blob: a95ff4359a4d33ab5d9ddf7f3068c79a5e15d764 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <math.h>
#include <cstdint>
#include "RenderScriptToolkit.h"
#include "TaskProcessor.h"
#include "Utils.h"
namespace android {
namespace renderscript {
#define LOG_TAG "renderscript.toolkit.Blur"
/**
* Blurs an image or a section of an image.
*
* Our algorithm does two passes: a vertical blur followed by an horizontal blur.
*/
class BlurTask : public Task {
// The image we're blurring.
const uchar* mIn;
// Where we store the blurred image.
uchar* outArray;
// The size of the kernel radius is limited to 25 in ScriptIntrinsicBlur.java.
// So, the max kernel size is 51 (= 2 * 25 + 1).
// Considering SSSE3 case, which requires the size is multiple of 4,
// at least 52 words are necessary. Values outside of the kernel should be 0.
float mFp[104];
uint16_t mIp[104];
// Working area to store the result of the vertical blur, to be used by the horizontal pass.
// There's one area per thread. Since the needed working area may be too large to put on the
// stack, we are allocating it from the heap. To avoid paying the allocation cost for each
// tile, we cache the scratch area here.
std::vector<void*> mScratch; // Pointers to the scratch areas, one per thread.
std::vector<size_t> mScratchSize; // The size in bytes of the scratch areas, one per thread.
// The radius of the blur, in floating point and integer format.
float mRadius;
int mIradius;
void kernelU4(void* outPtr, uint32_t xstart, uint32_t xend, uint32_t currentY,
uint32_t threadIndex);
void kernelU1(void* outPtr, uint32_t xstart, uint32_t xend, uint32_t currentY);
void ComputeGaussianWeights();
// Process a 2D tile of the overall work. threadIndex identifies which thread does the work.
virtual void processData(int threadIndex, size_t startX, size_t startY, size_t endX,
size_t endY) override;
public:
BlurTask(const uint8_t* in, uint8_t* out, size_t sizeX, size_t sizeY, size_t vectorSize,
uint32_t threadCount, float radius, const Restriction* restriction)
: Task{sizeX, sizeY, vectorSize, false, restriction},
mIn{in},
outArray{out},
mScratch{threadCount},
mScratchSize{threadCount},
mRadius{std::min(25.0f, radius)} {
ComputeGaussianWeights();
}
~BlurTask() {
for (size_t i = 0; i < mScratch.size(); i++) {
if (mScratch[i]) {
free(mScratch[i]);
}
}
}
};
void BlurTask::ComputeGaussianWeights() {
memset(mFp, 0, sizeof(mFp));
memset(mIp, 0, sizeof(mIp));
// Compute gaussian weights for the blur
// e is the euler's number
float e = 2.718281828459045f;
float pi = 3.1415926535897932f;
// g(x) = (1 / (sqrt(2 * pi) * sigma)) * e ^ (-x^2 / (2 * sigma^2))
// x is of the form [-radius .. 0 .. radius]
// and sigma varies with the radius.
// Based on some experimental radius values and sigmas,
// we approximately fit sigma = f(radius) as
// sigma = radius * 0.4 + 0.6
// The larger the radius gets, the more our gaussian blur
// will resemble a box blur since with large sigma
// the gaussian curve begins to lose its shape
float sigma = 0.4f * mRadius + 0.6f;
// Now compute the coefficients. We will store some redundant values to save
// some math during the blur calculations precompute some values
float coeff1 = 1.0f / (sqrtf(2.0f * pi) * sigma);
float coeff2 = - 1.0f / (2.0f * sigma * sigma);
float normalizeFactor = 0.0f;
float floatR = 0.0f;
int r;
mIradius = (float)ceil(mRadius) + 0.5f;
for (r = -mIradius; r <= mIradius; r ++) {
floatR = (float)r;
mFp[r + mIradius] = coeff1 * powf(e, floatR * floatR * coeff2);
normalizeFactor += mFp[r + mIradius];
}
// Now we need to normalize the weights because all our coefficients need to add up to one
normalizeFactor = 1.0f / normalizeFactor;
for (r = -mIradius; r <= mIradius; r ++) {
mFp[r + mIradius] *= normalizeFactor;
mIp[r + mIradius] = (uint16_t)(mFp[r + mIradius] * 65536.0f + 0.5f);
}
}
/**
* Vertical blur of a uchar4 line.
*
* @param sizeY Number of cells of the input array in the vertical direction.
* @param out Where to place the computed value.
* @param x Coordinate of the point we're blurring.
* @param y Coordinate of the point we're blurring.
* @param ptrIn Start of the input array.
* @param iStride The size in byte of a row of the input array.
* @param gPtr The gaussian coefficients.
* @param iradius The radius of the blur.
*/
static void OneVU4(uint32_t sizeY, float4* out, int32_t x, int32_t y, const uchar* ptrIn,
int iStride, const float* gPtr, int iradius) {
const uchar *pi = ptrIn + x*4;
float4 blurredPixel = 0;
for (int r = -iradius; r <= iradius; r ++) {
int validY = std::max((y + r), 0);
validY = std::min(validY, (int)(sizeY - 1));
const uchar4 *pvy = (const uchar4 *)&pi[validY * iStride];
float4 pf = convert<float4>(pvy[0]);
blurredPixel += pf * gPtr[0];
gPtr++;
}
out[0] = blurredPixel;
}
/**
* Vertical blur of a uchar1 line.
*
* @param sizeY Number of cells of the input array in the vertical direction.
* @param out Where to place the computed value.
* @param x Coordinate of the point we're blurring.
* @param y Coordinate of the point we're blurring.
* @param ptrIn Start of the input array.
* @param iStride The size in byte of a row of the input array.
* @param gPtr The gaussian coefficients.
* @param iradius The radius of the blur.
*/
static void OneVU1(uint32_t sizeY, float *out, int32_t x, int32_t y,
const uchar *ptrIn, int iStride, const float* gPtr, int iradius) {
const uchar *pi = ptrIn + x;
float blurredPixel = 0;
for (int r = -iradius; r <= iradius; r ++) {
int validY = std::max((y + r), 0);
validY = std::min(validY, (int)(sizeY - 1));
float pf = (float)pi[validY * iStride];
blurredPixel += pf * gPtr[0];
gPtr++;
}
out[0] = blurredPixel;
}
extern "C" void rsdIntrinsicBlurU1_K(uchar *out, uchar const *in, size_t w, size_t h,
size_t p, size_t x, size_t y, size_t count, size_t r, uint16_t const *tab);
extern "C" void rsdIntrinsicBlurU4_K(uchar4 *out, uchar4 const *in, size_t w, size_t h,
size_t p, size_t x, size_t y, size_t count, size_t r, uint16_t const *tab);
#if defined(ARCH_X86_HAVE_SSSE3)
extern void rsdIntrinsicBlurVFU4_K(void *dst, const void *pin, int stride, const void *gptr,
int rct, int x1, int ct);
extern void rsdIntrinsicBlurHFU4_K(void *dst, const void *pin, const void *gptr, int rct, int x1,
int ct);
extern void rsdIntrinsicBlurHFU1_K(void *dst, const void *pin, const void *gptr, int rct, int x1,
int ct);
#endif
/**
* Vertical blur of a line of RGBA, knowing that there's enough rows above and below us to avoid
* dealing with boundary conditions.
*
* @param out Where to store the results. This is the input to the horizontal blur.
* @param ptrIn The input data for this line.
* @param iStride The width of the input.
* @param gPtr The gaussian coefficients.
* @param ct The diameter of the blur.
* @param len How many cells to blur.
* @param usesSimd Whether this processor supports SIMD.
*/
static void OneVFU4(float4 *out, const uchar *ptrIn, int iStride, const float* gPtr, int ct,
int x2, bool usesSimd) {
int x1 = 0;
#if defined(ARCH_X86_HAVE_SSSE3)
if (usesSimd) {
int t = (x2 - x1);
t &= ~1;
if (t) {
rsdIntrinsicBlurVFU4_K(out, ptrIn, iStride, gPtr, ct, x1, x1 + t);
}
x1 += t;
out += t;
ptrIn += t << 2;
}
#else
(void) usesSimd; // Avoid unused parameter warning.
#endif
while(x2 > x1) {
const uchar *pi = ptrIn;
float4 blurredPixel = 0;
const float* gp = gPtr;
for (int r = 0; r < ct; r++) {
float4 pf = convert<float4>(((const uchar4 *)pi)[0]);
blurredPixel += pf * gp[0];
pi += iStride;
gp++;
}
out->xyzw = blurredPixel;
x1++;
out++;
ptrIn+=4;
}
}
/**
* Vertical blur of a line of U_8, knowing that there's enough rows above and below us to avoid
* dealing with boundary conditions.
*
* @param out Where to store the results. This is the input to the horizontal blur.
* @param ptrIn The input data for this line.
* @param iStride The width of the input.
* @param gPtr The gaussian coefficients.
* @param ct The diameter of the blur.
* @param len How many cells to blur.
* @param usesSimd Whether this processor supports SIMD.
*/
static void OneVFU1(float* out, const uchar* ptrIn, int iStride, const float* gPtr, int ct, int len,
bool usesSimd) {
int x1 = 0;
while((len > x1) && (((uintptr_t)ptrIn) & 0x3)) {
const uchar *pi = ptrIn;
float blurredPixel = 0;
const float* gp = gPtr;
for (int r = 0; r < ct; r++) {
float pf = (float)pi[0];
blurredPixel += pf * gp[0];
pi += iStride;
gp++;
}
out[0] = blurredPixel;
x1++;
out++;
ptrIn++;
len--;
}
#if defined(ARCH_X86_HAVE_SSSE3)
if (usesSimd && (len > x1)) {
int t = (len - x1) >> 2;
t &= ~1;
if (t) {
rsdIntrinsicBlurVFU4_K(out, ptrIn, iStride, gPtr, ct, 0, t );
len -= t << 2;
ptrIn += t << 2;
out += t << 2;
}
}
#else
(void) usesSimd; // Avoid unused parameter warning.
#endif
while(len > 0) {
const uchar *pi = ptrIn;
float blurredPixel = 0;
const float* gp = gPtr;
for (int r = 0; r < ct; r++) {
float pf = (float)pi[0];
blurredPixel += pf * gp[0];
pi += iStride;
gp++;
}
out[0] = blurredPixel;
len--;
out++;
ptrIn++;
}
}
/**
* Horizontal blur of a uchar4 line.
*
* @param sizeX Number of cells of the input array in the horizontal direction.
* @param out Where to place the computed value.
* @param x Coordinate of the point we're blurring.
* @param ptrIn The start of the input row from which we're indexing x.
* @param gPtr The gaussian coefficients.
* @param iradius The radius of the blur.
*/
static void OneHU4(uint32_t sizeX, uchar4* out, int32_t x, const float4* ptrIn, const float* gPtr,
int iradius) {
float4 blurredPixel = 0;
for (int r = -iradius; r <= iradius; r ++) {
int validX = std::max((x + r), 0);
validX = std::min(validX, (int)(sizeX - 1));
float4 pf = ptrIn[validX];
blurredPixel += pf * gPtr[0];
gPtr++;
}
out->xyzw = convert<uchar4>(blurredPixel);
}
/**
* Horizontal blur of a uchar line.
*
* @param sizeX Number of cells of the input array in the horizontal direction.
* @param out Where to place the computed value.
* @param x Coordinate of the point we're blurring.
* @param ptrIn The start of the input row from which we're indexing x.
* @param gPtr The gaussian coefficients.
* @param iradius The radius of the blur.
*/
static void OneHU1(uint32_t sizeX, uchar* out, int32_t x, const float* ptrIn, const float* gPtr,
int iradius) {
float blurredPixel = 0;
for (int r = -iradius; r <= iradius; r ++) {
int validX = std::max((x + r), 0);
validX = std::min(validX, (int)(sizeX - 1));
float pf = ptrIn[validX];
blurredPixel += pf * gPtr[0];
gPtr++;
}
out[0] = (uchar)blurredPixel;
}
/**
* Full blur of a line of RGBA data.
*
* @param outPtr Where to store the results
* @param xstart The index of the section we're starting to blur.
* @param xend The end index of the section.
* @param currentY The index of the line we're blurring.
* @param usesSimd Whether this processor supports SIMD.
*/
void BlurTask::kernelU4(void *outPtr, uint32_t xstart, uint32_t xend, uint32_t currentY,
uint32_t threadIndex) {
float4 stackbuf[2048];
float4 *buf = &stackbuf[0];
const uint32_t stride = mSizeX * mVectorSize;
uchar4 *out = (uchar4 *)outPtr;
uint32_t x1 = xstart;
uint32_t x2 = xend;
#if defined(ARCH_ARM_USE_INTRINSICS)
if (mUsesSimd && mSizeX >= 4) {
rsdIntrinsicBlurU4_K(out, (uchar4 const *)(mIn + stride * currentY),
mSizeX, mSizeY,
stride, x1, currentY, x2 - x1, mIradius, mIp + mIradius);
return;
}
#endif
if (mSizeX > 2048) {
if ((mSizeX > mScratchSize[threadIndex]) || !mScratch[threadIndex]) {
// Pad the side of the allocation by one unit to allow alignment later
mScratch[threadIndex] = realloc(mScratch[threadIndex], (mSizeX + 1) * 16);
mScratchSize[threadIndex] = mSizeX;
}
// realloc only aligns to 8 bytes so we manually align to 16.
buf = (float4 *) ((((intptr_t)mScratch[threadIndex]) + 15) & ~0xf);
}
float4 *fout = (float4 *)buf;
int y = currentY;
if ((y > mIradius) && (y < ((int)mSizeY - mIradius))) {
const uchar *pi = mIn + (y - mIradius) * stride;
OneVFU4(fout, pi, stride, mFp, mIradius * 2 + 1, mSizeX, mUsesSimd);
} else {
x1 = 0;
while(mSizeX > x1) {
OneVU4(mSizeY, fout, x1, y, mIn, stride, mFp, mIradius);
fout++;
x1++;
}
}
x1 = xstart;
while ((x1 < (uint32_t)mIradius) && (x1 < x2)) {
OneHU4(mSizeX, out, x1, buf, mFp, mIradius);
out++;
x1++;
}
#if defined(ARCH_X86_HAVE_SSSE3)
if (mUsesSimd) {
if ((x1 + mIradius) < x2) {
rsdIntrinsicBlurHFU4_K(out, buf - mIradius, mFp,
mIradius * 2 + 1, x1, x2 - mIradius);
out += (x2 - mIradius) - x1;
x1 = x2 - mIradius;
}
}
#endif
while(x2 > x1) {
OneHU4(mSizeX, out, x1, buf, mFp, mIradius);
out++;
x1++;
}
}
/**
* Full blur of a line of U_8 data.
*
* @param outPtr Where to store the results
* @param xstart The index of the section we're starting to blur.
* @param xend The end index of the section.
* @param currentY The index of the line we're blurring.
*/
void BlurTask::kernelU1(void *outPtr, uint32_t xstart, uint32_t xend, uint32_t currentY) {
float buf[4 * 2048];
const uint32_t stride = mSizeX * mVectorSize;
uchar *out = (uchar *)outPtr;
uint32_t x1 = xstart;
uint32_t x2 = xend;
#if defined(ARCH_ARM_USE_INTRINSICS)
if (mUsesSimd && mSizeX >= 16) {
// The specialisation for r<=8 has an awkward prefill case, which is
// fiddly to resolve, where starting close to the right edge can cause
// a read beyond the end of input. So avoid that case here.
if (mIradius > 8 || (mSizeX - std::max(0, (int32_t)x1 - 8)) >= 16) {
rsdIntrinsicBlurU1_K(out, mIn + stride * currentY, mSizeX, mSizeY,
stride, x1, currentY, x2 - x1, mIradius, mIp + mIradius);
return;
}
}
#endif
float *fout = (float *)buf;
int y = currentY;
if ((y > mIradius) && (y < ((int)mSizeY - mIradius -1))) {
const uchar *pi = mIn + (y - mIradius) * stride;
OneVFU1(fout, pi, stride, mFp, mIradius * 2 + 1, mSizeX, mUsesSimd);
} else {
x1 = 0;
while(mSizeX > x1) {
OneVU1(mSizeY, fout, x1, y, mIn, stride, mFp, mIradius);
fout++;
x1++;
}
}
x1 = xstart;
while ((x1 < x2) &&
((x1 < (uint32_t)mIradius) || (((uintptr_t)out) & 0x3))) {
OneHU1(mSizeX, out, x1, buf, mFp, mIradius);
out++;
x1++;
}
#if defined(ARCH_X86_HAVE_SSSE3)
if (mUsesSimd) {
if ((x1 + mIradius) < x2) {
uint32_t len = x2 - (x1 + mIradius);
len &= ~3;
// rsdIntrinsicBlurHFU1_K() processes each four float values in |buf| at once, so it
// nees to ensure four more values can be accessed in order to avoid accessing
// uninitialized buffer.
if (len > 4) {
len -= 4;
rsdIntrinsicBlurHFU1_K(out, ((float *)buf) - mIradius, mFp,
mIradius * 2 + 1, x1, x1 + len);
out += len;
x1 += len;
}
}
}
#endif
while(x2 > x1) {
OneHU1(mSizeX, out, x1, buf, mFp, mIradius);
out++;
x1++;
}
}
void BlurTask::processData(int threadIndex, size_t startX, size_t startY, size_t endX,
size_t endY) {
for (size_t y = startY; y < endY; y++) {
void* outPtr = outArray + (mSizeX * y + startX) * mVectorSize;
if (mVectorSize == 4) {
kernelU4(outPtr, startX, endX, y, threadIndex);
} else {
kernelU1(outPtr, startX, endX, y);
}
}
}
void RenderScriptToolkit::blur(const uint8_t* in, uint8_t* out, size_t sizeX, size_t sizeY,
size_t vectorSize, int radius, const Restriction* restriction) {
#ifdef ANDROID_RENDERSCRIPT_TOOLKIT_VALIDATE
if (!validRestriction(LOG_TAG, sizeX, sizeY, restriction)) {
return;
}
if (radius <= 0 || radius > 25) {
ALOGE("The radius should be between 1 and 25. %d provided.", radius);
}
if (vectorSize != 1 && vectorSize != 4) {
ALOGE("The vectorSize should be 1 or 4. %zu provided.", vectorSize);
}
#endif
BlurTask task(in, out, sizeX, sizeY, vectorSize, processor->getNumberOfThreads(), radius,
restriction);
processor->doTask(&task);
}
} // namespace renderscript
} // namespace android