blob: e3023937964ec9a680e35880d72cf193f51b9a98 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "VulkanManager.h"
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <android/sync.h>
#include <gui/TraceUtils.h>
#include <include/gpu/ganesh/GrBackendSemaphore.h>
#include <include/gpu/ganesh/GrBackendSurface.h>
#include <include/gpu/ganesh/GrDirectContext.h>
#include <include/gpu/ganesh/GrTypes.h>
#include <include/gpu/ganesh/SkSurfaceGanesh.h>
#include <include/gpu/ganesh/vk/GrVkBackendSemaphore.h>
#include <include/gpu/ganesh/vk/GrVkBackendSurface.h>
#include <include/gpu/ganesh/vk/GrVkDirectContext.h>
#include <include/gpu/ganesh/vk/GrVkTypes.h>
#include <include/gpu/vk/VulkanBackendContext.h>
#include <ui/FatVector.h>
#include <sstream>
#include "Properties.h"
#include "RenderThread.h"
#include "pipeline/skia/ShaderCache.h"
#include "renderstate/RenderState.h"
namespace android {
namespace uirenderer {
namespace renderthread {
// Not all of these are strictly required, but are all enabled if present.
static std::array<std::string_view, 21> sEnableExtensions{
VK_KHR_BIND_MEMORY_2_EXTENSION_NAME,
VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME,
VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME,
VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME,
VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME,
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME,
VK_KHR_MAINTENANCE1_EXTENSION_NAME,
VK_KHR_MAINTENANCE2_EXTENSION_NAME,
VK_KHR_MAINTENANCE3_EXTENSION_NAME,
VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME,
VK_KHR_SURFACE_EXTENSION_NAME,
VK_KHR_SWAPCHAIN_EXTENSION_NAME,
VK_EXT_BLEND_OPERATION_ADVANCED_EXTENSION_NAME,
VK_KHR_IMAGE_FORMAT_LIST_EXTENSION_NAME,
VK_EXT_IMAGE_DRM_FORMAT_MODIFIER_EXTENSION_NAME,
VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME,
VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME,
VK_KHR_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME,
VK_KHR_ANDROID_SURFACE_EXTENSION_NAME,
VK_EXT_GLOBAL_PRIORITY_EXTENSION_NAME,
VK_EXT_DEVICE_FAULT_EXTENSION_NAME,
};
static bool shouldEnableExtension(const std::string_view& extension) {
for (const auto& it : sEnableExtensions) {
if (it == extension) {
return true;
}
}
return false;
}
static void free_features_extensions_structs(const VkPhysicalDeviceFeatures2& features) {
// All Vulkan structs that could be part of the features chain will start with the
// structure type followed by the pNext pointer. We cast to the CommonVulkanHeader
// so we can get access to the pNext for the next struct.
struct CommonVulkanHeader {
VkStructureType sType;
void* pNext;
};
void* pNext = features.pNext;
while (pNext) {
void* current = pNext;
pNext = static_cast<CommonVulkanHeader*>(current)->pNext;
free(current);
}
}
#define GET_PROC(F) m##F = (PFN_vk##F)vkGetInstanceProcAddr(VK_NULL_HANDLE, "vk" #F)
#define GET_INST_PROC(F) m##F = (PFN_vk##F)vkGetInstanceProcAddr(mInstance, "vk" #F)
#define GET_DEV_PROC(F) m##F = (PFN_vk##F)vkGetDeviceProcAddr(mDevice, "vk" #F)
// cache a weakptr to the context to enable a second thread to share the same vulkan state
static wp<VulkanManager> sWeakInstance = nullptr;
static std::mutex sLock;
sp<VulkanManager> VulkanManager::getInstance() {
std::lock_guard _lock{sLock};
sp<VulkanManager> vulkanManager = sWeakInstance.promote();
if (!vulkanManager.get()) {
vulkanManager = new VulkanManager();
sWeakInstance = vulkanManager;
}
return vulkanManager;
}
sp<VulkanManager> VulkanManager::peekInstance() {
std::lock_guard _lock{sLock};
return sWeakInstance.promote();
}
VulkanManager::~VulkanManager() {
if (mDevice != VK_NULL_HANDLE) {
mDeviceWaitIdle(mDevice);
mDestroyDevice(mDevice, nullptr);
}
if (mInstance != VK_NULL_HANDLE) {
mDestroyInstance(mInstance, nullptr);
}
mGraphicsQueue = VK_NULL_HANDLE;
mAHBUploadQueue = VK_NULL_HANDLE;
mDevice = VK_NULL_HANDLE;
mPhysicalDevice = VK_NULL_HANDLE;
mInstance = VK_NULL_HANDLE;
mInstanceExtensionsOwner.clear();
mInstanceExtensions.clear();
mDeviceExtensionsOwner.clear();
mDeviceExtensions.clear();
free_features_extensions_structs(mPhysicalDeviceFeatures2);
mPhysicalDeviceFeatures2 = {};
}
void VulkanManager::setupDevice(skgpu::VulkanExtensions& grExtensions,
VkPhysicalDeviceFeatures2& features) {
VkResult err;
constexpr VkApplicationInfo app_info = {
VK_STRUCTURE_TYPE_APPLICATION_INFO, // sType
nullptr, // pNext
"android framework", // pApplicationName
0, // applicationVersion
"android framework", // pEngineName
0, // engineVerison
mAPIVersion, // apiVersion
};
{
GET_PROC(EnumerateInstanceExtensionProperties);
uint32_t extensionCount = 0;
err = mEnumerateInstanceExtensionProperties(nullptr, &extensionCount, nullptr);
LOG_ALWAYS_FATAL_IF(VK_SUCCESS != err);
mInstanceExtensionsOwner.resize(extensionCount);
err = mEnumerateInstanceExtensionProperties(nullptr, &extensionCount,
mInstanceExtensionsOwner.data());
LOG_ALWAYS_FATAL_IF(VK_SUCCESS != err);
bool hasKHRSurfaceExtension = false;
bool hasKHRAndroidSurfaceExtension = false;
for (const VkExtensionProperties& extension : mInstanceExtensionsOwner) {
if (!shouldEnableExtension(extension.extensionName)) {
ALOGV("Not enabling instance extension %s", extension.extensionName);
continue;
}
ALOGV("Enabling instance extension %s", extension.extensionName);
mInstanceExtensions.push_back(extension.extensionName);
if (!strcmp(extension.extensionName, VK_KHR_SURFACE_EXTENSION_NAME)) {
hasKHRSurfaceExtension = true;
}
if (!strcmp(extension.extensionName, VK_KHR_ANDROID_SURFACE_EXTENSION_NAME)) {
hasKHRAndroidSurfaceExtension = true;
}
}
LOG_ALWAYS_FATAL_IF(!hasKHRSurfaceExtension || !hasKHRAndroidSurfaceExtension);
}
const VkInstanceCreateInfo instance_create = {
VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, // sType
nullptr, // pNext
0, // flags
&app_info, // pApplicationInfo
0, // enabledLayerNameCount
nullptr, // ppEnabledLayerNames
(uint32_t)mInstanceExtensions.size(), // enabledExtensionNameCount
mInstanceExtensions.data(), // ppEnabledExtensionNames
};
GET_PROC(CreateInstance);
err = mCreateInstance(&instance_create, nullptr, &mInstance);
LOG_ALWAYS_FATAL_IF(err < 0);
GET_INST_PROC(CreateDevice);
GET_INST_PROC(DestroyInstance);
GET_INST_PROC(EnumerateDeviceExtensionProperties);
GET_INST_PROC(EnumeratePhysicalDevices);
GET_INST_PROC(GetPhysicalDeviceFeatures2);
GET_INST_PROC(GetPhysicalDeviceImageFormatProperties2);
GET_INST_PROC(GetPhysicalDeviceProperties);
GET_INST_PROC(GetPhysicalDeviceQueueFamilyProperties);
uint32_t gpuCount;
LOG_ALWAYS_FATAL_IF(mEnumeratePhysicalDevices(mInstance, &gpuCount, nullptr));
LOG_ALWAYS_FATAL_IF(!gpuCount);
// Just returning the first physical device instead of getting the whole array. Since there
// should only be one device on android.
gpuCount = 1;
err = mEnumeratePhysicalDevices(mInstance, &gpuCount, &mPhysicalDevice);
// VK_INCOMPLETE is returned when the count we provide is less than the total device count.
LOG_ALWAYS_FATAL_IF(err && VK_INCOMPLETE != err);
VkPhysicalDeviceProperties physDeviceProperties;
mGetPhysicalDeviceProperties(mPhysicalDevice, &physDeviceProperties);
LOG_ALWAYS_FATAL_IF(physDeviceProperties.apiVersion < VK_MAKE_VERSION(1, 1, 0));
mDriverVersion = physDeviceProperties.driverVersion;
// query to get the initial queue props size
uint32_t queueCount = 0;
mGetPhysicalDeviceQueueFamilyProperties(mPhysicalDevice, &queueCount, nullptr);
LOG_ALWAYS_FATAL_IF(!queueCount);
// now get the actual queue props
std::unique_ptr<VkQueueFamilyProperties[]> queueProps(new VkQueueFamilyProperties[queueCount]);
mGetPhysicalDeviceQueueFamilyProperties(mPhysicalDevice, &queueCount, queueProps.get());
constexpr auto kRequestedQueueCount = 2;
// iterate to find the graphics queue
mGraphicsQueueIndex = queueCount;
for (uint32_t i = 0; i < queueCount; i++) {
if (queueProps[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) {
mGraphicsQueueIndex = i;
LOG_ALWAYS_FATAL_IF(queueProps[i].queueCount < kRequestedQueueCount);
break;
}
}
LOG_ALWAYS_FATAL_IF(mGraphicsQueueIndex == queueCount);
{
uint32_t extensionCount = 0;
err = mEnumerateDeviceExtensionProperties(mPhysicalDevice, nullptr, &extensionCount,
nullptr);
LOG_ALWAYS_FATAL_IF(VK_SUCCESS != err);
mDeviceExtensionsOwner.resize(extensionCount);
err = mEnumerateDeviceExtensionProperties(mPhysicalDevice, nullptr, &extensionCount,
mDeviceExtensionsOwner.data());
LOG_ALWAYS_FATAL_IF(VK_SUCCESS != err);
bool hasKHRSwapchainExtension = false;
for (const VkExtensionProperties& extension : mDeviceExtensionsOwner) {
if (!shouldEnableExtension(extension.extensionName)) {
ALOGV("Not enabling device extension %s", extension.extensionName);
continue;
}
ALOGV("Enabling device extension %s", extension.extensionName);
mDeviceExtensions.push_back(extension.extensionName);
if (!strcmp(extension.extensionName, VK_KHR_SWAPCHAIN_EXTENSION_NAME)) {
hasKHRSwapchainExtension = true;
}
}
LOG_ALWAYS_FATAL_IF(!hasKHRSwapchainExtension);
}
auto getProc = [](const char* proc_name, VkInstance instance, VkDevice device) {
if (device != VK_NULL_HANDLE) {
return vkGetDeviceProcAddr(device, proc_name);
}
return vkGetInstanceProcAddr(instance, proc_name);
};
grExtensions.init(getProc, mInstance, mPhysicalDevice, mInstanceExtensions.size(),
mInstanceExtensions.data(), mDeviceExtensions.size(),
mDeviceExtensions.data());
LOG_ALWAYS_FATAL_IF(!grExtensions.hasExtension(VK_KHR_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME, 1));
memset(&features, 0, sizeof(VkPhysicalDeviceFeatures2));
features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
features.pNext = nullptr;
// Setup all extension feature structs we may want to use.
void** tailPNext = &features.pNext;
if (grExtensions.hasExtension(VK_EXT_BLEND_OPERATION_ADVANCED_EXTENSION_NAME, 2)) {
VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT* blend;
blend = (VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT*)malloc(
sizeof(VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT));
LOG_ALWAYS_FATAL_IF(!blend);
blend->sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT;
blend->pNext = nullptr;
*tailPNext = blend;
tailPNext = &blend->pNext;
}
VkPhysicalDeviceSamplerYcbcrConversionFeatures* ycbcrFeature;
ycbcrFeature = (VkPhysicalDeviceSamplerYcbcrConversionFeatures*)malloc(
sizeof(VkPhysicalDeviceSamplerYcbcrConversionFeatures));
LOG_ALWAYS_FATAL_IF(!ycbcrFeature);
ycbcrFeature->sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES;
ycbcrFeature->pNext = nullptr;
*tailPNext = ycbcrFeature;
tailPNext = &ycbcrFeature->pNext;
if (grExtensions.hasExtension(VK_EXT_DEVICE_FAULT_EXTENSION_NAME, 1)) {
VkPhysicalDeviceFaultFeaturesEXT* deviceFaultFeatures =
new VkPhysicalDeviceFaultFeaturesEXT;
deviceFaultFeatures->sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FAULT_FEATURES_EXT;
deviceFaultFeatures->pNext = nullptr;
*tailPNext = deviceFaultFeatures;
tailPNext = &deviceFaultFeatures->pNext;
}
if (grExtensions.hasExtension(VK_EXT_RGBA10X6_FORMATS_EXTENSION_NAME, 1)) {
VkPhysicalDeviceRGBA10X6FormatsFeaturesEXT* formatFeatures =
new VkPhysicalDeviceRGBA10X6FormatsFeaturesEXT;
formatFeatures->sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RGBA10X6_FORMATS_FEATURES_EXT;
formatFeatures->pNext = nullptr;
*tailPNext = formatFeatures;
tailPNext = &formatFeatures->pNext;
}
// query to get the physical device features
mGetPhysicalDeviceFeatures2(mPhysicalDevice, &features);
// this looks like it would slow things down,
// and we can't depend on it on all platforms
features.features.robustBufferAccess = VK_FALSE;
float queuePriorities[kRequestedQueueCount] = {0.0};
void* queueNextPtr = nullptr;
VkDeviceQueueGlobalPriorityCreateInfoEXT queuePriorityCreateInfo;
if (Properties::contextPriority != 0 &&
grExtensions.hasExtension(VK_EXT_GLOBAL_PRIORITY_EXTENSION_NAME, 2)) {
memset(&queuePriorityCreateInfo, 0, sizeof(VkDeviceQueueGlobalPriorityCreateInfoEXT));
queuePriorityCreateInfo.sType =
VK_STRUCTURE_TYPE_DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT;
queuePriorityCreateInfo.pNext = nullptr;
switch (Properties::contextPriority) {
case EGL_CONTEXT_PRIORITY_LOW_IMG:
queuePriorityCreateInfo.globalPriority = VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT;
break;
case EGL_CONTEXT_PRIORITY_MEDIUM_IMG:
queuePriorityCreateInfo.globalPriority = VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
break;
case EGL_CONTEXT_PRIORITY_HIGH_IMG:
queuePriorityCreateInfo.globalPriority = VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT;
break;
default:
LOG_ALWAYS_FATAL("Unsupported context priority");
}
queueNextPtr = &queuePriorityCreateInfo;
}
const VkDeviceQueueCreateInfo queueInfo = {
VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, // sType
queueNextPtr, // pNext
0, // VkDeviceQueueCreateFlags
mGraphicsQueueIndex, // queueFamilyIndex
kRequestedQueueCount, // queueCount
queuePriorities, // pQueuePriorities
};
const VkDeviceCreateInfo deviceInfo = {
VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO, // sType
&features, // pNext
0, // VkDeviceCreateFlags
1, // queueCreateInfoCount
&queueInfo, // pQueueCreateInfos
0, // layerCount
nullptr, // ppEnabledLayerNames
(uint32_t)mDeviceExtensions.size(), // extensionCount
mDeviceExtensions.data(), // ppEnabledExtensionNames
nullptr, // ppEnabledFeatures
};
LOG_ALWAYS_FATAL_IF(mCreateDevice(mPhysicalDevice, &deviceInfo, nullptr, &mDevice));
GET_DEV_PROC(AllocateCommandBuffers);
GET_DEV_PROC(BeginCommandBuffer);
GET_DEV_PROC(CmdPipelineBarrier);
GET_DEV_PROC(CreateCommandPool);
GET_DEV_PROC(CreateFence);
GET_DEV_PROC(CreateSemaphore);
GET_DEV_PROC(DestroyCommandPool);
GET_DEV_PROC(DestroyDevice);
GET_DEV_PROC(DestroyFence);
GET_DEV_PROC(DestroySemaphore);
GET_DEV_PROC(DeviceWaitIdle);
GET_DEV_PROC(EndCommandBuffer);
GET_DEV_PROC(FreeCommandBuffers);
GET_DEV_PROC(GetDeviceQueue);
GET_DEV_PROC(GetSemaphoreFdKHR);
GET_DEV_PROC(ImportSemaphoreFdKHR);
GET_DEV_PROC(QueueSubmit);
GET_DEV_PROC(QueueWaitIdle);
GET_DEV_PROC(ResetCommandBuffer);
GET_DEV_PROC(ResetFences);
GET_DEV_PROC(WaitForFences);
GET_DEV_PROC(FrameBoundaryANDROID);
}
void VulkanManager::initialize() {
std::call_once(mInitFlag, [&] {
GET_PROC(EnumerateInstanceVersion);
uint32_t instanceVersion;
LOG_ALWAYS_FATAL_IF(mEnumerateInstanceVersion(&instanceVersion));
LOG_ALWAYS_FATAL_IF(instanceVersion < VK_MAKE_VERSION(1, 1, 0));
this->setupDevice(mExtensions, mPhysicalDeviceFeatures2);
mGetDeviceQueue(mDevice, mGraphicsQueueIndex, 0, &mGraphicsQueue);
mGetDeviceQueue(mDevice, mGraphicsQueueIndex, 1, &mAHBUploadQueue);
if (Properties::enablePartialUpdates && Properties::useBufferAge) {
mSwapBehavior = SwapBehavior::BufferAge;
}
mInitialized = true;
});
}
namespace {
void onVkDeviceFault(const std::string& contextLabel, const std::string& description,
const std::vector<VkDeviceFaultAddressInfoEXT>& addressInfos,
const std::vector<VkDeviceFaultVendorInfoEXT>& vendorInfos,
const std::vector<std::byte>& vendorBinaryData) {
// The final crash string should contain as much differentiating info as possible, up to 1024
// bytes. As this final message is constructed, the same information is also dumped to the logs
// but in a more verbose format. Building the crash string is unsightly, so the clearer logging
// statement is always placed first to give context.
ALOGE("VK_ERROR_DEVICE_LOST (%s context): %s", contextLabel.c_str(), description.c_str());
std::stringstream crashMsg;
crashMsg << "VK_ERROR_DEVICE_LOST (" << contextLabel;
if (!addressInfos.empty()) {
ALOGE("%zu VkDeviceFaultAddressInfoEXT:", addressInfos.size());
crashMsg << ", " << addressInfos.size() << " address info (";
for (VkDeviceFaultAddressInfoEXT addressInfo : addressInfos) {
ALOGE(" addressType: %d", (int)addressInfo.addressType);
ALOGE(" reportedAddress: %" PRIu64, addressInfo.reportedAddress);
ALOGE(" addressPrecision: %" PRIu64, addressInfo.addressPrecision);
crashMsg << addressInfo.addressType << ":"
<< addressInfo.reportedAddress << ":"
<< addressInfo.addressPrecision << ", ";
}
crashMsg.seekp(-2, crashMsg.cur); // Move back to overwrite trailing ", "
crashMsg << ")";
}
if (!vendorInfos.empty()) {
ALOGE("%zu VkDeviceFaultVendorInfoEXT:", vendorInfos.size());
crashMsg << ", " << vendorInfos.size() << " vendor info (";
for (VkDeviceFaultVendorInfoEXT vendorInfo : vendorInfos) {
ALOGE(" description: %s", vendorInfo.description);
ALOGE(" vendorFaultCode: %" PRIu64, vendorInfo.vendorFaultCode);
ALOGE(" vendorFaultData: %" PRIu64, vendorInfo.vendorFaultData);
// Omit descriptions for individual vendor info structs in the crash string, as the
// fault code and fault data fields should be enough for clustering, and the verbosity
// isn't worth it. Additionally, vendors may just set the general description field of
// the overall fault to the description of the first element in this list, and that
// overall description will be placed at the end of the crash string.
crashMsg << vendorInfo.vendorFaultCode << ":"
<< vendorInfo.vendorFaultData << ", ";
}
crashMsg.seekp(-2, crashMsg.cur); // Move back to overwrite trailing ", "
crashMsg << ")";
}
if (!vendorBinaryData.empty()) {
// TODO: b/322830575 - Log in base64, or dump directly to a file that gets put in bugreports
ALOGE("%zu bytes of vendor-specific binary data (please notify Android's Core Graphics"
" Stack team if you observe this message).",
vendorBinaryData.size());
crashMsg << ", " << vendorBinaryData.size() << " bytes binary";
}
crashMsg << "): " << description;
LOG_ALWAYS_FATAL("%s", crashMsg.str().c_str());
}
void deviceLostProcRenderThread(void* callbackContext, const std::string& description,
const std::vector<VkDeviceFaultAddressInfoEXT>& addressInfos,
const std::vector<VkDeviceFaultVendorInfoEXT>& vendorInfos,
const std::vector<std::byte>& vendorBinaryData) {
onVkDeviceFault("RenderThread", description, addressInfos, vendorInfos, vendorBinaryData);
}
void deviceLostProcUploadThread(void* callbackContext, const std::string& description,
const std::vector<VkDeviceFaultAddressInfoEXT>& addressInfos,
const std::vector<VkDeviceFaultVendorInfoEXT>& vendorInfos,
const std::vector<std::byte>& vendorBinaryData) {
onVkDeviceFault("UploadThread", description, addressInfos, vendorInfos, vendorBinaryData);
}
} // anonymous namespace
static void onGrContextReleased(void* context) {
VulkanManager* manager = (VulkanManager*)context;
manager->decStrong((void*)onGrContextReleased);
}
sk_sp<GrDirectContext> VulkanManager::createContext(GrContextOptions& options,
ContextType contextType) {
auto getProc = [](const char* proc_name, VkInstance instance, VkDevice device) {
if (device != VK_NULL_HANDLE) {
return vkGetDeviceProcAddr(device, proc_name);
}
return vkGetInstanceProcAddr(instance, proc_name);
};
skgpu::VulkanBackendContext backendContext;
backendContext.fInstance = mInstance;
backendContext.fPhysicalDevice = mPhysicalDevice;
backendContext.fDevice = mDevice;
backendContext.fQueue =
(contextType == ContextType::kRenderThread) ? mGraphicsQueue : mAHBUploadQueue;
backendContext.fGraphicsQueueIndex = mGraphicsQueueIndex;
backendContext.fMaxAPIVersion = mAPIVersion;
backendContext.fVkExtensions = &mExtensions;
backendContext.fDeviceFeatures2 = &mPhysicalDeviceFeatures2;
backendContext.fGetProc = std::move(getProc);
backendContext.fDeviceLostContext = nullptr;
backendContext.fDeviceLostProc = (contextType == ContextType::kRenderThread)
? deviceLostProcRenderThread
: deviceLostProcUploadThread;
LOG_ALWAYS_FATAL_IF(options.fContextDeleteProc != nullptr, "Conflicting fContextDeleteProcs!");
this->incStrong((void*)onGrContextReleased);
options.fContextDeleteContext = this;
options.fContextDeleteProc = onGrContextReleased;
return GrDirectContexts::MakeVulkan(backendContext, options);
}
VkFunctorInitParams VulkanManager::getVkFunctorInitParams() const {
return VkFunctorInitParams{
.instance = mInstance,
.physical_device = mPhysicalDevice,
.device = mDevice,
.queue = mGraphicsQueue,
.graphics_queue_index = mGraphicsQueueIndex,
.api_version = mAPIVersion,
.enabled_instance_extension_names = mInstanceExtensions.data(),
.enabled_instance_extension_names_length =
static_cast<uint32_t>(mInstanceExtensions.size()),
.enabled_device_extension_names = mDeviceExtensions.data(),
.enabled_device_extension_names_length =
static_cast<uint32_t>(mDeviceExtensions.size()),
.device_features_2 = &mPhysicalDeviceFeatures2,
};
}
Frame VulkanManager::dequeueNextBuffer(VulkanSurface* surface) {
VulkanSurface::NativeBufferInfo* bufferInfo = surface->dequeueNativeBuffer();
if (bufferInfo == nullptr) {
ALOGE("VulkanSurface::dequeueNativeBuffer called with an invalid surface!");
return Frame(-1, -1, 0);
}
LOG_ALWAYS_FATAL_IF(!bufferInfo->dequeued);
if (bufferInfo->dequeue_fence != -1) {
struct sync_file_info* finfo = sync_file_info(bufferInfo->dequeue_fence);
bool isSignalPending = false;
if (finfo != NULL) {
isSignalPending = finfo->status != 1;
sync_file_info_free(finfo);
}
if (isSignalPending) {
int fence_clone = dup(bufferInfo->dequeue_fence);
if (fence_clone == -1) {
ALOGE("dup(fence) failed, stalling until signalled: %s (%d)", strerror(errno),
errno);
sync_wait(bufferInfo->dequeue_fence, -1 /* forever */);
} else {
VkSemaphoreCreateInfo semaphoreInfo;
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
semaphoreInfo.pNext = nullptr;
semaphoreInfo.flags = 0;
VkSemaphore semaphore;
VkResult err = mCreateSemaphore(mDevice, &semaphoreInfo, nullptr, &semaphore);
if (err != VK_SUCCESS) {
ALOGE("Failed to create import semaphore, err: %d", err);
close(fence_clone);
sync_wait(bufferInfo->dequeue_fence, -1 /* forever */);
} else {
VkImportSemaphoreFdInfoKHR importInfo;
importInfo.sType = VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_FD_INFO_KHR;
importInfo.pNext = nullptr;
importInfo.semaphore = semaphore;
importInfo.flags = VK_SEMAPHORE_IMPORT_TEMPORARY_BIT;
importInfo.handleType = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
importInfo.fd = fence_clone;
err = mImportSemaphoreFdKHR(mDevice, &importInfo);
if (err != VK_SUCCESS) {
ALOGE("Failed to import semaphore, err: %d", err);
mDestroySemaphore(mDevice, semaphore, nullptr);
close(fence_clone);
sync_wait(bufferInfo->dequeue_fence, -1 /* forever */);
} else {
GrBackendSemaphore beSemaphore = GrBackendSemaphores::MakeVk(semaphore);
// Skia will take ownership of the VkSemaphore and delete it once the wait
// has finished. The VkSemaphore also owns the imported fd, so it will
// close the fd when it is deleted.
bufferInfo->skSurface->wait(1, &beSemaphore);
// The following flush blocks the GPU immediately instead of waiting for
// other drawing ops. It seems dequeue_fence is not respected otherwise.
// TODO: remove the flush after finding why beSemaphore is not working.
skgpu::ganesh::FlushAndSubmit(bufferInfo->skSurface.get());
}
}
}
}
}
int bufferAge = (mSwapBehavior == SwapBehavior::Discard) ? 0 : surface->getCurrentBuffersAge();
return Frame(surface->logicalWidth(), surface->logicalHeight(), bufferAge);
}
class SharedSemaphoreInfo : public LightRefBase<SharedSemaphoreInfo> {
PFN_vkDestroySemaphore mDestroyFunction;
VkDevice mDevice;
VkSemaphore mSemaphore;
GrBackendSemaphore mGrBackendSemaphore;
SharedSemaphoreInfo(PFN_vkDestroySemaphore destroyFunction, VkDevice device,
VkSemaphore semaphore)
: mDestroyFunction(destroyFunction), mDevice(device), mSemaphore(semaphore) {
mGrBackendSemaphore = GrBackendSemaphores::MakeVk(mSemaphore);
}
~SharedSemaphoreInfo() { mDestroyFunction(mDevice, mSemaphore, nullptr); }
friend class LightRefBase<SharedSemaphoreInfo>;
friend class sp<SharedSemaphoreInfo>;
public:
VkSemaphore semaphore() const { return mSemaphore; }
GrBackendSemaphore* grBackendSemaphore() { return &mGrBackendSemaphore; }
};
static void destroy_semaphore(void* context) {
SharedSemaphoreInfo* info = reinterpret_cast<SharedSemaphoreInfo*>(context);
info->decStrong(0);
}
VulkanManager::VkDrawResult VulkanManager::finishFrame(SkSurface* surface) {
ATRACE_NAME("Vulkan finish frame");
sp<SharedSemaphoreInfo> sharedSemaphore;
GrFlushInfo flushInfo;
{
VkExportSemaphoreCreateInfo exportInfo;
exportInfo.sType = VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO;
exportInfo.pNext = nullptr;
exportInfo.handleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
VkSemaphoreCreateInfo semaphoreInfo;
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
semaphoreInfo.pNext = &exportInfo;
semaphoreInfo.flags = 0;
VkSemaphore semaphore;
VkResult err = mCreateSemaphore(mDevice, &semaphoreInfo, nullptr, &semaphore);
ALOGE_IF(VK_SUCCESS != err,
"VulkanManager::makeSwapSemaphore(): Failed to create semaphore");
if (err == VK_SUCCESS) {
sharedSemaphore = sp<SharedSemaphoreInfo>::make(mDestroySemaphore, mDevice, semaphore);
flushInfo.fNumSemaphores = 1;
flushInfo.fSignalSemaphores = sharedSemaphore->grBackendSemaphore();
flushInfo.fFinishedProc = destroy_semaphore;
sharedSemaphore->incStrong(0);
flushInfo.fFinishedContext = sharedSemaphore.get();
}
}
GrDirectContext* context = GrAsDirectContext(surface->recordingContext());
ALOGE_IF(!context, "Surface is not backed by gpu");
GrSemaphoresSubmitted submitted = context->flush(
surface, SkSurfaces::BackendSurfaceAccess::kPresent, flushInfo);
context->submit();
VkDrawResult drawResult{
.submissionTime = systemTime(),
};
if (sharedSemaphore) {
if (submitted == GrSemaphoresSubmitted::kYes && mFrameBoundaryANDROID) {
// retrieve VkImage used as render target
VkImage image = VK_NULL_HANDLE;
GrBackendRenderTarget backendRenderTarget = SkSurfaces::GetBackendRenderTarget(
surface, SkSurfaces::BackendHandleAccess::kFlushRead);
if (backendRenderTarget.isValid()) {
GrVkImageInfo info;
if (GrBackendRenderTargets::GetVkImageInfo(backendRenderTarget, &info)) {
image = info.fImage;
} else {
ALOGE("Frame boundary: backend is not vulkan");
}
} else {
ALOGE("Frame boundary: invalid backend render target");
}
// frameBoundaryANDROID needs to know about mSwapSemaphore, but
// it won't wait on it.
mFrameBoundaryANDROID(mDevice, sharedSemaphore->semaphore(), image);
}
VkSemaphoreGetFdInfoKHR getFdInfo;
getFdInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR;
getFdInfo.pNext = nullptr;
getFdInfo.semaphore = sharedSemaphore->semaphore();
getFdInfo.handleType = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
int fenceFd = -1;
VkResult err = mGetSemaphoreFdKHR(mDevice, &getFdInfo, &fenceFd);
ALOGE_IF(VK_SUCCESS != err, "VulkanManager::swapBuffers(): Failed to get semaphore Fd");
drawResult.presentFence.reset(fenceFd);
} else {
ALOGE("VulkanManager::finishFrame(): Semaphore submission failed");
mQueueWaitIdle(mGraphicsQueue);
}
skiapipeline::ShaderCache::get().onVkFrameFlushed(context);
return drawResult;
}
void VulkanManager::swapBuffers(VulkanSurface* surface, const SkRect& dirtyRect,
android::base::unique_fd&& presentFence) {
if (CC_UNLIKELY(Properties::waitForGpuCompletion)) {
ATRACE_NAME("Finishing GPU work");
mDeviceWaitIdle(mDevice);
}
surface->presentCurrentBuffer(dirtyRect, presentFence.release());
}
void VulkanManager::destroySurface(VulkanSurface* surface) {
// Make sure all submit commands have finished before starting to destroy objects.
if (VK_NULL_HANDLE != mGraphicsQueue) {
mQueueWaitIdle(mGraphicsQueue);
}
delete surface;
}
VulkanSurface* VulkanManager::createSurface(ANativeWindow* window,
ColorMode colorMode,
sk_sp<SkColorSpace> surfaceColorSpace,
SkColorType surfaceColorType,
GrDirectContext* grContext,
uint32_t extraBuffers) {
LOG_ALWAYS_FATAL_IF(!hasVkContext(), "Not initialized");
if (!window) {
return nullptr;
}
return VulkanSurface::Create(window, colorMode, surfaceColorType, surfaceColorSpace, grContext,
*this, extraBuffers);
}
status_t VulkanManager::fenceWait(int fence, GrDirectContext* grContext) {
if (!hasVkContext()) {
ALOGE("VulkanManager::fenceWait: VkDevice not initialized");
return INVALID_OPERATION;
}
// Block GPU on the fence.
int fenceFd = ::dup(fence);
if (fenceFd == -1) {
ALOGE("VulkanManager::fenceWait: error dup'ing fence fd: %d", errno);
return -errno;
}
VkSemaphoreCreateInfo semaphoreInfo;
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
semaphoreInfo.pNext = nullptr;
semaphoreInfo.flags = 0;
VkSemaphore semaphore;
VkResult err = mCreateSemaphore(mDevice, &semaphoreInfo, nullptr, &semaphore);
if (VK_SUCCESS != err) {
close(fenceFd);
ALOGE("Failed to create import semaphore, err: %d", err);
return UNKNOWN_ERROR;
}
VkImportSemaphoreFdInfoKHR importInfo;
importInfo.sType = VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_FD_INFO_KHR;
importInfo.pNext = nullptr;
importInfo.semaphore = semaphore;
importInfo.flags = VK_SEMAPHORE_IMPORT_TEMPORARY_BIT;
importInfo.handleType = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
importInfo.fd = fenceFd;
err = mImportSemaphoreFdKHR(mDevice, &importInfo);
if (VK_SUCCESS != err) {
mDestroySemaphore(mDevice, semaphore, nullptr);
close(fenceFd);
ALOGE("Failed to import semaphore, err: %d", err);
return UNKNOWN_ERROR;
}
GrBackendSemaphore beSemaphore = GrBackendSemaphores::MakeVk(semaphore);
// Skia will take ownership of the VkSemaphore and delete it once the wait has finished. The
// VkSemaphore also owns the imported fd, so it will close the fd when it is deleted.
grContext->wait(1, &beSemaphore);
grContext->flushAndSubmit();
return OK;
}
status_t VulkanManager::createReleaseFence(int* nativeFence, GrDirectContext* grContext) {
*nativeFence = -1;
if (!hasVkContext()) {
ALOGE("VulkanManager::createReleaseFence: VkDevice not initialized");
return INVALID_OPERATION;
}
VkExportSemaphoreCreateInfo exportInfo;
exportInfo.sType = VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO;
exportInfo.pNext = nullptr;
exportInfo.handleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
VkSemaphoreCreateInfo semaphoreInfo;
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
semaphoreInfo.pNext = &exportInfo;
semaphoreInfo.flags = 0;
VkSemaphore semaphore;
VkResult err = mCreateSemaphore(mDevice, &semaphoreInfo, nullptr, &semaphore);
if (VK_SUCCESS != err) {
ALOGE("VulkanManager::createReleaseFence: Failed to create semaphore");
return INVALID_OPERATION;
}
auto sharedSemaphore = sp<SharedSemaphoreInfo>::make(mDestroySemaphore, mDevice, semaphore);
// Even if Skia fails to submit the semaphore, it will still call the destroy_semaphore callback
GrFlushInfo flushInfo;
flushInfo.fNumSemaphores = 1;
flushInfo.fSignalSemaphores = sharedSemaphore->grBackendSemaphore();
flushInfo.fFinishedProc = destroy_semaphore;
sharedSemaphore->incStrong(0);
flushInfo.fFinishedContext = sharedSemaphore.get();
GrSemaphoresSubmitted submitted = grContext->flush(flushInfo);
grContext->submit();
if (submitted == GrSemaphoresSubmitted::kNo) {
ALOGE("VulkanManager::createReleaseFence: Failed to submit semaphore");
return INVALID_OPERATION;
}
VkSemaphoreGetFdInfoKHR getFdInfo;
getFdInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR;
getFdInfo.pNext = nullptr;
getFdInfo.semaphore = semaphore;
getFdInfo.handleType = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
int fenceFd = 0;
err = mGetSemaphoreFdKHR(mDevice, &getFdInfo, &fenceFd);
if (VK_SUCCESS != err) {
ALOGE("VulkanManager::createReleaseFence: Failed to get semaphore Fd");
return INVALID_OPERATION;
}
*nativeFence = fenceFd;
return OK;
}
} /* namespace renderthread */
} /* namespace uirenderer */
} /* namespace android */