| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <cstdint> |
| |
| #include "RenderScriptToolkit.h" |
| #include "TaskProcessor.h" |
| #include "Utils.h" |
| |
| namespace android { |
| namespace renderscript { |
| |
| #define LOG_TAG "renderscript.toolkit.Convolve5x5" |
| |
| extern "C" void rsdIntrinsicConvolve5x5_K(void* dst, const void* y0, const void* y1, const void* y2, |
| const void* y3, const void* y4, const int16_t* coef, |
| uint32_t count); |
| |
| class Convolve5x5Task : public Task { |
| const void* mIn; |
| void* mOut; |
| // Even though we have exactly 25 coefficients, store them in an array of size 28 so that |
| // the SIMD instructions can load them in three chunks of 8 and 1 of chunk of 4. |
| float mFp[28]; |
| int16_t mIp[28]; |
| |
| void kernelU4(uchar* out, uint32_t xstart, uint32_t xend, const uchar* py0, const uchar* py1, |
| const uchar* py2, const uchar* py3, const uchar* py4); |
| void convolveU4(const uchar* pin, uchar* pout, size_t vectorSize, size_t sizeX, size_t sizeY, |
| size_t startX, size_t startY, size_t endX, size_t endY); |
| |
| // Process a 2D tile of the overall work. threadIndex identifies which thread does the work. |
| virtual void processData(int threadIndex, size_t startX, size_t startY, size_t endX, |
| size_t endY) override; |
| |
| public: |
| Convolve5x5Task(const void* in, void* out, size_t vectorSize, size_t sizeX, size_t sizeY, |
| const float* coefficients, const Restriction* restriction) |
| : Task{sizeX, sizeY, vectorSize, false, restriction}, mIn{in}, mOut{out} { |
| for (int ct = 0; ct < 25; ct++) { |
| mFp[ct] = coefficients[ct]; |
| if (mFp[ct] >= 0) { |
| mIp[ct] = (int16_t)(mFp[ct] * 256.f + 0.5f); |
| } else { |
| mIp[ct] = (int16_t)(mFp[ct] * 256.f - 0.5f); |
| } |
| } |
| } |
| }; |
| |
| template <typename InputOutputType, typename ComputationType> |
| static void ConvolveOneU(uint32_t x, InputOutputType* out, const InputOutputType* py0, |
| const InputOutputType* py1, const InputOutputType* py2, |
| const InputOutputType* py3, const InputOutputType* py4, const float* coeff, |
| int32_t width) { |
| uint32_t x0 = std::max((int32_t)x - 2, 0); |
| uint32_t x1 = std::max((int32_t)x - 1, 0); |
| uint32_t x2 = x; |
| uint32_t x3 = std::min((int32_t)x + 1, width - 1); |
| uint32_t x4 = std::min((int32_t)x + 2, width - 1); |
| |
| ComputationType px = convert<ComputationType>(py0[x0]) * coeff[0] + |
| convert<ComputationType>(py0[x1]) * coeff[1] + |
| convert<ComputationType>(py0[x2]) * coeff[2] + |
| convert<ComputationType>(py0[x3]) * coeff[3] + |
| convert<ComputationType>(py0[x4]) * coeff[4] + |
| |
| convert<ComputationType>(py1[x0]) * coeff[5] + |
| convert<ComputationType>(py1[x1]) * coeff[6] + |
| convert<ComputationType>(py1[x2]) * coeff[7] + |
| convert<ComputationType>(py1[x3]) * coeff[8] + |
| convert<ComputationType>(py1[x4]) * coeff[9] + |
| |
| convert<ComputationType>(py2[x0]) * coeff[10] + |
| convert<ComputationType>(py2[x1]) * coeff[11] + |
| convert<ComputationType>(py2[x2]) * coeff[12] + |
| convert<ComputationType>(py2[x3]) * coeff[13] + |
| convert<ComputationType>(py2[x4]) * coeff[14] + |
| |
| convert<ComputationType>(py3[x0]) * coeff[15] + |
| convert<ComputationType>(py3[x1]) * coeff[16] + |
| convert<ComputationType>(py3[x2]) * coeff[17] + |
| convert<ComputationType>(py3[x3]) * coeff[18] + |
| convert<ComputationType>(py3[x4]) * coeff[19] + |
| |
| convert<ComputationType>(py4[x0]) * coeff[20] + |
| convert<ComputationType>(py4[x1]) * coeff[21] + |
| convert<ComputationType>(py4[x2]) * coeff[22] + |
| convert<ComputationType>(py4[x3]) * coeff[23] + |
| convert<ComputationType>(py4[x4]) * coeff[24]; |
| px = clamp(px + 0.5f, 0.f, 255.f); |
| *out = convert<InputOutputType>(px); |
| } |
| |
| #ifdef ANDROID_RENDERSCRIPT_TOOLKIT_SUPPORTS_FLOAT |
| template <typename InputOutputType> |
| static void ConvolveOneF(uint32_t x, InputOutputType* out, const InputOutputType* py0, |
| const InputOutputType* py1, const InputOutputType* py2, |
| const InputOutputType* py3, const InputOutputType* py4, const float* coeff, |
| int32_t width) { |
| uint32_t x0 = std::max((int32_t)x - 2, 0); |
| uint32_t x1 = std::max((int32_t)x - 1, 0); |
| uint32_t x2 = x; |
| uint32_t x3 = std::min((int32_t)x + 1, width - 1); |
| uint32_t x4 = std::min((int32_t)x + 2, width - 1); |
| |
| InputOutputType px = py0[x0] * coeff[0] + py0[x1] * coeff[1] + py0[x2] * coeff[2] + |
| py0[x3] * coeff[3] + py0[x4] * coeff[4] + |
| |
| py1[x0] * coeff[5] + py1[x1] * coeff[6] + py1[x2] * coeff[7] + |
| py1[x3] * coeff[8] + py1[x4] * coeff[9] + |
| |
| py2[x0] * coeff[10] + py2[x1] * coeff[11] + py2[x2] * coeff[12] + |
| py2[x3] * coeff[13] + py2[x4] * coeff[14] + |
| |
| py3[x0] * coeff[15] + py3[x1] * coeff[16] + py3[x2] * coeff[17] + |
| py3[x3] * coeff[18] + py3[x4] * coeff[19] + |
| |
| py4[x0] * coeff[20] + py4[x1] * coeff[21] + py4[x2] * coeff[22] + |
| py4[x3] * coeff[23] + py4[x4] * coeff[24]; |
| *out = px; |
| } |
| #endif // ANDROID_RENDERSCRIPT_TOOLKIT_SUPPORTS_FLOAT |
| |
| /** |
| * This function convolves one line. |
| * |
| * @param pout Where to place the next output. |
| * @param xstart Index in the X direction of where to start. |
| * @param xend End index |
| * @param ppy0 Points to the start of the line two above. |
| * @param ppy1 Points to the start of the line one above. |
| * @param ppy2 Points to the start of the current line. |
| * @param ppy3 Points to the start of the line one below. |
| * @param ppy4 Points to the start of the line two below. |
| */ |
| void Convolve5x5Task::kernelU4(uchar* pout, uint32_t x1, uint32_t x2, const uchar* ppy0, |
| const uchar* ppy1, const uchar* ppy2, const uchar* ppy3, |
| const uchar* ppy4) { |
| uchar4* out = (uchar4*)pout; |
| const uchar4* py0 = (const uchar4*)ppy0; |
| const uchar4* py1 = (const uchar4*)ppy1; |
| const uchar4* py2 = (const uchar4*)ppy2; |
| const uchar4* py3 = (const uchar4*)ppy3; |
| const uchar4* py4 = (const uchar4*)ppy4; |
| |
| while ((x1 < x2) && (x1 < 2)) { |
| ConvolveOneU<uchar4, float4>(x1, out, py0, py1, py2, py3, py4, mFp, mSizeX); |
| out++; |
| x1++; |
| } |
| #if defined(ARCH_X86_HAVE_SSSE3) |
| // for x86 SIMD, require minimum of 7 elements (4 for SIMD, |
| // 3 for end boundary where x may hit the end boundary) |
| if (mUsesSimd && ((x1 + 6) < x2)) { |
| // subtract 3 for end boundary |
| uint32_t len = (x2 - x1 - 3) >> 2; |
| rsdIntrinsicConvolve5x5_K(out, py0 + x1 - 2, py1 + x1 - 2, py2 + x1 - 2, py3 + x1 - 2, |
| py4 + x1 - 2, mIp, len); |
| out += len << 2; |
| x1 += len << 2; |
| } |
| #endif |
| |
| #if defined(ARCH_ARM_USE_INTRINSICS) |
| if (mUsesSimd && ((x1 + 3) < x2)) { |
| uint32_t len = (x2 - x1 - 3) >> 1; |
| rsdIntrinsicConvolve5x5_K(out, py0 + x1 - 2, py1 + x1 - 2, py2 + x1 - 2, py3 + x1 - 2, |
| py4 + x1 - 2, mIp, len); |
| out += len << 1; |
| x1 += len << 1; |
| } |
| #endif |
| |
| while (x1 < x2) { |
| ConvolveOneU<uchar4, float4>(x1, out, py0, py1, py2, py3, py4, mFp, mSizeX); |
| out++; |
| x1++; |
| } |
| } |
| |
| #ifdef ANDROID_RENDERSCRIPT_TOOLKIT_SUPPORTS_FLOAT |
| // This will need more cleanup before it can be used. |
| void Convolve5x5Task::kernelF4(const ConvolveInfo* info, float4* out, |
| uint32_t xstart, uint32_t xend, uint32_t currentY) { |
| const uchar* pin = (const uchar*)info->in; |
| const size_t stride = info->stride; |
| |
| uint32_t y0 = std::max((int32_t)currentY - 2, 0); |
| uint32_t y1 = std::max((int32_t)currentY - 1, 0); |
| uint32_t y2 = currentY; |
| uint32_t y3 = std::min((int32_t)currentY + 1, sizeY); |
| uint32_t y4 = std::min((int32_t)currentY + 2, sizeY); |
| |
| const float4* py0 = (const float4*)(pin + stride * y0); |
| const float4* py1 = (const float4*)(pin + stride * y1); |
| const float4* py2 = (const float4*)(pin + stride * y2); |
| const float4* py3 = (const float4*)(pin + stride * y3); |
| const float4* py4 = (const float4*)(pin + stride * y4); |
| |
| for (uint32_t x = xstart; x < xend; x++, out++) { |
| ConvolveOneF<float4>(x, out, py0, py1, py2, py3, py4, mFp, sizeX); |
| } |
| } |
| |
| void RsdCpuScriptIntrinsicConvolve5x5_kernelF2(const ConvolveInfo* info, float2* out, |
| uint32_t xstart, uint32_t xend, uint32_t currentY) { |
| const uchar* pin = (const uchar*)info->in; |
| const size_t stride = info->stride; |
| |
| uint32_t y0 = std::max((int32_t)currentY - 2, 0); |
| uint32_t y1 = std::max((int32_t)currentY - 1, 0); |
| uint32_t y2 = currentY; |
| uint32_t y3 = std::min((int32_t)currentY + 1, sizeY); |
| uint32_t y4 = std::min((int32_t)currentY + 2, sizeY); |
| |
| const float2* py0 = (const float2*)(pin + stride * y0); |
| const float2* py1 = (const float2*)(pin + stride * y1); |
| const float2* py2 = (const float2*)(pin + stride * y2); |
| const float2* py3 = (const float2*)(pin + stride * y3); |
| const float2* py4 = (const float2*)(pin + stride * y4); |
| |
| for (uint32_t x = xstart; x < xend; x++, out++) { |
| ConvolveOneF<float2>(x, out, py0, py1, py2, py3, py4, mFp, sizeX); |
| } |
| } |
| |
| void RsdCpuScriptIntrinsicConvolve5x5_kernelF1(const ConvolveInfo* info, float* out, |
| uint32_t xstart, uint32_t xend, uint32_t currentY) { |
| const uchar* pin = (const uchar*)info->in; |
| const size_t stride = info->stride; |
| |
| uint32_t y0 = std::max((int32_t)currentY - 2, 0); |
| uint32_t y1 = std::max((int32_t)currentY - 1, 0); |
| uint32_t y2 = currentY; |
| uint32_t y3 = std::min((int32_t)currentY + 1, sizeY); |
| uint32_t y4 = std::min((int32_t)currentY + 2, sizeY); |
| |
| const float* py0 = (const float*)(pin + stride * y0); |
| const float* py1 = (const float*)(pin + stride * y1); |
| const float* py2 = (const float*)(pin + stride * y2); |
| const float* py3 = (const float*)(pin + stride * y3); |
| const float* py4 = (const float*)(pin + stride * y4); |
| |
| for (uint32_t x = xstart; x < xend; x++, out++) { |
| ConvolveOneF<float>(x, out, py0, py1, py2, py3, py4, mFp, sizeX); |
| } |
| } |
| #endif // ANDROID_RENDERSCRIPT_TOOLKIT_SUPPORTS_FLOAT |
| |
| template <typename InputOutputType, typename ComputationType> |
| static void convolveU(const uchar* pin, uchar* pout, size_t vectorSize, size_t sizeX, size_t sizeY, |
| size_t startX, size_t startY, size_t endX, size_t endY, float* mFp) { |
| const size_t stride = vectorSize * sizeX; |
| for (size_t y = startY; y < endY; y++) { |
| uint32_t y0 = std::max((int32_t)y - 2, 0); |
| uint32_t y1 = std::max((int32_t)y - 1, 0); |
| uint32_t y2 = y; |
| uint32_t y3 = std::min((int32_t)y + 1, (int32_t)(sizeY - 1)); |
| uint32_t y4 = std::min((int32_t)y + 2, (int32_t)(sizeY - 1)); |
| |
| size_t offset = (y * sizeX + startX) * vectorSize; |
| InputOutputType* px = (InputOutputType*)(pout + offset); |
| InputOutputType* py0 = (InputOutputType*)(pin + stride * y0); |
| InputOutputType* py1 = (InputOutputType*)(pin + stride * y1); |
| InputOutputType* py2 = (InputOutputType*)(pin + stride * y2); |
| InputOutputType* py3 = (InputOutputType*)(pin + stride * y3); |
| InputOutputType* py4 = (InputOutputType*)(pin + stride * y4); |
| for (uint32_t x = startX; x < endX; x++, px++) { |
| ConvolveOneU<InputOutputType, ComputationType>(x, px, py0, py1, py2, py3, py4, mFp, |
| sizeX); |
| } |
| } |
| } |
| |
| void Convolve5x5Task::convolveU4(const uchar* pin, uchar* pout, size_t vectorSize, size_t sizeX, |
| size_t sizeY, size_t startX, size_t startY, size_t endX, |
| size_t endY) { |
| const size_t stride = paddedSize(vectorSize) * sizeX; |
| for (size_t y = startY; y < endY; y++) { |
| uint32_t y0 = std::max((int32_t)y - 2, 0); |
| uint32_t y1 = std::max((int32_t)y - 1, 0); |
| uint32_t y2 = y; |
| uint32_t y3 = std::min((int32_t)y + 1, (int32_t)(sizeY - 1)); |
| uint32_t y4 = std::min((int32_t)y + 2, (int32_t)(sizeY - 1)); |
| |
| size_t offset = (y * sizeX + startX) * paddedSize(vectorSize); |
| uchar* px = pout + offset; |
| const uchar* py0 = pin + stride * y0; |
| const uchar* py1 = pin + stride * y1; |
| const uchar* py2 = pin + stride * y2; |
| const uchar* py3 = pin + stride * y3; |
| const uchar* py4 = pin + stride * y4; |
| kernelU4(px, startX, endX, py0, py1, py2, py3, py4); |
| } |
| } |
| |
| void Convolve5x5Task::processData(int /* threadIndex */, size_t startX, size_t startY, size_t endX, |
| size_t endY) { |
| // ALOGI("Thread %d start tile from (%zd, %zd) to (%zd, %zd)", threadIndex, startX, startY, |
| // endX, endY); |
| switch (mVectorSize) { |
| case 1: |
| convolveU<uchar, float>((const uchar*)mIn, (uchar*)mOut, mVectorSize, mSizeX, mSizeY, |
| startX, startY, endX, endY, mFp); |
| break; |
| case 2: |
| convolveU<uchar2, float2>((const uchar*)mIn, (uchar*)mOut, mVectorSize, mSizeX, mSizeY, |
| startX, startY, endX, endY, mFp); |
| break; |
| case 3: |
| case 4: |
| convolveU4((const uchar*)mIn, (uchar*)mOut, mVectorSize, mSizeX, mSizeY, startX, startY, |
| endX, endY); |
| break; |
| } |
| } |
| |
| void RenderScriptToolkit::convolve5x5(const void* in, void* out, size_t vectorSize, size_t sizeX, |
| size_t sizeY, const float* coefficients, |
| const Restriction* restriction) { |
| #ifdef ANDROID_RENDERSCRIPT_TOOLKIT_VALIDATE |
| if (!validRestriction(LOG_TAG, sizeX, sizeY, restriction)) { |
| return; |
| } |
| if (vectorSize < 1 || vectorSize > 4) { |
| ALOGE("The vectorSize should be between 1 and 4. %zu provided.", vectorSize); |
| return; |
| } |
| #endif |
| |
| Convolve5x5Task task(in, out, vectorSize, sizeX, sizeY, coefficients, restriction); |
| processor->doTask(&task); |
| } |
| |
| } // namespace renderscript |
| } // namespace android |