blob: 33011602e90b7ce32293e0d321bd3dfcea3371b1 [file] [log] [blame]
/*
* Copyright 2017, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MODULE_H
#define MODULE_H
#include <iostream>
#include <map>
#include <vector>
#include "core_defs.h"
#include "entity.h"
#include "instructions.h"
#include "stl_util.h"
#include "types_generated.h"
#include "visitor.h"
namespace android {
namespace spirit {
class Builder;
class AnnotationSection;
class CapabilityInst;
class DebugInfoSection;
class ExtensionInst;
class ExtInstImportInst;
class EntryPointInst;
class ExecutionModeInst;
class EntryPointDefinition;
class FunctionDeclaration;
class FunctionDefinition;
class GlobalSection;
class InputWordStream;
class Instruction;
class MemoryModelInst;
union VersionNumber {
struct {
uint8_t mLowZero;
uint8_t mMinorNumber;
uint8_t mMajorNumber;
uint8_t mHighZero;
} mMajorMinor;
uint8_t mBytes[4];
uint32_t mWord;
};
class Module : public Entity {
public:
static Module *getCurrentModule();
uint32_t nextId() { return mNextId++; }
Module();
Module(Builder *b);
virtual ~Module() {}
bool DeserializeInternal(InputWordStream &IS) override;
void Serialize(OutputWordStream &OS) const override;
void SerializeHeader(OutputWordStream &OS) const;
void registerId(uint32_t id, Instruction *inst) {
mIdTable.insert(std::make_pair(id, inst));
}
void initialize();
bool resolveIds();
void accept(IVisitor *v) override {
for (auto cap : mCapabilities) {
v->visit(cap);
}
for (auto ext : mExtensions) {
v->visit(ext);
}
for (auto imp : mExtInstImports) {
v->visit(imp);
}
v->visit(mMemoryModel.get());
for (auto entry : mEntryPoints) {
v->visit(entry);
}
for (auto mode : mExecutionModes) {
v->visit(mode);
}
v->visit(mDebugInfo.get());
if (mAnnotations) {
v->visit(mAnnotations.get());
}
if (mGlobals) {
v->visit(mGlobals.get());
}
for (auto def : mFunctionDefinitions) {
v->visit(def);
}
}
static std::ostream &errs() { return std::cerr; }
Module *addCapability(Capability cap);
Module *setMemoryModel(AddressingModel am, MemoryModel mm);
Module *addExtInstImport(const char *extName);
Module *addSource(SourceLanguage lang, int version);
Module *addSourceExtension(const char *ext);
Module *addString(const char *ext);
Module *addEntryPoint(EntryPointDefinition *entry);
ExtInstImportInst *getGLExt() const { return mGLExt; }
GlobalSection *getGlobalSection();
Instruction *lookupByName(const char *) const;
FunctionDefinition *
getFunctionDefinitionFromInstruction(FunctionInst *) const;
FunctionDefinition *lookupFunctionDefinitionByName(const char *name) const;
// Find the name of the instruction, e.g., the name of a function (OpFunction
// instruction).
// The returned string is owned by the OpName instruction, whose first operand
// is the instruction being queried on.
const char *lookupNameByInstruction(const Instruction *) const;
VariableInst *getInvocationId();
VariableInst *getNumWorkgroups();
// Adds a struct type built somewhere else.
Module *addStructType(TypeStructInst *structType);
Module *addVariable(VariableInst *var);
// Methods to look up types. Create them if not found.
TypeVoidInst *getVoidType();
TypeIntInst *getIntType(int bits, bool isSigned = true);
TypeIntInst *getUnsignedIntType(int bits);
TypeFloatInst *getFloatType(int bits);
TypeVectorInst *getVectorType(Instruction *componentType, int width);
TypePointerInst *getPointerType(StorageClass storage,
Instruction *pointeeType);
TypeRuntimeArrayInst *getRuntimeArrayType(Instruction *elementType);
// This implies that struct types are strictly structural equivalent, i.e.,
// two structs are equivalent i.f.f. their fields are equivalent, recursively.
TypeStructInst *getStructType(Instruction *fieldType[], int numField);
TypeStructInst *getStructType(const std::vector<Instruction *> &fieldType);
TypeStructInst *getStructType(Instruction *field0Type);
TypeStructInst *getStructType(Instruction *field0Type,
Instruction *field1Type);
TypeStructInst *getStructType(Instruction *field0Type,
Instruction *field1Type,
Instruction *field2Type);
// TODO: Can function types of different decorations be considered the same?
TypeFunctionInst *getFunctionType(Instruction *retType,
Instruction *const argType[],
size_t numArg);
TypeFunctionInst *getFunctionType(Instruction *retType,
const std::vector<Instruction *> &argTypes);
size_t getSize(TypeVoidInst *voidTy);
size_t getSize(TypeIntInst *intTy);
size_t getSize(TypeFloatInst *fpTy);
size_t getSize(TypeVectorInst *vTy);
size_t getSize(TypePointerInst *ptrTy);
size_t getSize(TypeStructInst *structTy);
size_t getSize(TypeFunctionInst *funcTy);
size_t getSize(Instruction *inst);
ConstantInst *getConstant(TypeIntInst *type, int32_t value);
ConstantInst *getConstant(TypeIntInst *type, uint32_t value);
ConstantInst *getConstant(TypeFloatInst *type, float value);
ConstantCompositeInst *getConstantComposite(TypeVectorInst *type,
ConstantInst *components[],
size_t width);
ConstantCompositeInst *
getConstantComposite(Instruction *type,
const std::vector<ConstantInst *> &components);
ConstantCompositeInst *getConstantComposite(Instruction *type,
ConstantInst *comp0,
ConstantInst *comp1);
ConstantCompositeInst *getConstantComposite(TypeVectorInst *type,
ConstantInst *comp0,
ConstantInst *comp1,
ConstantInst *comp2);
ConstantCompositeInst *getConstantComposite(TypeVectorInst *type,
ConstantInst *comp0,
ConstantInst *comp1,
ConstantInst *comp2,
ConstantInst *comp3);
Module *addFunctionDefinition(FunctionDefinition *func);
void consolidateAnnotations();
private:
static Module *mInstance;
uint32_t mNextId;
std::map<uint32_t, Instruction *> mIdTable;
uint32_t mMagicNumber;
VersionNumber mVersion;
uint32_t mGeneratorMagicNumber;
uint32_t mBound;
uint32_t mReserved;
std::vector<CapabilityInst *> mCapabilities;
std::vector<ExtensionInst *> mExtensions;
std::vector<ExtInstImportInst *> mExtInstImports;
std::unique_ptr<MemoryModelInst> mMemoryModel;
std::vector<EntryPointInst *> mEntryPointInsts;
std::vector<ExecutionModeInst *> mExecutionModes;
std::vector<EntryPointDefinition *> mEntryPoints;
std::unique_ptr<DebugInfoSection> mDebugInfo;
std::unique_ptr<AnnotationSection> mAnnotations;
std::unique_ptr<GlobalSection> mGlobals;
std::vector<FunctionDefinition *> mFunctionDefinitions;
ExtInstImportInst *mGLExt;
ContainerDeleter<std::vector<CapabilityInst *>> mCapabilitiesDeleter;
ContainerDeleter<std::vector<ExtensionInst *>> mExtensionsDeleter;
ContainerDeleter<std::vector<ExtInstImportInst *>> mExtInstImportsDeleter;
ContainerDeleter<std::vector<EntryPointInst *>> mEntryPointInstsDeleter;
ContainerDeleter<std::vector<ExecutionModeInst *>> mExecutionModesDeleter;
ContainerDeleter<std::vector<EntryPointDefinition *>> mEntryPointsDeleter;
ContainerDeleter<std::vector<FunctionDefinition *>>
mFunctionDefinitionsDeleter;
};
struct Extent3D {
uint32_t mWidth;
uint32_t mHeight;
uint32_t mDepth;
};
class EntryPointDefinition : public Entity {
public:
EntryPointDefinition() {}
EntryPointDefinition(Builder *builder, ExecutionModel execModel,
FunctionDefinition *func, const char *name);
virtual ~EntryPointDefinition() {
// Nothing to do here since ~Module() will delete entities referenced here
}
void accept(IVisitor *visitor) override {
visitor->visit(mEntryPointInst);
// Do not visit the ExecutionMode instructions here. They are linked here
// for convinience, and for convinience only. They are all grouped, stored,
// and serialized directly in the module in a section right after all
// EntryPoint instructions. Visit them from there.
}
bool DeserializeInternal(InputWordStream &IS) override;
EntryPointDefinition *addToInterface(VariableInst *var);
EntryPointDefinition *addExecutionMode(ExecutionModeInst *mode) {
mExecutionModeInsts.push_back(mode);
return this;
}
const std::vector<ExecutionModeInst *> &getExecutionModes() const {
return mExecutionModeInsts;
}
EntryPointDefinition *setLocalSize(uint32_t width, uint32_t height,
uint32_t depth);
EntryPointDefinition *applyExecutionMode(ExecutionModeInst *mode);
EntryPointInst *getInstruction() const { return mEntryPointInst; }
private:
const char *mName;
FunctionInst *mFunction;
ExecutionModel mExecutionModel;
std::vector<VariableInst *> mInterface;
Extent3D mLocalSize;
EntryPointInst *mEntryPointInst;
std::vector<ExecutionModeInst *> mExecutionModeInsts;
};
class DebugInfoSection : public Entity {
public:
DebugInfoSection() : mSourcesDeleter(mSources), mNamesDeleter(mNames) {}
DebugInfoSection(Builder *b)
: Entity(b), mSourcesDeleter(mSources), mNamesDeleter(mNames) {}
virtual ~DebugInfoSection() {}
bool DeserializeInternal(InputWordStream &IS) override;
DebugInfoSection *addSource(SourceLanguage lang, int version);
DebugInfoSection *addSourceExtension(const char *ext);
DebugInfoSection *addString(const char *str);
Instruction *lookupByName(const char *name) const;
const char *lookupNameByInstruction(const Instruction *) const;
void accept(IVisitor *v) override {
for (auto source : mSources) {
v->visit(source);
}
for (auto name : mNames) {
v->visit(name);
}
}
private:
// (OpString|OpSource|OpSourceExtension|OpSourceContinued)*
std::vector<Instruction *> mSources;
// (OpName|OpMemberName)*
std::vector<Instruction *> mNames;
ContainerDeleter<std::vector<Instruction *>> mSourcesDeleter;
ContainerDeleter<std::vector<Instruction *>> mNamesDeleter;
};
class AnnotationSection : public Entity {
public:
AnnotationSection();
AnnotationSection(Builder *b);
virtual ~AnnotationSection() {}
bool DeserializeInternal(InputWordStream &IS) override;
void accept(IVisitor *v) override {
for (auto inst : mAnnotations) {
v->visit(inst);
}
}
template <typename T> void addAnnotations(T begin, T end) {
mAnnotations.insert<T>(std::end(mAnnotations), begin, end);
}
std::vector<Instruction *>::const_iterator begin() const {
return mAnnotations.begin();
}
std::vector<Instruction *>::const_iterator end() const {
return mAnnotations.end();
}
void clear() { mAnnotations.clear(); }
private:
std::vector<Instruction *> mAnnotations; // OpDecorate, etc.
ContainerDeleter<std::vector<Instruction *>> mAnnotationsDeleter;
};
// Types, constants, and globals
class GlobalSection : public Entity {
public:
GlobalSection();
GlobalSection(Builder *builder);
virtual ~GlobalSection() {}
bool DeserializeInternal(InputWordStream &IS) override;
void accept(IVisitor *v) override {
for (auto inst : mGlobalDefs) {
v->visit(inst);
}
if (mInvocationId) {
v->visit(mInvocationId.get());
}
if (mNumWorkgroups) {
v->visit(mNumWorkgroups.get());
}
}
ConstantInst *getConstant(TypeIntInst *type, int32_t value);
ConstantInst *getConstant(TypeIntInst *type, uint32_t value);
ConstantInst *getConstant(TypeFloatInst *type, float value);
ConstantCompositeInst *getConstantComposite(TypeVectorInst *type,
ConstantInst *components[],
size_t width);
// Methods to look up types. Create them if not found.
TypeVoidInst *getVoidType();
TypeIntInst *getIntType(int bits, bool isSigned = true);
TypeFloatInst *getFloatType(int bits);
TypeVectorInst *getVectorType(Instruction *componentType, int width);
TypePointerInst *getPointerType(StorageClass storage,
Instruction *pointeeType);
TypeRuntimeArrayInst *getRuntimeArrayType(Instruction *elementType);
// This implies that struct types are strictly structural equivalent, i.e.,
// two structs are equivalent i.f.f. their fields are equivalent, recursively.
TypeStructInst *getStructType(Instruction *fieldType[], int numField);
// TypeStructInst *getStructType(const std::vector<Instruction *>
// &fieldTypes);
// TODO: Can function types of different decorations be considered the same?
TypeFunctionInst *getFunctionType(Instruction *retType,
Instruction *const argType[],
size_t numArg);
// TypeStructInst *addStructType(Instruction *fieldType[], int numField);
GlobalSection *addStructType(TypeStructInst *structType);
GlobalSection *addVariable(VariableInst *var);
VariableInst *getInvocationId();
VariableInst *getNumWorkgroups();
private:
// TODO: Add structure to this.
// Separate types, constants, variables, etc.
std::vector<Instruction *> mGlobalDefs;
std::unique_ptr<VariableInst> mInvocationId;
std::unique_ptr<VariableInst> mNumWorkgroups;
ContainerDeleter<std::vector<Instruction *>> mGlobalDefsDeleter;
};
class FunctionDeclaration : public Entity {
public:
virtual ~FunctionDeclaration() {}
bool DeserializeInternal(InputWordStream &IS) override;
void accept(IVisitor *v) override {
v->visit(mFunc);
for (auto param : mParams) {
v->visit(param);
}
v->visit(mFuncEnd);
}
private:
FunctionInst *mFunc;
std::vector<FunctionParameterInst *> mParams;
FunctionEndInst *mFuncEnd;
};
class Block : public Entity {
public:
Block() {}
Block(Builder *b) : Entity(b) {}
virtual ~Block() {}
bool DeserializeInternal(InputWordStream &IS) override;
void accept(IVisitor *v) override {
for (auto inst : mInsts) {
v->visit(inst);
}
}
Block *addInstruction(Instruction *inst) {
mInsts.push_back(inst);
return this;
}
private:
std::vector<Instruction *> mInsts;
};
class FunctionDefinition : public Entity {
public:
FunctionDefinition();
FunctionDefinition(Builder *builder, FunctionInst *func,
FunctionEndInst *end);
virtual ~FunctionDefinition() {}
bool DeserializeInternal(InputWordStream &IS) override;
void accept(IVisitor *v) override {
v->visit(mFunc.get());
for (auto param : mParams) {
v->visit(param);
}
for (auto block : mBlocks) {
v->visit(block);
}
v->visit(mFuncEnd.get());
}
FunctionDefinition *addBlock(Block *b) {
mBlocks.push_back(b);
return this;
}
FunctionInst *getInstruction() const { return mFunc.get(); }
FunctionParameterInst *getParameter(uint32_t i) const { return mParams[i]; }
Instruction *getReturnType() const;
private:
std::unique_ptr<FunctionInst> mFunc;
std::vector<FunctionParameterInst *> mParams;
std::vector<Block *> mBlocks;
std::unique_ptr<FunctionEndInst> mFuncEnd;
ContainerDeleter<std::vector<FunctionParameterInst *>> mParamsDeleter;
ContainerDeleter<std::vector<Block *>> mBlocksDeleter;
};
} // namespace spirit
} // namespace android
#endif // MODULE_H