| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "rsCpuCore.h" |
| #include "rsCpuScript.h" |
| #include "rsCpuScriptGroup.h" |
| #include "rsCpuScriptGroup2.h" |
| |
| #include <malloc.h> |
| #include "rsContext.h" |
| |
| #include <sys/types.h> |
| #include <sys/resource.h> |
| #include <sched.h> |
| #include <sys/syscall.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <unistd.h> |
| |
| #define REDUCE_ALOGV(mtls, level, ...) do { if ((mtls)->logReduce >= (level)) ALOGV(__VA_ARGS__); } while(0) |
| |
| static pthread_key_t gThreadTLSKey = 0; |
| static uint32_t gThreadTLSKeyCount = 0; |
| static pthread_mutex_t gInitMutex = PTHREAD_MUTEX_INITIALIZER; |
| |
| namespace android { |
| namespace renderscript { |
| |
| bool gArchUseSIMD = false; |
| |
| RsdCpuReference::~RsdCpuReference() { |
| } |
| |
| RsdCpuReference * RsdCpuReference::create(Context *rsc, uint32_t version_major, |
| uint32_t version_minor, sym_lookup_t lfn, script_lookup_t slfn |
| , RSSelectRTCallback pSelectRTCallback, |
| const char *pBccPluginName |
| ) { |
| |
| RsdCpuReferenceImpl *cpu = new RsdCpuReferenceImpl(rsc); |
| if (!cpu) { |
| return nullptr; |
| } |
| if (!cpu->init(version_major, version_minor, lfn, slfn)) { |
| delete cpu; |
| return nullptr; |
| } |
| |
| cpu->setSelectRTCallback(pSelectRTCallback); |
| if (pBccPluginName) { |
| cpu->setBccPluginName(pBccPluginName); |
| } |
| |
| return cpu; |
| } |
| |
| |
| Context * RsdCpuReference::getTlsContext() { |
| ScriptTLSStruct * tls = (ScriptTLSStruct *)pthread_getspecific(gThreadTLSKey); |
| return tls->mContext; |
| } |
| |
| const Script * RsdCpuReference::getTlsScript() { |
| ScriptTLSStruct * tls = (ScriptTLSStruct *)pthread_getspecific(gThreadTLSKey); |
| return tls->mScript; |
| } |
| |
| pthread_key_t RsdCpuReference::getThreadTLSKey(){ return gThreadTLSKey; } |
| |
| //////////////////////////////////////////////////////////// |
| /// |
| |
| RsdCpuReferenceImpl::RsdCpuReferenceImpl(Context *rsc) { |
| mRSC = rsc; |
| |
| version_major = 0; |
| version_minor = 0; |
| mInKernel = false; |
| memset(&mWorkers, 0, sizeof(mWorkers)); |
| memset(&mTlsStruct, 0, sizeof(mTlsStruct)); |
| mExit = false; |
| mSelectRTCallback = nullptr; |
| mEmbedGlobalInfo = true; |
| mEmbedGlobalInfoSkipConstant = true; |
| } |
| |
| |
| void * RsdCpuReferenceImpl::helperThreadProc(void *vrsc) { |
| RsdCpuReferenceImpl *dc = (RsdCpuReferenceImpl *)vrsc; |
| |
| uint32_t idx = __sync_fetch_and_add(&dc->mWorkers.mLaunchCount, 1); |
| |
| //ALOGV("RS helperThread starting %p idx=%i", dc, idx); |
| |
| dc->mWorkers.mLaunchSignals[idx].init(); |
| dc->mWorkers.mNativeThreadId[idx] = gettid(); |
| |
| memset(&dc->mTlsStruct, 0, sizeof(dc->mTlsStruct)); |
| int status = pthread_setspecific(gThreadTLSKey, &dc->mTlsStruct); |
| if (status) { |
| ALOGE("pthread_setspecific %i", status); |
| } |
| |
| #if 0 |
| typedef struct {uint64_t bits[1024 / 64]; } cpu_set_t; |
| cpu_set_t cpuset; |
| memset(&cpuset, 0, sizeof(cpuset)); |
| cpuset.bits[idx / 64] |= 1ULL << (idx % 64); |
| int ret = syscall(241, rsc->mWorkers.mNativeThreadId[idx], |
| sizeof(cpuset), &cpuset); |
| ALOGE("SETAFFINITY ret = %i %s", ret, EGLUtils::strerror(ret)); |
| #endif |
| |
| while (!dc->mExit) { |
| dc->mWorkers.mLaunchSignals[idx].wait(); |
| if (dc->mWorkers.mLaunchCallback) { |
| // idx +1 is used because the calling thread is always worker 0. |
| dc->mWorkers.mLaunchCallback(dc->mWorkers.mLaunchData, idx+1); |
| } |
| __sync_fetch_and_sub(&dc->mWorkers.mRunningCount, 1); |
| dc->mWorkers.mCompleteSignal.set(); |
| } |
| |
| //ALOGV("RS helperThread exited %p idx=%i", dc, idx); |
| return nullptr; |
| } |
| |
| // Launch a kernel. |
| // The callback function is called to execute the kernel. |
| void RsdCpuReferenceImpl::launchThreads(WorkerCallback_t cbk, void *data) { |
| mWorkers.mLaunchData = data; |
| mWorkers.mLaunchCallback = cbk; |
| |
| // fast path for very small launches |
| MTLaunchStructCommon *mtls = (MTLaunchStructCommon *)data; |
| if (mtls && mtls->dimPtr->y <= 1 && mtls->end.x <= mtls->start.x + mtls->mSliceSize) { |
| if (mWorkers.mLaunchCallback) { |
| mWorkers.mLaunchCallback(mWorkers.mLaunchData, 0); |
| } |
| return; |
| } |
| |
| mWorkers.mRunningCount = mWorkers.mCount; |
| __sync_synchronize(); |
| |
| for (uint32_t ct = 0; ct < mWorkers.mCount; ct++) { |
| mWorkers.mLaunchSignals[ct].set(); |
| } |
| |
| // We use the calling thread as one of the workers so we can start without |
| // the delay of the thread wakeup. |
| if (mWorkers.mLaunchCallback) { |
| mWorkers.mLaunchCallback(mWorkers.mLaunchData, 0); |
| } |
| |
| while (__sync_fetch_and_or(&mWorkers.mRunningCount, 0) != 0) { |
| mWorkers.mCompleteSignal.wait(); |
| } |
| } |
| |
| |
| void RsdCpuReferenceImpl::lockMutex() { |
| pthread_mutex_lock(&gInitMutex); |
| } |
| |
| void RsdCpuReferenceImpl::unlockMutex() { |
| pthread_mutex_unlock(&gInitMutex); |
| } |
| |
| // Determine if the CPU we're running on supports SIMD instructions. |
| static void GetCpuInfo() { |
| // Read the CPU flags from /proc/cpuinfo. |
| FILE *cpuinfo = fopen("/proc/cpuinfo", "re"); |
| |
| if (!cpuinfo) { |
| return; |
| } |
| |
| char cpuinfostr[4096]; |
| // fgets() ends with newline or EOF, need to check the whole |
| // "cpuinfo" file to make sure we can use SIMD or not. |
| while (fgets(cpuinfostr, sizeof(cpuinfostr), cpuinfo)) { |
| #if defined(ARCH_ARM_HAVE_VFP) || defined(ARCH_ARM_USE_INTRINSICS) |
| gArchUseSIMD = strstr(cpuinfostr, " neon") || strstr(cpuinfostr, " asimd"); |
| #elif defined(ARCH_X86_HAVE_SSSE3) |
| gArchUseSIMD = strstr(cpuinfostr, " ssse3"); |
| #endif |
| if (gArchUseSIMD) { |
| break; |
| } |
| } |
| fclose(cpuinfo); |
| } |
| |
| bool RsdCpuReferenceImpl::init(uint32_t version_major, uint32_t version_minor, |
| sym_lookup_t lfn, script_lookup_t slfn) { |
| mSymLookupFn = lfn; |
| mScriptLookupFn = slfn; |
| |
| lockMutex(); |
| if (!gThreadTLSKeyCount) { |
| int status = pthread_key_create(&gThreadTLSKey, nullptr); |
| if (status) { |
| ALOGE("Failed to init thread tls key."); |
| unlockMutex(); |
| return false; |
| } |
| } |
| gThreadTLSKeyCount++; |
| unlockMutex(); |
| |
| mTlsStruct.mContext = mRSC; |
| mTlsStruct.mScript = nullptr; |
| int status = pthread_setspecific(gThreadTLSKey, &mTlsStruct); |
| if (status) { |
| ALOGE("pthread_setspecific %i", status); |
| } |
| |
| mPageSize = sysconf(_SC_PAGE_SIZE); |
| // ALOGV("page size = %ld", mPageSize); |
| |
| GetCpuInfo(); |
| |
| int cpu = sysconf(_SC_NPROCESSORS_CONF); |
| if(mRSC->props.mDebugMaxThreads) { |
| cpu = mRSC->props.mDebugMaxThreads; |
| } |
| if (cpu < 2) { |
| mWorkers.mCount = 0; |
| return true; |
| } |
| |
| // Subtract one from the cpu count because we also use the command thread as a worker. |
| mWorkers.mCount = (uint32_t)(cpu - 1); |
| |
| if (mRSC->props.mLogScripts) { |
| ALOGV("%p Launching thread(s), CPUs %i", mRSC, mWorkers.mCount + 1); |
| } |
| |
| mWorkers.mThreadId = (pthread_t *) calloc(mWorkers.mCount, sizeof(pthread_t)); |
| mWorkers.mNativeThreadId = (pid_t *) calloc(mWorkers.mCount, sizeof(pid_t)); |
| mWorkers.mLaunchSignals = new Signal[mWorkers.mCount]; |
| mWorkers.mLaunchCallback = nullptr; |
| |
| mWorkers.mCompleteSignal.init(); |
| |
| mWorkers.mRunningCount = mWorkers.mCount; |
| mWorkers.mLaunchCount = 0; |
| __sync_synchronize(); |
| |
| pthread_attr_t threadAttr; |
| status = pthread_attr_init(&threadAttr); |
| if (status) { |
| ALOGE("Failed to init thread attribute."); |
| return false; |
| } |
| |
| for (uint32_t ct=0; ct < mWorkers.mCount; ct++) { |
| status = pthread_create(&mWorkers.mThreadId[ct], &threadAttr, helperThreadProc, this); |
| if (status) { |
| mWorkers.mCount = ct; |
| ALOGE("Created fewer than expected number of RS threads."); |
| break; |
| } |
| } |
| while (__sync_fetch_and_or(&mWorkers.mRunningCount, 0) != 0) { |
| usleep(100); |
| } |
| |
| pthread_attr_destroy(&threadAttr); |
| return true; |
| } |
| |
| |
| void RsdCpuReferenceImpl::setPriority(int32_t priority) { |
| for (uint32_t ct=0; ct < mWorkers.mCount; ct++) { |
| setpriority(PRIO_PROCESS, mWorkers.mNativeThreadId[ct], priority); |
| } |
| } |
| |
| RsdCpuReferenceImpl::~RsdCpuReferenceImpl() { |
| mExit = true; |
| mWorkers.mLaunchData = nullptr; |
| mWorkers.mLaunchCallback = nullptr; |
| mWorkers.mRunningCount = mWorkers.mCount; |
| __sync_synchronize(); |
| for (uint32_t ct = 0; ct < mWorkers.mCount; ct++) { |
| mWorkers.mLaunchSignals[ct].set(); |
| } |
| void *res; |
| for (uint32_t ct = 0; ct < mWorkers.mCount; ct++) { |
| pthread_join(mWorkers.mThreadId[ct], &res); |
| } |
| // b/23109602 |
| // TODO: Refactor the implementation with threadpool to |
| // fix the race condition in the destuctor. |
| // rsAssert(__sync_fetch_and_or(&mWorkers.mRunningCount, 0) == 0); |
| free(mWorkers.mThreadId); |
| free(mWorkers.mNativeThreadId); |
| delete[] mWorkers.mLaunchSignals; |
| |
| // Global structure cleanup. |
| lockMutex(); |
| --gThreadTLSKeyCount; |
| if (!gThreadTLSKeyCount) { |
| pthread_key_delete(gThreadTLSKey); |
| } |
| unlockMutex(); |
| |
| } |
| |
| // Set up the appropriate input and output pointers to the kernel driver info structure. |
| // Inputs: |
| // mtls - The MTLaunchStruct holding information about the kernel launch |
| // fep - The forEach parameters (driver info structure) |
| // x, y, z, lod, face, a1, a2, a3, a4 - The start offsets into each dimension |
| static inline void FepPtrSetup(const MTLaunchStructForEach *mtls, RsExpandKernelDriverInfo *fep, |
| uint32_t x, uint32_t y, |
| uint32_t z = 0, uint32_t lod = 0, |
| RsAllocationCubemapFace face = RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X, |
| uint32_t a1 = 0, uint32_t a2 = 0, uint32_t a3 = 0, uint32_t a4 = 0) { |
| // When rsForEach passes a null input allocation (as opposed to no input), |
| // fep->inLen can be 1 with mtls->ains[0] being null. |
| // This should only happen on old style kernels. |
| for (uint32_t i = 0; i < fep->inLen; i++) { |
| if (mtls->ains[i] == nullptr) { |
| rsAssert(fep->inLen == 1); |
| continue; |
| } |
| fep->inPtr[i] = (const uint8_t *)mtls->ains[i]->getPointerUnchecked(x, y, z, lod, face, a1, a2, a3, a4); |
| } |
| if (mtls->aout[0] != nullptr) { |
| fep->outPtr[0] = (uint8_t *)mtls->aout[0]->getPointerUnchecked(x, y, z, lod, face, a1, a2, a3, a4); |
| } |
| } |
| |
| // Set up the appropriate input and output pointers to the kernel driver info structure. |
| // Inputs: |
| // mtls - The MTLaunchStruct holding information about the kernel launch |
| // redp - The reduce parameters (driver info structure) |
| // x, y, z - The start offsets into each dimension |
| static inline void RedpPtrSetup(const MTLaunchStructReduce *mtls, RsExpandKernelDriverInfo *redp, |
| uint32_t x, uint32_t y, uint32_t z) { |
| for (uint32_t i = 0; i < redp->inLen; i++) { |
| redp->inPtr[i] = (const uint8_t *)mtls->ains[i]->getPointerUnchecked(x, y, z); |
| } |
| } |
| |
| static uint32_t sliceInt(uint32_t *p, uint32_t val, uint32_t start, uint32_t end) { |
| if (start >= end) { |
| *p = start; |
| return val; |
| } |
| |
| uint32_t div = end - start; |
| |
| uint32_t n = val / div; |
| *p = (val - (n * div)) + start; |
| return n; |
| } |
| |
| static bool SelectOuterSlice(const MTLaunchStructCommon *mtls, RsExpandKernelDriverInfo* info, uint32_t sliceNum) { |
| uint32_t r = sliceNum; |
| r = sliceInt(&info->current.z, r, mtls->start.z, mtls->end.z); |
| r = sliceInt(&info->current.lod, r, mtls->start.lod, mtls->end.lod); |
| r = sliceInt(&info->current.face, r, mtls->start.face, mtls->end.face); |
| r = sliceInt(&info->current.array[0], r, mtls->start.array[0], mtls->end.array[0]); |
| r = sliceInt(&info->current.array[1], r, mtls->start.array[1], mtls->end.array[1]); |
| r = sliceInt(&info->current.array[2], r, mtls->start.array[2], mtls->end.array[2]); |
| r = sliceInt(&info->current.array[3], r, mtls->start.array[3], mtls->end.array[3]); |
| return r == 0; |
| } |
| |
| static bool SelectZSlice(const MTLaunchStructCommon *mtls, RsExpandKernelDriverInfo* info, uint32_t sliceNum) { |
| return sliceInt(&info->current.z, sliceNum, mtls->start.z, mtls->end.z) == 0; |
| } |
| |
| static void walk_general_foreach(void *usr, uint32_t idx) { |
| MTLaunchStructForEach *mtls = (MTLaunchStructForEach *)usr; |
| RsExpandKernelDriverInfo fep = mtls->fep; |
| fep.lid = idx; |
| ForEachFunc_t fn = mtls->kernel; |
| |
| while(1) { |
| uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1); |
| |
| if (!SelectOuterSlice(mtls, &fep, slice)) { |
| return; |
| } |
| |
| for (fep.current.y = mtls->start.y; fep.current.y < mtls->end.y; |
| fep.current.y++) { |
| |
| FepPtrSetup(mtls, &fep, mtls->start.x, |
| fep.current.y, fep.current.z, fep.current.lod, |
| (RsAllocationCubemapFace)fep.current.face, |
| fep.current.array[0], fep.current.array[1], |
| fep.current.array[2], fep.current.array[3]); |
| |
| fn(&fep, mtls->start.x, mtls->end.x, mtls->fep.outStride[0]); |
| } |
| } |
| } |
| |
| static void walk_2d_foreach(void *usr, uint32_t idx) { |
| MTLaunchStructForEach *mtls = (MTLaunchStructForEach *)usr; |
| RsExpandKernelDriverInfo fep = mtls->fep; |
| fep.lid = idx; |
| ForEachFunc_t fn = mtls->kernel; |
| |
| while (1) { |
| uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1); |
| uint32_t yStart = mtls->start.y + slice * mtls->mSliceSize; |
| uint32_t yEnd = yStart + mtls->mSliceSize; |
| |
| yEnd = rsMin(yEnd, mtls->end.y); |
| |
| if (yEnd <= yStart) { |
| return; |
| } |
| |
| for (fep.current.y = yStart; fep.current.y < yEnd; fep.current.y++) { |
| FepPtrSetup(mtls, &fep, mtls->start.x, fep.current.y); |
| |
| fn(&fep, mtls->start.x, mtls->end.x, fep.outStride[0]); |
| } |
| } |
| } |
| |
| static void walk_1d_foreach(void *usr, uint32_t idx) { |
| MTLaunchStructForEach *mtls = (MTLaunchStructForEach *)usr; |
| RsExpandKernelDriverInfo fep = mtls->fep; |
| fep.lid = idx; |
| ForEachFunc_t fn = mtls->kernel; |
| |
| while (1) { |
| uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1); |
| uint32_t xStart = mtls->start.x + slice * mtls->mSliceSize; |
| uint32_t xEnd = xStart + mtls->mSliceSize; |
| |
| xEnd = rsMin(xEnd, mtls->end.x); |
| |
| if (xEnd <= xStart) { |
| return; |
| } |
| |
| FepPtrSetup(mtls, &fep, xStart, 0); |
| |
| fn(&fep, xStart, xEnd, fep.outStride[0]); |
| } |
| } |
| |
| // The function format_bytes() is an auxiliary function to assist in logging. |
| // |
| // Bytes are read from an input (inBuf) and written (as pairs of hex digits) |
| // to an output (outBuf). |
| // |
| // Output format: |
| // - starts with ": " |
| // - each input byte is translated to a pair of hex digits |
| // - bytes are separated by "." except that every fourth separator is "|" |
| // - if the input is sufficiently long, the output is truncated and terminated with "..." |
| // |
| // Arguments: |
| // - outBuf -- Pointer to buffer of type "FormatBuf" into which output is written |
| // - inBuf -- Pointer to bytes which are to be formatted into outBuf |
| // - inBytes -- Number of bytes in inBuf |
| // |
| // Constant: |
| // - kFormatInBytesMax -- Only min(kFormatInBytesMax, inBytes) bytes will be read |
| // from inBuf |
| // |
| // Return value: |
| // - pointer (const char *) to output (which is part of outBuf) |
| // |
| static const int kFormatInBytesMax = 16; |
| // ": " + 2 digits per byte + 1 separator between bytes + "..." + null |
| typedef char FormatBuf[2 + kFormatInBytesMax*2 + (kFormatInBytesMax - 1) + 3 + 1]; |
| static const char *format_bytes(FormatBuf *outBuf, const uint8_t *inBuf, const int inBytes) { |
| strlcpy(*outBuf, ": ", sizeof(*outBuf)); |
| int pos = 2; |
| const int lim = std::min(kFormatInBytesMax, inBytes); |
| for (int i = 0; i < lim; ++i) { |
| if (i) { |
| sprintf(*outBuf + pos, (i % 4 ? "." : "|")); |
| ++pos; |
| } |
| sprintf(*outBuf + pos, "%02x", inBuf[i]); |
| pos += 2; |
| } |
| if (kFormatInBytesMax < inBytes) |
| strlcpy(*outBuf + pos, "...", sizeof(FormatBuf) - pos); |
| return *outBuf; |
| } |
| |
| static void reduce_get_accumulator(uint8_t *&accumPtr, MTLaunchStructReduce *mtls, |
| const char *walkerName, uint32_t threadIdx) { |
| rsAssert(!accumPtr); |
| |
| uint32_t accumIdx = (uint32_t)__sync_fetch_and_add(&mtls->accumCount, 1); |
| if (mtls->outFunc) { |
| accumPtr = mtls->accumAlloc + mtls->accumStride * accumIdx; |
| } else { |
| if (accumIdx == 0) { |
| accumPtr = mtls->redp.outPtr[0]; |
| } else { |
| accumPtr = mtls->accumAlloc + mtls->accumStride * (accumIdx - 1); |
| } |
| } |
| REDUCE_ALOGV(mtls, 2, "%s(%p): idx = %u got accumCount %u and accumPtr %p", |
| walkerName, mtls->accumFunc, threadIdx, accumIdx, accumPtr); |
| // initialize accumulator |
| if (mtls->initFunc) { |
| mtls->initFunc(accumPtr); |
| } else { |
| memset(accumPtr, 0, mtls->accumSize); |
| } |
| } |
| |
| static void walk_1d_reduce(void *usr, uint32_t idx) { |
| MTLaunchStructReduce *mtls = (MTLaunchStructReduce *)usr; |
| RsExpandKernelDriverInfo redp = mtls->redp; |
| |
| // find accumulator |
| uint8_t *&accumPtr = mtls->accumPtr[idx]; |
| if (!accumPtr) { |
| reduce_get_accumulator(accumPtr, mtls, __func__, idx); |
| } |
| |
| // accumulate |
| const ReduceAccumulatorFunc_t fn = mtls->accumFunc; |
| while (1) { |
| uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1); |
| uint32_t xStart = mtls->start.x + slice * mtls->mSliceSize; |
| uint32_t xEnd = xStart + mtls->mSliceSize; |
| |
| xEnd = rsMin(xEnd, mtls->end.x); |
| |
| if (xEnd <= xStart) { |
| return; |
| } |
| |
| RedpPtrSetup(mtls, &redp, xStart, 0, 0); |
| fn(&redp, xStart, xEnd, accumPtr); |
| |
| // Emit log line after slice has been run, so that we can include |
| // the results of the run on that line. |
| FormatBuf fmt; |
| if (mtls->logReduce >= 3) { |
| format_bytes(&fmt, accumPtr, mtls->accumSize); |
| } else { |
| fmt[0] = 0; |
| } |
| REDUCE_ALOGV(mtls, 2, "walk_1d_reduce(%p): idx = %u, x in [%u, %u)%s", |
| mtls->accumFunc, idx, xStart, xEnd, fmt); |
| } |
| } |
| |
| static void walk_2d_reduce(void *usr, uint32_t idx) { |
| MTLaunchStructReduce *mtls = (MTLaunchStructReduce *)usr; |
| RsExpandKernelDriverInfo redp = mtls->redp; |
| |
| // find accumulator |
| uint8_t *&accumPtr = mtls->accumPtr[idx]; |
| if (!accumPtr) { |
| reduce_get_accumulator(accumPtr, mtls, __func__, idx); |
| } |
| |
| // accumulate |
| const ReduceAccumulatorFunc_t fn = mtls->accumFunc; |
| while (1) { |
| uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1); |
| uint32_t yStart = mtls->start.y + slice * mtls->mSliceSize; |
| uint32_t yEnd = yStart + mtls->mSliceSize; |
| |
| yEnd = rsMin(yEnd, mtls->end.y); |
| |
| if (yEnd <= yStart) { |
| return; |
| } |
| |
| for (redp.current.y = yStart; redp.current.y < yEnd; redp.current.y++) { |
| RedpPtrSetup(mtls, &redp, mtls->start.x, redp.current.y, 0); |
| fn(&redp, mtls->start.x, mtls->end.x, accumPtr); |
| } |
| |
| FormatBuf fmt; |
| if (mtls->logReduce >= 3) { |
| format_bytes(&fmt, accumPtr, mtls->accumSize); |
| } else { |
| fmt[0] = 0; |
| } |
| REDUCE_ALOGV(mtls, 2, "walk_2d_reduce(%p): idx = %u, y in [%u, %u)%s", |
| mtls->accumFunc, idx, yStart, yEnd, fmt); |
| } |
| } |
| |
| static void walk_3d_reduce(void *usr, uint32_t idx) { |
| MTLaunchStructReduce *mtls = (MTLaunchStructReduce *)usr; |
| RsExpandKernelDriverInfo redp = mtls->redp; |
| |
| // find accumulator |
| uint8_t *&accumPtr = mtls->accumPtr[idx]; |
| if (!accumPtr) { |
| reduce_get_accumulator(accumPtr, mtls, __func__, idx); |
| } |
| |
| // accumulate |
| const ReduceAccumulatorFunc_t fn = mtls->accumFunc; |
| while (1) { |
| uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1); |
| |
| if (!SelectZSlice(mtls, &redp, slice)) { |
| return; |
| } |
| |
| for (redp.current.y = mtls->start.y; redp.current.y < mtls->end.y; redp.current.y++) { |
| RedpPtrSetup(mtls, &redp, mtls->start.x, redp.current.y, redp.current.z); |
| fn(&redp, mtls->start.x, mtls->end.x, accumPtr); |
| } |
| |
| FormatBuf fmt; |
| if (mtls->logReduce >= 3) { |
| format_bytes(&fmt, accumPtr, mtls->accumSize); |
| } else { |
| fmt[0] = 0; |
| } |
| REDUCE_ALOGV(mtls, 2, "walk_3d_reduce(%p): idx = %u, z = %u%s", |
| mtls->accumFunc, idx, redp.current.z, fmt); |
| } |
| } |
| |
| // Launch a general reduce-style kernel. |
| // Inputs: |
| // ains[0..inLen-1]: Array of allocations that contain the inputs |
| // aout: The allocation that will hold the output |
| // mtls: Holds launch parameters |
| void RsdCpuReferenceImpl::launchReduce(const Allocation ** ains, |
| uint32_t inLen, |
| Allocation * aout, |
| MTLaunchStructReduce *mtls) { |
| mtls->logReduce = mRSC->props.mLogReduce; |
| if ((mWorkers.mCount >= 1) && mtls->isThreadable && !mInKernel) { |
| launchReduceParallel(ains, inLen, aout, mtls); |
| } else { |
| launchReduceSerial(ains, inLen, aout, mtls); |
| } |
| } |
| |
| // Launch a general reduce-style kernel, single-threaded. |
| // Inputs: |
| // ains[0..inLen-1]: Array of allocations that contain the inputs |
| // aout: The allocation that will hold the output |
| // mtls: Holds launch parameters |
| void RsdCpuReferenceImpl::launchReduceSerial(const Allocation ** ains, |
| uint32_t inLen, |
| Allocation * aout, |
| MTLaunchStructReduce *mtls) { |
| REDUCE_ALOGV(mtls, 1, "launchReduceSerial(%p): %u x %u x %u", mtls->accumFunc, |
| mtls->redp.dim.x, mtls->redp.dim.y, mtls->redp.dim.z); |
| |
| // In the presence of outconverter, we allocate temporary memory for |
| // the accumulator. |
| // |
| // In the absence of outconverter, we use the output allocation as the |
| // accumulator. |
| uint8_t *const accumPtr = (mtls->outFunc |
| ? static_cast<uint8_t *>(malloc(mtls->accumSize)) |
| : mtls->redp.outPtr[0]); |
| |
| // initialize |
| if (mtls->initFunc) { |
| mtls->initFunc(accumPtr); |
| } else { |
| memset(accumPtr, 0, mtls->accumSize); |
| } |
| |
| // accumulate |
| const ReduceAccumulatorFunc_t fn = mtls->accumFunc; |
| uint32_t slice = 0; |
| while (SelectOuterSlice(mtls, &mtls->redp, slice++)) { |
| for (mtls->redp.current.y = mtls->start.y; |
| mtls->redp.current.y < mtls->end.y; |
| mtls->redp.current.y++) { |
| RedpPtrSetup(mtls, &mtls->redp, mtls->start.x, mtls->redp.current.y, mtls->redp.current.z); |
| fn(&mtls->redp, mtls->start.x, mtls->end.x, accumPtr); |
| } |
| } |
| |
| // outconvert |
| if (mtls->outFunc) { |
| mtls->outFunc(mtls->redp.outPtr[0], accumPtr); |
| free(accumPtr); |
| } |
| } |
| |
| // Launch a general reduce-style kernel, multi-threaded. |
| // Inputs: |
| // ains[0..inLen-1]: Array of allocations that contain the inputs |
| // aout: The allocation that will hold the output |
| // mtls: Holds launch parameters |
| void RsdCpuReferenceImpl::launchReduceParallel(const Allocation ** ains, |
| uint32_t inLen, |
| Allocation * aout, |
| MTLaunchStructReduce *mtls) { |
| // For now, we don't know how to go parallel in the absence of a combiner. |
| if (!mtls->combFunc) { |
| launchReduceSerial(ains, inLen, aout, mtls); |
| return; |
| } |
| |
| // Number of threads = "main thread" + number of other (worker) threads |
| const uint32_t numThreads = mWorkers.mCount + 1; |
| |
| // In the absence of outconverter, we use the output allocation as |
| // an accumulator, and therefore need to allocate one fewer accumulator. |
| const uint32_t numAllocAccum = numThreads - (mtls->outFunc == nullptr); |
| |
| // If mDebugReduceSplitAccum, then we want each accumulator to start |
| // on a page boundary. (TODO: Would some unit smaller than a page |
| // be sufficient to avoid false sharing?) |
| if (mRSC->props.mDebugReduceSplitAccum) { |
| // Round up accumulator size to an integral number of pages |
| mtls->accumStride = |
| (unsigned(mtls->accumSize) + unsigned(mPageSize)-1) & |
| ~(unsigned(mPageSize)-1); |
| // Each accumulator gets its own page. Alternatively, if we just |
| // wanted to make sure no two accumulators are on the same page, |
| // we could instead do |
| // allocSize = mtls->accumStride * (numAllocation - 1) + mtls->accumSize |
| const size_t allocSize = mtls->accumStride * numAllocAccum; |
| mtls->accumAlloc = static_cast<uint8_t *>(memalign(mPageSize, allocSize)); |
| } else { |
| mtls->accumStride = mtls->accumSize; |
| mtls->accumAlloc = static_cast<uint8_t *>(malloc(mtls->accumStride * numAllocAccum)); |
| } |
| |
| const size_t accumPtrArrayBytes = sizeof(uint8_t *) * numThreads; |
| mtls->accumPtr = static_cast<uint8_t **>(malloc(accumPtrArrayBytes)); |
| memset(mtls->accumPtr, 0, accumPtrArrayBytes); |
| |
| mtls->accumCount = 0; |
| |
| rsAssert(!mInKernel); |
| mInKernel = true; |
| REDUCE_ALOGV(mtls, 1, "launchReduceParallel(%p): %u x %u x %u, %u threads, accumAlloc = %p", |
| mtls->accumFunc, |
| mtls->redp.dim.x, mtls->redp.dim.y, mtls->redp.dim.z, |
| numThreads, mtls->accumAlloc); |
| if (mtls->redp.dim.z > 1) { |
| mtls->mSliceSize = 1; |
| launchThreads(walk_3d_reduce, mtls); |
| } else if (mtls->redp.dim.y > 1) { |
| mtls->mSliceSize = rsMax(1U, mtls->redp.dim.y / (numThreads * 4)); |
| launchThreads(walk_2d_reduce, mtls); |
| } else { |
| mtls->mSliceSize = rsMax(1U, mtls->redp.dim.x / (numThreads * 4)); |
| launchThreads(walk_1d_reduce, mtls); |
| } |
| mInKernel = false; |
| |
| // Combine accumulators and identify final accumulator |
| uint8_t *finalAccumPtr = (mtls->outFunc ? nullptr : mtls->redp.outPtr[0]); |
| // Loop over accumulators, combining into finalAccumPtr. If finalAccumPtr |
| // is null, then the first accumulator I find becomes finalAccumPtr. |
| for (unsigned idx = 0; idx < mtls->accumCount; ++idx) { |
| uint8_t *const thisAccumPtr = mtls->accumPtr[idx]; |
| if (finalAccumPtr) { |
| if (finalAccumPtr != thisAccumPtr) { |
| if (mtls->combFunc) { |
| if (mtls->logReduce >= 3) { |
| FormatBuf fmt; |
| REDUCE_ALOGV(mtls, 3, "launchReduceParallel(%p): accumulating into%s", |
| mtls->accumFunc, |
| format_bytes(&fmt, finalAccumPtr, mtls->accumSize)); |
| REDUCE_ALOGV(mtls, 3, "launchReduceParallel(%p): accumulator[%d]%s", |
| mtls->accumFunc, idx, |
| format_bytes(&fmt, thisAccumPtr, mtls->accumSize)); |
| } |
| mtls->combFunc(finalAccumPtr, thisAccumPtr); |
| } else { |
| rsAssert(!"expected combiner"); |
| } |
| } |
| } else { |
| finalAccumPtr = thisAccumPtr; |
| } |
| } |
| rsAssert(finalAccumPtr != nullptr); |
| if (mtls->logReduce >= 3) { |
| FormatBuf fmt; |
| REDUCE_ALOGV(mtls, 3, "launchReduceParallel(%p): final accumulator%s", |
| mtls->accumFunc, format_bytes(&fmt, finalAccumPtr, mtls->accumSize)); |
| } |
| |
| // Outconvert |
| if (mtls->outFunc) { |
| mtls->outFunc(mtls->redp.outPtr[0], finalAccumPtr); |
| if (mtls->logReduce >= 3) { |
| FormatBuf fmt; |
| REDUCE_ALOGV(mtls, 3, "launchReduceParallel(%p): final outconverted result%s", |
| mtls->accumFunc, |
| format_bytes(&fmt, mtls->redp.outPtr[0], mtls->redp.outStride[0])); |
| } |
| } |
| |
| // Clean up |
| free(mtls->accumPtr); |
| free(mtls->accumAlloc); |
| } |
| |
| |
| void RsdCpuReferenceImpl::launchForEach(const Allocation ** ains, |
| uint32_t inLen, |
| Allocation* aout, |
| const RsScriptCall* sc, |
| MTLaunchStructForEach* mtls) { |
| |
| //android::StopWatch kernel_time("kernel time"); |
| |
| bool outerDims = (mtls->start.z != mtls->end.z) || |
| (mtls->start.face != mtls->end.face) || |
| (mtls->start.lod != mtls->end.lod) || |
| (mtls->start.array[0] != mtls->end.array[0]) || |
| (mtls->start.array[1] != mtls->end.array[1]) || |
| (mtls->start.array[2] != mtls->end.array[2]) || |
| (mtls->start.array[3] != mtls->end.array[3]); |
| |
| if ((mWorkers.mCount >= 1) && mtls->isThreadable && !mInKernel) { |
| const size_t targetByteChunk = 16 * 1024; |
| mInKernel = true; // NOTE: The guard immediately above ensures this was !mInKernel |
| |
| if (outerDims) { |
| // No fancy logic for chunk size |
| mtls->mSliceSize = 1; |
| launchThreads(walk_general_foreach, mtls); |
| } else if (mtls->fep.dim.y > 1) { |
| uint32_t s1 = mtls->fep.dim.y / ((mWorkers.mCount + 1) * 4); |
| uint32_t s2 = 0; |
| |
| // This chooses our slice size to rate limit atomic ops to |
| // one per 16k bytes of reads/writes. |
| if ((mtls->aout[0] != nullptr) && mtls->aout[0]->mHal.drvState.lod[0].stride) { |
| s2 = targetByteChunk / mtls->aout[0]->mHal.drvState.lod[0].stride; |
| } else if (mtls->ains[0]) { |
| s2 = targetByteChunk / mtls->ains[0]->mHal.drvState.lod[0].stride; |
| } else { |
| // Launch option only case |
| // Use s1 based only on the dimensions |
| s2 = s1; |
| } |
| mtls->mSliceSize = rsMin(s1, s2); |
| |
| if(mtls->mSliceSize < 1) { |
| mtls->mSliceSize = 1; |
| } |
| |
| launchThreads(walk_2d_foreach, mtls); |
| } else { |
| uint32_t s1 = mtls->fep.dim.x / ((mWorkers.mCount + 1) * 4); |
| uint32_t s2 = 0; |
| |
| // This chooses our slice size to rate limit atomic ops to |
| // one per 16k bytes of reads/writes. |
| if ((mtls->aout[0] != nullptr) && mtls->aout[0]->getType()->getElementSizeBytes()) { |
| s2 = targetByteChunk / mtls->aout[0]->getType()->getElementSizeBytes(); |
| } else if (mtls->ains[0]) { |
| s2 = targetByteChunk / mtls->ains[0]->getType()->getElementSizeBytes(); |
| } else { |
| // Launch option only case |
| // Use s1 based only on the dimensions |
| s2 = s1; |
| } |
| mtls->mSliceSize = rsMin(s1, s2); |
| |
| if (mtls->mSliceSize < 1) { |
| mtls->mSliceSize = 1; |
| } |
| |
| launchThreads(walk_1d_foreach, mtls); |
| } |
| mInKernel = false; |
| |
| } else { |
| ForEachFunc_t fn = mtls->kernel; |
| uint32_t slice = 0; |
| |
| |
| while(SelectOuterSlice(mtls, &mtls->fep, slice++)) { |
| for (mtls->fep.current.y = mtls->start.y; |
| mtls->fep.current.y < mtls->end.y; |
| mtls->fep.current.y++) { |
| |
| FepPtrSetup(mtls, &mtls->fep, mtls->start.x, |
| mtls->fep.current.y, mtls->fep.current.z, mtls->fep.current.lod, |
| (RsAllocationCubemapFace) mtls->fep.current.face, |
| mtls->fep.current.array[0], mtls->fep.current.array[1], |
| mtls->fep.current.array[2], mtls->fep.current.array[3]); |
| |
| fn(&mtls->fep, mtls->start.x, mtls->end.x, mtls->fep.outStride[0]); |
| } |
| } |
| } |
| } |
| |
| RsdCpuScriptImpl * RsdCpuReferenceImpl::setTLS(RsdCpuScriptImpl *sc) { |
| //ALOGE("setTls %p", sc); |
| ScriptTLSStruct * tls = (ScriptTLSStruct *)pthread_getspecific(gThreadTLSKey); |
| rsAssert(tls); |
| RsdCpuScriptImpl *old = tls->mImpl; |
| tls->mImpl = sc; |
| tls->mContext = mRSC; |
| if (sc) { |
| tls->mScript = sc->getScript(); |
| } else { |
| tls->mScript = nullptr; |
| } |
| return old; |
| } |
| |
| const RsdCpuReference::CpuSymbol * RsdCpuReferenceImpl::symLookup(const char *name) { |
| return mSymLookupFn(mRSC, name); |
| } |
| |
| |
| RsdCpuReference::CpuScript * RsdCpuReferenceImpl::createScript(const ScriptC *s, |
| char const *resName, char const *cacheDir, |
| uint8_t const *bitcode, size_t bitcodeSize, |
| uint32_t flags) { |
| |
| RsdCpuScriptImpl *i = new RsdCpuScriptImpl(this, s); |
| if (!i->init(resName, cacheDir, bitcode, bitcodeSize, flags |
| , getBccPluginName() |
| )) { |
| delete i; |
| return nullptr; |
| } |
| return i; |
| } |
| |
| extern RsdCpuScriptImpl * rsdIntrinsic_3DLUT(RsdCpuReferenceImpl *ctx, |
| const Script *s, const Element *e); |
| extern RsdCpuScriptImpl * rsdIntrinsic_Convolve3x3(RsdCpuReferenceImpl *ctx, |
| const Script *s, const Element *e); |
| extern RsdCpuScriptImpl * rsdIntrinsic_ColorMatrix(RsdCpuReferenceImpl *ctx, |
| const Script *s, const Element *e); |
| extern RsdCpuScriptImpl * rsdIntrinsic_LUT(RsdCpuReferenceImpl *ctx, |
| const Script *s, const Element *e); |
| extern RsdCpuScriptImpl * rsdIntrinsic_Convolve5x5(RsdCpuReferenceImpl *ctx, |
| const Script *s, const Element *e); |
| extern RsdCpuScriptImpl * rsdIntrinsic_Blur(RsdCpuReferenceImpl *ctx, |
| const Script *s, const Element *e); |
| extern RsdCpuScriptImpl * rsdIntrinsic_YuvToRGB(RsdCpuReferenceImpl *ctx, |
| const Script *s, const Element *e); |
| extern RsdCpuScriptImpl * rsdIntrinsic_Blend(RsdCpuReferenceImpl *ctx, |
| const Script *s, const Element *e); |
| extern RsdCpuScriptImpl * rsdIntrinsic_Histogram(RsdCpuReferenceImpl *ctx, |
| const Script *s, const Element *e); |
| extern RsdCpuScriptImpl * rsdIntrinsic_Resize(RsdCpuReferenceImpl *ctx, |
| const Script *s, const Element *e); |
| extern RsdCpuScriptImpl * rsdIntrinsic_BLAS(RsdCpuReferenceImpl *ctx, |
| const Script *s, const Element *e); |
| |
| RsdCpuReference::CpuScript * RsdCpuReferenceImpl::createIntrinsic(const Script *s, |
| RsScriptIntrinsicID iid, Element *e) { |
| |
| RsdCpuScriptImpl *i = nullptr; |
| switch (iid) { |
| case RS_SCRIPT_INTRINSIC_ID_3DLUT: |
| i = rsdIntrinsic_3DLUT(this, s, e); |
| break; |
| case RS_SCRIPT_INTRINSIC_ID_CONVOLVE_3x3: |
| i = rsdIntrinsic_Convolve3x3(this, s, e); |
| break; |
| case RS_SCRIPT_INTRINSIC_ID_COLOR_MATRIX: |
| i = rsdIntrinsic_ColorMatrix(this, s, e); |
| break; |
| case RS_SCRIPT_INTRINSIC_ID_LUT: |
| i = rsdIntrinsic_LUT(this, s, e); |
| break; |
| case RS_SCRIPT_INTRINSIC_ID_CONVOLVE_5x5: |
| i = rsdIntrinsic_Convolve5x5(this, s, e); |
| break; |
| case RS_SCRIPT_INTRINSIC_ID_BLUR: |
| i = rsdIntrinsic_Blur(this, s, e); |
| break; |
| case RS_SCRIPT_INTRINSIC_ID_YUV_TO_RGB: |
| i = rsdIntrinsic_YuvToRGB(this, s, e); |
| break; |
| case RS_SCRIPT_INTRINSIC_ID_BLEND: |
| i = rsdIntrinsic_Blend(this, s, e); |
| break; |
| case RS_SCRIPT_INTRINSIC_ID_HISTOGRAM: |
| i = rsdIntrinsic_Histogram(this, s, e); |
| break; |
| case RS_SCRIPT_INTRINSIC_ID_RESIZE: |
| i = rsdIntrinsic_Resize(this, s, e); |
| break; |
| case RS_SCRIPT_INTRINSIC_ID_BLAS: |
| i = rsdIntrinsic_BLAS(this, s, e); |
| break; |
| |
| default: |
| rsAssert(0); |
| } |
| |
| return i; |
| } |
| |
| void* RsdCpuReferenceImpl::createScriptGroup(const ScriptGroupBase *sg) { |
| switch (sg->getApiVersion()) { |
| case ScriptGroupBase::SG_V1: { |
| CpuScriptGroupImpl *sgi = new CpuScriptGroupImpl(this, sg); |
| if (!sgi->init()) { |
| delete sgi; |
| return nullptr; |
| } |
| return sgi; |
| } |
| case ScriptGroupBase::SG_V2: { |
| return new CpuScriptGroup2Impl(this, sg); |
| } |
| } |
| return nullptr; |
| } |
| |
| } // namespace renderscript |
| } // namespace android |