| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <math.h> |
| |
| #include <cstdint> |
| |
| #include "RenderScriptToolkit.h" |
| #include "TaskProcessor.h" |
| #include "Utils.h" |
| |
| namespace android { |
| namespace renderscript { |
| |
| #define LOG_TAG "renderscript.toolkit.Blur" |
| |
| /** |
| * Blurs an image or a section of an image. |
| * |
| * Our algorithm does two passes: a vertical blur followed by an horizontal blur. |
| */ |
| class BlurTask : public Task { |
| // The image we're blurring. |
| const uchar* mIn; |
| // Where we store the blurred image. |
| uchar* outArray; |
| // The size of the kernel radius is limited to 25 in ScriptIntrinsicBlur.java. |
| // So, the max kernel size is 51 (= 2 * 25 + 1). |
| // Considering SSSE3 case, which requires the size is multiple of 4, |
| // at least 52 words are necessary. Values outside of the kernel should be 0. |
| float mFp[104]; |
| uint16_t mIp[104]; |
| |
| // Working area to store the result of the vertical blur, to be used by the horizontal pass. |
| // There's one area per thread. Since the needed working area may be too large to put on the |
| // stack, we are allocating it from the heap. To avoid paying the allocation cost for each |
| // tile, we cache the scratch area here. |
| std::vector<void*> mScratch; // Pointers to the scratch areas, one per thread. |
| std::vector<size_t> mScratchSize; // The size in bytes of the scratch areas, one per thread. |
| |
| // The radius of the blur, in floating point and integer format. |
| float mRadius; |
| int mIradius; |
| |
| void kernelU4(void* outPtr, uint32_t xstart, uint32_t xend, uint32_t currentY, |
| uint32_t threadIndex); |
| void kernelU1(void* outPtr, uint32_t xstart, uint32_t xend, uint32_t currentY); |
| void ComputeGaussianWeights(); |
| |
| // Process a 2D tile of the overall work. threadIndex identifies which thread does the work. |
| virtual void processData(int threadIndex, size_t startX, size_t startY, size_t endX, |
| size_t endY) override; |
| |
| public: |
| BlurTask(const uint8_t* in, uint8_t* out, size_t sizeX, size_t sizeY, size_t vectorSize, |
| uint32_t threadCount, float radius, const Restriction* restriction) |
| : Task{sizeX, sizeY, vectorSize, false, restriction}, |
| mIn{in}, |
| outArray{out}, |
| mScratch{threadCount}, |
| mScratchSize{threadCount}, |
| mRadius{std::min(25.0f, radius)} { |
| ComputeGaussianWeights(); |
| } |
| |
| ~BlurTask() { |
| for (size_t i = 0; i < mScratch.size(); i++) { |
| if (mScratch[i]) { |
| free(mScratch[i]); |
| } |
| } |
| } |
| }; |
| |
| void BlurTask::ComputeGaussianWeights() { |
| memset(mFp, 0, sizeof(mFp)); |
| memset(mIp, 0, sizeof(mIp)); |
| |
| // Compute gaussian weights for the blur |
| // e is the euler's number |
| float e = 2.718281828459045f; |
| float pi = 3.1415926535897932f; |
| // g(x) = (1 / (sqrt(2 * pi) * sigma)) * e ^ (-x^2 / (2 * sigma^2)) |
| // x is of the form [-radius .. 0 .. radius] |
| // and sigma varies with the radius. |
| // Based on some experimental radius values and sigmas, |
| // we approximately fit sigma = f(radius) as |
| // sigma = radius * 0.4 + 0.6 |
| // The larger the radius gets, the more our gaussian blur |
| // will resemble a box blur since with large sigma |
| // the gaussian curve begins to lose its shape |
| float sigma = 0.4f * mRadius + 0.6f; |
| |
| // Now compute the coefficients. We will store some redundant values to save |
| // some math during the blur calculations precompute some values |
| float coeff1 = 1.0f / (sqrtf(2.0f * pi) * sigma); |
| float coeff2 = - 1.0f / (2.0f * sigma * sigma); |
| |
| float normalizeFactor = 0.0f; |
| float floatR = 0.0f; |
| int r; |
| mIradius = (float)ceil(mRadius) + 0.5f; |
| for (r = -mIradius; r <= mIradius; r ++) { |
| floatR = (float)r; |
| mFp[r + mIradius] = coeff1 * powf(e, floatR * floatR * coeff2); |
| normalizeFactor += mFp[r + mIradius]; |
| } |
| |
| // Now we need to normalize the weights because all our coefficients need to add up to one |
| normalizeFactor = 1.0f / normalizeFactor; |
| for (r = -mIradius; r <= mIradius; r ++) { |
| mFp[r + mIradius] *= normalizeFactor; |
| mIp[r + mIradius] = (uint16_t)(mFp[r + mIradius] * 65536.0f + 0.5f); |
| } |
| } |
| |
| /** |
| * Vertical blur of a uchar4 line. |
| * |
| * @param sizeY Number of cells of the input array in the vertical direction. |
| * @param out Where to place the computed value. |
| * @param x Coordinate of the point we're blurring. |
| * @param y Coordinate of the point we're blurring. |
| * @param ptrIn Start of the input array. |
| * @param iStride The size in byte of a row of the input array. |
| * @param gPtr The gaussian coefficients. |
| * @param iradius The radius of the blur. |
| */ |
| static void OneVU4(uint32_t sizeY, float4* out, int32_t x, int32_t y, const uchar* ptrIn, |
| int iStride, const float* gPtr, int iradius) { |
| const uchar *pi = ptrIn + x*4; |
| |
| float4 blurredPixel = 0; |
| for (int r = -iradius; r <= iradius; r ++) { |
| int validY = std::max((y + r), 0); |
| validY = std::min(validY, (int)(sizeY - 1)); |
| const uchar4 *pvy = (const uchar4 *)&pi[validY * iStride]; |
| float4 pf = convert<float4>(pvy[0]); |
| blurredPixel += pf * gPtr[0]; |
| gPtr++; |
| } |
| |
| out[0] = blurredPixel; |
| } |
| |
| /** |
| * Vertical blur of a uchar1 line. |
| * |
| * @param sizeY Number of cells of the input array in the vertical direction. |
| * @param out Where to place the computed value. |
| * @param x Coordinate of the point we're blurring. |
| * @param y Coordinate of the point we're blurring. |
| * @param ptrIn Start of the input array. |
| * @param iStride The size in byte of a row of the input array. |
| * @param gPtr The gaussian coefficients. |
| * @param iradius The radius of the blur. |
| */ |
| static void OneVU1(uint32_t sizeY, float *out, int32_t x, int32_t y, |
| const uchar *ptrIn, int iStride, const float* gPtr, int iradius) { |
| |
| const uchar *pi = ptrIn + x; |
| |
| float blurredPixel = 0; |
| for (int r = -iradius; r <= iradius; r ++) { |
| int validY = std::max((y + r), 0); |
| validY = std::min(validY, (int)(sizeY - 1)); |
| float pf = (float)pi[validY * iStride]; |
| blurredPixel += pf * gPtr[0]; |
| gPtr++; |
| } |
| |
| out[0] = blurredPixel; |
| } |
| |
| |
| extern "C" void rsdIntrinsicBlurU1_K(uchar *out, uchar const *in, size_t w, size_t h, |
| size_t p, size_t x, size_t y, size_t count, size_t r, uint16_t const *tab); |
| extern "C" void rsdIntrinsicBlurU4_K(uchar4 *out, uchar4 const *in, size_t w, size_t h, |
| size_t p, size_t x, size_t y, size_t count, size_t r, uint16_t const *tab); |
| |
| #if defined(ARCH_X86_HAVE_SSSE3) |
| extern void rsdIntrinsicBlurVFU4_K(void *dst, const void *pin, int stride, const void *gptr, |
| int rct, int x1, int ct); |
| extern void rsdIntrinsicBlurHFU4_K(void *dst, const void *pin, const void *gptr, int rct, int x1, |
| int ct); |
| extern void rsdIntrinsicBlurHFU1_K(void *dst, const void *pin, const void *gptr, int rct, int x1, |
| int ct); |
| #endif |
| |
| /** |
| * Vertical blur of a line of RGBA, knowing that there's enough rows above and below us to avoid |
| * dealing with boundary conditions. |
| * |
| * @param out Where to store the results. This is the input to the horizontal blur. |
| * @param ptrIn The input data for this line. |
| * @param iStride The width of the input. |
| * @param gPtr The gaussian coefficients. |
| * @param ct The diameter of the blur. |
| * @param len How many cells to blur. |
| * @param usesSimd Whether this processor supports SIMD. |
| */ |
| static void OneVFU4(float4 *out, const uchar *ptrIn, int iStride, const float* gPtr, int ct, |
| int x2, bool usesSimd) { |
| int x1 = 0; |
| #if defined(ARCH_X86_HAVE_SSSE3) |
| if (usesSimd) { |
| int t = (x2 - x1); |
| t &= ~1; |
| if (t) { |
| rsdIntrinsicBlurVFU4_K(out, ptrIn, iStride, gPtr, ct, x1, x1 + t); |
| } |
| x1 += t; |
| out += t; |
| ptrIn += t << 2; |
| } |
| #else |
| (void) usesSimd; // Avoid unused parameter warning. |
| #endif |
| while(x2 > x1) { |
| const uchar *pi = ptrIn; |
| float4 blurredPixel = 0; |
| const float* gp = gPtr; |
| |
| for (int r = 0; r < ct; r++) { |
| float4 pf = convert<float4>(((const uchar4 *)pi)[0]); |
| blurredPixel += pf * gp[0]; |
| pi += iStride; |
| gp++; |
| } |
| out->xyzw = blurredPixel; |
| x1++; |
| out++; |
| ptrIn+=4; |
| } |
| } |
| |
| /** |
| * Vertical blur of a line of U_8, knowing that there's enough rows above and below us to avoid |
| * dealing with boundary conditions. |
| * |
| * @param out Where to store the results. This is the input to the horizontal blur. |
| * @param ptrIn The input data for this line. |
| * @param iStride The width of the input. |
| * @param gPtr The gaussian coefficients. |
| * @param ct The diameter of the blur. |
| * @param len How many cells to blur. |
| * @param usesSimd Whether this processor supports SIMD. |
| */ |
| static void OneVFU1(float* out, const uchar* ptrIn, int iStride, const float* gPtr, int ct, int len, |
| bool usesSimd) { |
| int x1 = 0; |
| |
| while((len > x1) && (((uintptr_t)ptrIn) & 0x3)) { |
| const uchar *pi = ptrIn; |
| float blurredPixel = 0; |
| const float* gp = gPtr; |
| |
| for (int r = 0; r < ct; r++) { |
| float pf = (float)pi[0]; |
| blurredPixel += pf * gp[0]; |
| pi += iStride; |
| gp++; |
| } |
| out[0] = blurredPixel; |
| x1++; |
| out++; |
| ptrIn++; |
| len--; |
| } |
| #if defined(ARCH_X86_HAVE_SSSE3) |
| if (usesSimd && (len > x1)) { |
| int t = (len - x1) >> 2; |
| t &= ~1; |
| if (t) { |
| rsdIntrinsicBlurVFU4_K(out, ptrIn, iStride, gPtr, ct, 0, t ); |
| len -= t << 2; |
| ptrIn += t << 2; |
| out += t << 2; |
| } |
| } |
| #else |
| (void) usesSimd; // Avoid unused parameter warning. |
| #endif |
| while(len > 0) { |
| const uchar *pi = ptrIn; |
| float blurredPixel = 0; |
| const float* gp = gPtr; |
| |
| for (int r = 0; r < ct; r++) { |
| float pf = (float)pi[0]; |
| blurredPixel += pf * gp[0]; |
| pi += iStride; |
| gp++; |
| } |
| out[0] = blurredPixel; |
| len--; |
| out++; |
| ptrIn++; |
| } |
| } |
| |
| /** |
| * Horizontal blur of a uchar4 line. |
| * |
| * @param sizeX Number of cells of the input array in the horizontal direction. |
| * @param out Where to place the computed value. |
| * @param x Coordinate of the point we're blurring. |
| * @param ptrIn The start of the input row from which we're indexing x. |
| * @param gPtr The gaussian coefficients. |
| * @param iradius The radius of the blur. |
| */ |
| static void OneHU4(uint32_t sizeX, uchar4* out, int32_t x, const float4* ptrIn, const float* gPtr, |
| int iradius) { |
| float4 blurredPixel = 0; |
| for (int r = -iradius; r <= iradius; r ++) { |
| int validX = std::max((x + r), 0); |
| validX = std::min(validX, (int)(sizeX - 1)); |
| float4 pf = ptrIn[validX]; |
| blurredPixel += pf * gPtr[0]; |
| gPtr++; |
| } |
| |
| out->xyzw = convert<uchar4>(blurredPixel); |
| } |
| |
| /** |
| * Horizontal blur of a uchar line. |
| * |
| * @param sizeX Number of cells of the input array in the horizontal direction. |
| * @param out Where to place the computed value. |
| * @param x Coordinate of the point we're blurring. |
| * @param ptrIn The start of the input row from which we're indexing x. |
| * @param gPtr The gaussian coefficients. |
| * @param iradius The radius of the blur. |
| */ |
| static void OneHU1(uint32_t sizeX, uchar* out, int32_t x, const float* ptrIn, const float* gPtr, |
| int iradius) { |
| float blurredPixel = 0; |
| for (int r = -iradius; r <= iradius; r ++) { |
| int validX = std::max((x + r), 0); |
| validX = std::min(validX, (int)(sizeX - 1)); |
| float pf = ptrIn[validX]; |
| blurredPixel += pf * gPtr[0]; |
| gPtr++; |
| } |
| |
| out[0] = (uchar)blurredPixel; |
| } |
| |
| /** |
| * Full blur of a line of RGBA data. |
| * |
| * @param outPtr Where to store the results |
| * @param xstart The index of the section we're starting to blur. |
| * @param xend The end index of the section. |
| * @param currentY The index of the line we're blurring. |
| * @param usesSimd Whether this processor supports SIMD. |
| */ |
| void BlurTask::kernelU4(void *outPtr, uint32_t xstart, uint32_t xend, uint32_t currentY, |
| uint32_t threadIndex) { |
| float4 stackbuf[2048]; |
| float4 *buf = &stackbuf[0]; |
| const uint32_t stride = mSizeX * mVectorSize; |
| |
| uchar4 *out = (uchar4 *)outPtr; |
| uint32_t x1 = xstart; |
| uint32_t x2 = xend; |
| |
| #if defined(ARCH_ARM_USE_INTRINSICS) |
| if (mUsesSimd && mSizeX >= 4) { |
| rsdIntrinsicBlurU4_K(out, (uchar4 const *)(mIn + stride * currentY), |
| mSizeX, mSizeY, |
| stride, x1, currentY, x2 - x1, mIradius, mIp + mIradius); |
| return; |
| } |
| #endif |
| |
| if (mSizeX > 2048) { |
| if ((mSizeX > mScratchSize[threadIndex]) || !mScratch[threadIndex]) { |
| // Pad the side of the allocation by one unit to allow alignment later |
| mScratch[threadIndex] = realloc(mScratch[threadIndex], (mSizeX + 1) * 16); |
| mScratchSize[threadIndex] = mSizeX; |
| } |
| // realloc only aligns to 8 bytes so we manually align to 16. |
| buf = (float4 *) ((((intptr_t)mScratch[threadIndex]) + 15) & ~0xf); |
| } |
| float4 *fout = (float4 *)buf; |
| int y = currentY; |
| if ((y > mIradius) && (y < ((int)mSizeY - mIradius))) { |
| const uchar *pi = mIn + (y - mIradius) * stride; |
| OneVFU4(fout, pi, stride, mFp, mIradius * 2 + 1, mSizeX, mUsesSimd); |
| } else { |
| x1 = 0; |
| while(mSizeX > x1) { |
| OneVU4(mSizeY, fout, x1, y, mIn, stride, mFp, mIradius); |
| fout++; |
| x1++; |
| } |
| } |
| |
| x1 = xstart; |
| while ((x1 < (uint32_t)mIradius) && (x1 < x2)) { |
| OneHU4(mSizeX, out, x1, buf, mFp, mIradius); |
| out++; |
| x1++; |
| } |
| #if defined(ARCH_X86_HAVE_SSSE3) |
| if (mUsesSimd) { |
| if ((x1 + mIradius) < x2) { |
| rsdIntrinsicBlurHFU4_K(out, buf - mIradius, mFp, |
| mIradius * 2 + 1, x1, x2 - mIradius); |
| out += (x2 - mIradius) - x1; |
| x1 = x2 - mIradius; |
| } |
| } |
| #endif |
| while(x2 > x1) { |
| OneHU4(mSizeX, out, x1, buf, mFp, mIradius); |
| out++; |
| x1++; |
| } |
| } |
| |
| /** |
| * Full blur of a line of U_8 data. |
| * |
| * @param outPtr Where to store the results |
| * @param xstart The index of the section we're starting to blur. |
| * @param xend The end index of the section. |
| * @param currentY The index of the line we're blurring. |
| */ |
| void BlurTask::kernelU1(void *outPtr, uint32_t xstart, uint32_t xend, uint32_t currentY) { |
| float buf[4 * 2048]; |
| const uint32_t stride = mSizeX * mVectorSize; |
| |
| uchar *out = (uchar *)outPtr; |
| uint32_t x1 = xstart; |
| uint32_t x2 = xend; |
| |
| #if defined(ARCH_ARM_USE_INTRINSICS) |
| if (mUsesSimd && mSizeX >= 16) { |
| // The specialisation for r<=8 has an awkward prefill case, which is |
| // fiddly to resolve, where starting close to the right edge can cause |
| // a read beyond the end of input. So avoid that case here. |
| if (mIradius > 8 || (mSizeX - std::max(0, (int32_t)x1 - 8)) >= 16) { |
| rsdIntrinsicBlurU1_K(out, mIn + stride * currentY, mSizeX, mSizeY, |
| stride, x1, currentY, x2 - x1, mIradius, mIp + mIradius); |
| return; |
| } |
| } |
| #endif |
| |
| float *fout = (float *)buf; |
| int y = currentY; |
| if ((y > mIradius) && (y < ((int)mSizeY - mIradius -1))) { |
| const uchar *pi = mIn + (y - mIradius) * stride; |
| OneVFU1(fout, pi, stride, mFp, mIradius * 2 + 1, mSizeX, mUsesSimd); |
| } else { |
| x1 = 0; |
| while(mSizeX > x1) { |
| OneVU1(mSizeY, fout, x1, y, mIn, stride, mFp, mIradius); |
| fout++; |
| x1++; |
| } |
| } |
| |
| x1 = xstart; |
| while ((x1 < x2) && |
| ((x1 < (uint32_t)mIradius) || (((uintptr_t)out) & 0x3))) { |
| OneHU1(mSizeX, out, x1, buf, mFp, mIradius); |
| out++; |
| x1++; |
| } |
| #if defined(ARCH_X86_HAVE_SSSE3) |
| if (mUsesSimd) { |
| if ((x1 + mIradius) < x2) { |
| uint32_t len = x2 - (x1 + mIradius); |
| len &= ~3; |
| |
| // rsdIntrinsicBlurHFU1_K() processes each four float values in |buf| at once, so it |
| // nees to ensure four more values can be accessed in order to avoid accessing |
| // uninitialized buffer. |
| if (len > 4) { |
| len -= 4; |
| rsdIntrinsicBlurHFU1_K(out, ((float *)buf) - mIradius, mFp, |
| mIradius * 2 + 1, x1, x1 + len); |
| out += len; |
| x1 += len; |
| } |
| } |
| } |
| #endif |
| while(x2 > x1) { |
| OneHU1(mSizeX, out, x1, buf, mFp, mIradius); |
| out++; |
| x1++; |
| } |
| } |
| |
| void BlurTask::processData(int threadIndex, size_t startX, size_t startY, size_t endX, |
| size_t endY) { |
| for (size_t y = startY; y < endY; y++) { |
| void* outPtr = outArray + (mSizeX * y + startX) * mVectorSize; |
| if (mVectorSize == 4) { |
| kernelU4(outPtr, startX, endX, y, threadIndex); |
| } else { |
| kernelU1(outPtr, startX, endX, y); |
| } |
| } |
| } |
| |
| void RenderScriptToolkit::blur(const uint8_t* in, uint8_t* out, size_t sizeX, size_t sizeY, |
| size_t vectorSize, int radius, const Restriction* restriction) { |
| #ifdef ANDROID_RENDERSCRIPT_TOOLKIT_VALIDATE |
| if (!validRestriction(LOG_TAG, sizeX, sizeY, restriction)) { |
| return; |
| } |
| if (radius <= 0 || radius > 25) { |
| ALOGE("The radius should be between 1 and 25. %d provided.", radius); |
| } |
| if (vectorSize != 1 && vectorSize != 4) { |
| ALOGE("The vectorSize should be 1 or 4. %zu provided.", vectorSize); |
| } |
| #endif |
| |
| BlurTask task(in, out, sizeX, sizeY, vectorSize, processor->getNumberOfThreads(), radius, |
| restriction); |
| processor->doTask(&task); |
| } |
| |
| } // namespace renderscript |
| } // namespace android |