.styles_.end(), std::back_inserter(styles_));
pool.styles_.clear();
std::move(pool.strings_.begin(), pool.strings_.end(), std::back_inserter(strings_));
pool.strings_.clear();
indexed_strings_.insert(pool.indexed_strings_.begin(), pool.indexed_strings_.end());
pool.indexed_strings_.clear();
ReAssignIndices();
}
void StringPool::HintWillAdd(size_t string_count, size_t style_count) {
strings_.reserve(strings_.size() + string_count);
styles_.reserve(styles_.size() + style_count);
}
void StringPool::Prune() {
const auto iter_end = indexed_strings_.end();
auto index_iter = indexed_strings_.begin();
while (index_iter != iter_end) {
if (index_iter->second->ref_ <= 0) {
index_iter = indexed_strings_.erase(index_iter);
} else {
++index_iter;
}
}
auto end_iter2 =
std::remove_if(strings_.begin(), strings_.end(),
[](const std::unique_ptr<Entry>& entry) -> bool { return entry->ref_ <= 0; });
auto end_iter3 = std::remove_if(
styles_.begin(), styles_.end(),
[](const std::unique_ptr<StyleEntry>& entry) -> bool { return entry->ref_ <= 0; });
// Remove the entries at the end or else we'll be accessing a deleted string from the StyleEntry.
strings_.erase(end_iter2, strings_.end());
styles_.erase(end_iter3, styles_.end());
ReAssignIndices();
}
template <typename E>
static void SortEntries(
std::vector<std::unique_ptr<E>>& entries,
base::function_ref<int(const StringPool::Context&, const StringPool::Context&)> cmp) {
using UEntry = std::unique_ptr<E>;
std::sort(entries.begin(), entries.end(), [cmp](const UEntry& a, const UEntry& b) -> bool {
int r = cmp(a->context, b->context);
if (r == 0) {
r = a->value.compare(b->value);
}
return r < 0;
});
}
void StringPool::Sort() {
Sort([](auto&&, auto&&) { return 0; });
}
void StringPool::Sort(base::function_ref<int(const Context&, const Context&)> cmp) {
SortEntries(styles_, cmp);
SortEntries(strings_, cmp);
ReAssignIndices();
}
template <typename T>
static T* EncodeLength(T* data, size_t length) {
static_assert(std::is_integral<T>::value, "wat.");
constexpr size_t kMask = 1 << ((sizeof(T) * 8) - 1);
constexpr size_t kMaxSize = kMask - 1;
if (length > kMaxSize) {
*data++ = kMask | (kMaxSize & (length >> (sizeof(T) * 8)));
}
*data++ = length;
return data;
}
/**
* Returns the maximum possible string length that can be successfully encoded
* using 2 units of the specified T.
* EncodeLengthMax<char> -> maximum unit length of 0x7FFF
* EncodeLengthMax<char16_t> -> maximum unit length of 0x7FFFFFFF
**/
template <typename T>
static size_t EncodeLengthMax() {
static_assert(std::is_integral<T>::value, "wat.");
constexpr size_t kMask = 1 << ((sizeof(T) * 8 * 2) - 1);
constexpr size_t max = kMask - 1;
return max;
}
/**
* Returns the number of units (1 or 2) needed to encode the string length
* before writing the string.
*/
template <typename T>
static size_t EncodedLengthUnits(size_t length) {
static_assert(std::is_integral<T>::value, "wat.");
constexpr size_t kMask = 1 << ((sizeof(T) * 8) - 1);
constexpr size_t kMaxSize = kMask - 1;
return length > kMaxSize ? 2 : 1;
}
const std::string kStringTooLarge = "STRING_TOO_LARGE";
static bool EncodeString(const std::string& str, const bool utf8, BigBuffer* out,
IDiagnostics* diag) {
if (utf8) {
const std::string& encoded = util::Utf8ToModifiedUtf8(str);
const ssize_t utf16_length =
utf8_to_utf16_length(reinterpret_cast<const uint8_t*>(encoded.data()), encoded.size());
CHECK(utf16_length >= 0);
// Make sure the lengths to be encoded do not exceed the maximum length that
// can be encoded using chars
if ((((size_t)encoded.size()) > EncodeLengthMax<char>()) ||
(((size_t)utf16_length) > EncodeLengthMax<char>())) {
diag->Error(DiagMessage() << "string too large to encode using UTF-8 "
<< "written instead as '" << kStringTooLarge << "'");
EncodeString(kStringTooLarge, utf8, out, diag);
return false;
}
const size_t total_size = EncodedLengthUnits<char>(utf16_length) +
EncodedLengthUnits<char>(encoded.size()) + encoded.size() + 1;
char* data = out->NextBlock<char>(total_size);
// First encode the UTF16 string length.
data = EncodeLength(data, utf16_length);
// Now encode the size of the real UTF8 string.
data = EncodeLength(data, encoded.size());
strncpy(data, encoded.data(), encoded.size());
} else {
const std::u16string encoded = util::Utf8ToUtf16(str);
const ssize_t utf16_length = encoded.size();
// Make sure the length to be encoded does not exceed the maximum possible
// length that can be encoded
if (((size_t)utf16_length) > EncodeLengthMax<char16_t>()) {
diag->Error(DiagMessage() << "string too large to encode using UTF-16 "
<< "written instead as '" << kStringTooLarge << "'");
EncodeString(kStringTooLarge, utf8, out, diag);
return false;
}
// Total number of 16-bit words to write.
const size_t total_size = EncodedLengthUnits<char16_t>(utf16_length) + encoded.size() + 1;
char16_t* data = out->NextBlock<char16_t>(total_size);
// Encode the actual UTF16 string length.
data = EncodeLength(data, utf16_length);
const size_t byte_length = encoded.size() * sizeof(char16_t);
// NOTE: For some reason, strncpy16(data, entry->value.data(),
// entry->value.size()) truncates the string.
memcpy(data, encoded.data(), byte_length);
// The null-terminating character is already here due to the block of data
// being set to 0s on allocation.
}
return true;
}
bool StringPool::Flatten(BigBuffer* out, const StringPool& pool, bool utf8, IDiagnostics* diag) {
bool no_error = true;
const size_t start_index = out->size();
android::ResStringPool_header* header = out->NextBlock<android::ResStringPool_header>();
header->header.type = util::HostToDevice16(android::RES_STRING_POOL_TYPE);
header->header.headerSize = util::HostToDevice16(sizeof(*header));
header->stringCount = util::HostToDevice32(pool.size());
header->styleCount = util::HostToDevice32(pool.styles_.size());
if (utf8) {
header->flags |= android::ResStringPool_header::UTF8_FLAG;
}
uint32_t* indices = pool.size() != 0 ? out->NextBlock<uint32_t>(pool.size()) : nullptr;
uint32_t* style_indices =
pool.styles_.size() != 0 ? out->NextBlock<uint32_t>(pool.styles_.size()) : nullptr;
const size_t before_strings_index = out->size();
header->stringsStart = before_strings_index - start_index;
// Styles always come first.
for (const std::unique_ptr<StyleEntry>& entry : pool.styles_) {
*indices++ = out->size() - before_strings_index;
no_error = EncodeString(entry->value, utf8, out, diag) && no_error;
}
for (const std::unique_ptr<Entry>& entry : pool.strings_) {
*indices++ = out->size() - before_strings_index;
no_error = EncodeString(entry->value, utf8, out, diag) && no_error;
}
out->Align4();
if (style_indices != nullptr) {
const size_t before_styles_index = out->size();
header->stylesStart = util::HostToDevice32(before_styles_index - start_index);
for (const std::unique_ptr<StyleEntry>& entry : pool.styles_) {
*style_indices++ = out->size() - before_styles_index;
if (!entry->spans.empty()) {
android::ResStringPool_span* span =
out->NextBlock<android::ResStringPool_span>(entry->spans.size());
for (const Span& s : entry->spans) {
span->name.index = util::HostToDevice32(s.name.index());
span->firstChar = util::HostToDevice32(s.first_char);
span->lastChar = util::HostToDevice32(s.last_char);
span++;
}
}
uint32_t* spanEnd = out->NextBlock<uint32_t>();
*spanEnd = android::ResStringPool_span::END;
}
// The error checking code in the platform looks for an entire
// ResStringPool_span structure worth of 0xFFFFFFFF at the end
// of the style block, so fill in the remaining 2 32bit words
// with 0xFFFFFFFF.
const size_t padding_length =
sizeof(android::ResStringPool_span) - sizeof(android::ResStringPool_span::name);
uint8_t* padding = out->NextBlock<uint8_t>(padding_length);
memset(padding, 0xff, padding_length);
out->Align4();
}
header->header.size = util::HostToDevice32(out->size() - start_index);
return no_error;
}
bool StringPool::FlattenUtf8(BigBuffer* out, const StringPool& pool, IDiagnostics* diag) {
return Flatten(out, pool, true, diag);
}
bool StringPool::FlattenUtf16(BigBuffer* out, const StringPool& pool, IDiagnostics* diag) {
return Flatten(out, pool, false, diag);
}
} // namespace android