blob: 8b0a9be1cafe9b1a563aa1c78846afc9b8c6e474 [file] [log] [blame]
//===- HashBase.tcc -------------------------------------------------------===//
//
// The MCLinker Project
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// internal non-member functions
//===----------------------------------------------------------------------===//
inline static unsigned int compute_bucket_count(unsigned int pNumOfBuckets) {
static const unsigned int bucket_size[] = {
1, 3, 17, 37, 67, 97, 197,
419, 977, 2593, 4099, 8209, 12289, 16411,
20483, 32771, 49157, 65537, 98317, 131101, 196613};
const unsigned int buckets_count =
sizeof(bucket_size) / sizeof(bucket_size[0]);
unsigned int idx = 0;
do {
if (pNumOfBuckets < bucket_size[idx]) {
return bucket_size[idx];
}
++idx;
} while (idx < buckets_count);
return (pNumOfBuckets + 131101); // rare case. increase constantly
}
//===----------------------------------------------------------------------===//
// template implementation of HashBucket
//===----------------------------------------------------------------------===//
template <typename DataType>
typename HashBucket<DataType>::entry_type*
HashBucket<DataType>::getEmptyBucket() {
static entry_type* empty_bucket = reinterpret_cast<entry_type*>(0x0);
return empty_bucket;
}
template <typename DataType>
typename HashBucket<DataType>::entry_type*
HashBucket<DataType>::getTombstone() {
static entry_type* tombstone = reinterpret_cast<entry_type*>(0x1);
return tombstone;
}
//===----------------------------------------------------------------------===//
// template implementation of HashTableImpl
//===----------------------------------------------------------------------===//
template <typename HashEntryTy, typename HashFunctionTy>
HashTableImpl<HashEntryTy, HashFunctionTy>::HashTableImpl()
: m_Buckets(0),
m_NumOfBuckets(0),
m_NumOfEntries(0),
m_NumOfTombstones(0),
m_Hasher() {
}
template <typename HashEntryTy, typename HashFunctionTy>
HashTableImpl<HashEntryTy, HashFunctionTy>::HashTableImpl(
unsigned int pInitSize)
: m_Hasher() {
if (pInitSize) {
init(pInitSize);
return;
}
m_Buckets = 0;
m_NumOfBuckets = 0;
m_NumOfEntries = 0;
m_NumOfTombstones = 0;
}
template <typename HashEntryTy, typename HashFunctionTy>
HashTableImpl<HashEntryTy, HashFunctionTy>::~HashTableImpl() {
clear();
}
/// empty - check if the hash table is empty
template <typename HashEntryTy, typename HashFunctionTy>
bool HashTableImpl<HashEntryTy, HashFunctionTy>::empty() const {
return (m_NumOfEntries == 0);
}
/// init - initialize the hash table.
template <typename HashEntryTy, typename HashFunctionTy>
void HashTableImpl<HashEntryTy, HashFunctionTy>::init(unsigned int pInitSize) {
m_NumOfBuckets =
pInitSize ? compute_bucket_count(pInitSize) : NumOfInitBuckets;
m_NumOfEntries = 0;
m_NumOfTombstones = 0;
/** calloc also set bucket.Item = bucket_type::getEmptyStone() **/
m_Buckets = (bucket_type*)calloc(m_NumOfBuckets, sizeof(bucket_type));
}
/// clear - clear the hash table.
template <typename HashEntryTy, typename HashFunctionTy>
void HashTableImpl<HashEntryTy, HashFunctionTy>::clear() {
free(m_Buckets);
m_Buckets = 0;
m_NumOfBuckets = 0;
m_NumOfEntries = 0;
m_NumOfTombstones = 0;
}
/// lookUpBucketFor - look up the bucket whose key is pKey
template <typename HashEntryTy, typename HashFunctionTy>
unsigned int HashTableImpl<HashEntryTy, HashFunctionTy>::lookUpBucketFor(
const typename HashTableImpl<HashEntryTy, HashFunctionTy>::key_type& pKey) {
if (m_NumOfBuckets == 0) {
// NumOfBuckets is changed after init(pInitSize)
init(NumOfInitBuckets);
}
unsigned int full_hash = m_Hasher(pKey);
unsigned int index = full_hash % m_NumOfBuckets;
const unsigned int probe = 1;
int firstTombstone = -1;
// linear probing
while (true) {
bucket_type& bucket = m_Buckets[index];
// If we found an empty bucket, this key isn't in the table yet, return it.
if (bucket_type::getEmptyBucket() == bucket.Entry) {
if (firstTombstone != -1) {
m_Buckets[firstTombstone].FullHashValue = full_hash;
return firstTombstone;
}
bucket.FullHashValue = full_hash;
return index;
}
if (bucket_type::getTombstone() == bucket.Entry) {
if (firstTombstone == -1) {
firstTombstone = index;
}
} else if (bucket.FullHashValue == full_hash) {
if (bucket.Entry->compare(pKey)) {
return index;
}
}
index += probe;
if (index == m_NumOfBuckets)
index = 0;
}
}
template <typename HashEntryTy, typename HashFunctionTy>
int HashTableImpl<HashEntryTy, HashFunctionTy>::findKey(
const typename HashTableImpl<HashEntryTy, HashFunctionTy>::key_type& pKey)
const {
if (m_NumOfBuckets == 0)
return -1;
unsigned int full_hash = m_Hasher(pKey);
unsigned int index = full_hash % m_NumOfBuckets;
const unsigned int probe = 1;
// linear probing
while (true) {
bucket_type& bucket = m_Buckets[index];
if (bucket_type::getEmptyBucket() == bucket.Entry)
return -1;
if (bucket_type::getTombstone() == bucket.Entry) {
// Ignore tombstones.
} else if (full_hash == bucket.FullHashValue) {
// get string, compare, if match, return index
if (bucket.Entry->compare(pKey))
return index;
}
index += probe;
if (index == m_NumOfBuckets)
index = 0;
}
}
template <typename HashEntryTy, typename HashFunctionTy>
void HashTableImpl<HashEntryTy, HashFunctionTy>::mayRehash() {
unsigned int new_size;
// If the hash table is now more than 3/4 full, or if fewer than 1/8 of
// the buckets are empty (meaning that many are filled with tombstones),
// grow/rehash the table.
if ((m_NumOfEntries << 2) > m_NumOfBuckets * 3)
new_size = compute_bucket_count(m_NumOfBuckets);
else if (((m_NumOfBuckets - (m_NumOfEntries + m_NumOfTombstones)) << 3) <
m_NumOfBuckets)
new_size = m_NumOfBuckets;
else
return;
doRehash(new_size);
}
template <typename HashEntryTy, typename HashFunctionTy>
void HashTableImpl<HashEntryTy, HashFunctionTy>::doRehash(
unsigned int pNewSize) {
bucket_type* new_table = (bucket_type*)calloc(pNewSize, sizeof(bucket_type));
// Rehash all the items into their new buckets. Luckily :) we already have
// the hash values available, so we don't have to recall hash function again.
for (bucket_type* IB = m_Buckets, * E = m_Buckets + m_NumOfBuckets; IB != E;
++IB) {
if (IB->Entry != bucket_type::getEmptyBucket() &&
IB->Entry != bucket_type::getTombstone()) {
// Fast case, bucket available.
unsigned full_hash = IB->FullHashValue;
unsigned new_bucket = full_hash % pNewSize;
if (bucket_type::getEmptyBucket() == new_table[new_bucket].Entry) {
new_table[new_bucket].Entry = IB->Entry;
new_table[new_bucket].FullHashValue = full_hash;
continue;
}
// Otherwise probe for a spot.
const unsigned int probe = 1;
do {
new_bucket += probe;
if (new_bucket == pNewSize)
new_bucket = 0;
} while (new_table[new_bucket].Entry != bucket_type::getEmptyBucket());
// Finally found a slot. Fill it in.
new_table[new_bucket].Entry = IB->Entry;
new_table[new_bucket].FullHashValue = full_hash;
}
}
free(m_Buckets);
m_Buckets = new_table;
m_NumOfBuckets = pNewSize;
m_NumOfTombstones = 0;
}