blob: 51339a2b2fb53772a7383b5d51846089ee1b63d5 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cstdint>
#include "RenderScriptToolkit.h"
#include "TaskProcessor.h"
#include "Utils.h"
#define LOG_TAG "renderscript.toolkit.Convolve3x3"
namespace android {
namespace renderscript {
extern "C" void rsdIntrinsicConvolve3x3_K(void* dst, const void* y0, const void* y1, const void* y2,
const int16_t* coef, uint32_t count);
class Convolve3x3Task : public Task {
const void* mIn;
void* mOut;
// Even though we have exactly 9 coefficients, store them in an array of size 16 so that
// the SIMD instructions can load them in chunks multiple of 8.
float mFp[16];
int16_t mIp[16];
void kernelU4(uchar* out, uint32_t xstart, uint32_t xend, const uchar* py0, const uchar* py1,
const uchar* py2);
void convolveU4(const uchar* pin, uchar* pout, size_t vectorSize, size_t sizeX, size_t sizeY,
size_t startX, size_t startY, size_t endX, size_t endY);
// Process a 2D tile of the overall work. threadIndex identifies which thread does the work.
virtual void processData(int threadIndex, size_t startX, size_t startY, size_t endX,
size_t endY) override;
public:
Convolve3x3Task(const void* in, void* out, size_t vectorSize, size_t sizeX, size_t sizeY,
const float* coefficients, const Restriction* restriction)
: Task{sizeX, sizeY, vectorSize, false, restriction}, mIn{in}, mOut{out} {
for (int ct = 0; ct < 9; ct++) {
mFp[ct] = coefficients[ct];
if (mFp[ct] >= 0) {
mIp[ct] = (int16_t)(mFp[ct] * 256.f + 0.5f);
} else {
mIp[ct] = (int16_t)(mFp[ct] * 256.f - 0.5f);
}
}
}
};
/**
* Computes one convolution and stores the result in the output. This is used for uchar, uchar2,
* uchar3, and uchar4 vectors.
*
* @tparam InputOutputType Type of the input and output arrays. A vector type, e.g. uchar4.
* @tparam ComputationType Type we use for the intermediate computations.
* @param x The index in the row of the value we'll convolve.
* @param out The location in the output array where we store the value.
* @param py0 The start of the top row.
* @param py1 The start of the middle row.
* @param py2 The start of the bottom row.
* @param coeff Pointer to the float coefficients, in row major format.
* @param sizeX The number of cells of one row.
*/
template <typename InputOutputType, typename ComputationType>
static void convolveOneU(uint32_t x, InputOutputType* out, const InputOutputType* py0,
const InputOutputType* py1, const InputOutputType* py2, const float* coeff,
int32_t sizeX) {
uint32_t x1 = std::max((int32_t)x - 1, 0);
uint32_t x2 = std::min((int32_t)x + 1, sizeX - 1);
ComputationType px = convert<ComputationType>(py0[x1]) * coeff[0] +
convert<ComputationType>(py0[x]) * coeff[1] +
convert<ComputationType>(py0[x2]) * coeff[2] +
convert<ComputationType>(py1[x1]) * coeff[3] +
convert<ComputationType>(py1[x]) * coeff[4] +
convert<ComputationType>(py1[x2]) * coeff[5] +
convert<ComputationType>(py2[x1]) * coeff[6] +
convert<ComputationType>(py2[x]) * coeff[7] +
convert<ComputationType>(py2[x2]) * coeff[8];
px = clamp(px + 0.5f, 0.f, 255.f);
*out = convert<InputOutputType>(px);
}
#ifdef ANDROID_RENDERSCRIPT_TOOLKIT_SUPPORTS_FLOAT
/**
* Computes one convolution and stores the result in the output. This is used for float, float2,
* float3, and float4 vectors.
*
* @tparam InputOutputType Type of the input and output arrays. A vector type, e.g. float4.
* @param x The index in the row of the value we'll convolve.
* @param out The location in the output array where we store the value.
* @param py0 The start of the top row.
* @param py1 The start of the middle row.
* @param py2 The start of the bottom row.
* @param coeff Pointer to the float coefficients, in row major format.
* @param sizeX The number of cells of one row.
*/
template <typename InputOutputType>
static void ConvolveOneF(uint32_t x, InputOutputType* out, const InputOutputType* py0,
const InputOutputType* py1, const InputOutputType* py2, const float* coeff,
int32_t sizeX) {
uint32_t x1 = std::max((int32_t)x - 1, 0);
uint32_t x2 = std::min((int32_t)x + 1, sizeX - 1);
*out = (py0[x1] * coeff[0]) + (py0[x] * coeff[1]) + (py0[x2] * coeff[2]) +
(py1[x1] * coeff[3]) + (py1[x] * coeff[4]) + (py1[x2] * coeff[5]) +
(py2[x1] * coeff[6]) + (py2[x] * coeff[7]) + (py2[x2] * coeff[8]);
}
#endif // ANDROID_RENDERSCRIPT_TOOLKIT_SUPPORTS_FLOAT
/**
* This function convolves one line.
*
* @param pout Where to place the next output.
* @param xstart Index in the X direction of where to start.
* @param xend End index
* @param ppy0 Points to the start of the previous line.
* @param ppy1 Points to the start of the current line.
* @param ppy2 Points to the start of the next line.
*/
void Convolve3x3Task::kernelU4(uchar* pout, uint32_t xstart, uint32_t xend, const uchar* ppy0,
const uchar* ppy1, const uchar* ppy2) {
uchar4* out = (uchar4*)pout;
const uchar4* py0 = (const uchar4*)ppy0;
const uchar4* py1 = (const uchar4*)ppy1;
const uchar4* py2 = (const uchar4*)ppy2;
uint32_t x1 = xstart;
uint32_t x2 = xend;
if (x1 == 0) {
convolveOneU<uchar4, float4>(0, out, py0, py1, py2, mFp, mSizeX);
x1++;
out++;
}
if (x2 > x1) {
#if defined(ARCH_ARM_USE_INTRINSICS) || defined(ARCH_X86_HAVE_SSSE3)
if (mUsesSimd) {
int32_t len = (x2 - x1 - 1) >> 1;
if (len > 0) {
rsdIntrinsicConvolve3x3_K(out, &py0[x1 - 1], &py1[x1 - 1], &py2[x1 - 1], mIp, len);
x1 += len << 1;
out += len << 1;
}
}
#endif
while (x1 != x2) {
convolveOneU<uchar4, float4>(x1, out, py0, py1, py2, mFp, mSizeX);
out++;
x1++;
}
}
}
#ifdef ANDROID_RENDERSCRIPT_TOOLKIT_SUPPORTS_FLOAT
template <typename T>
void RsdCpuScriptIntrinsicConvolve3x3_kernelF(void* in, T* out, uint32_t xstart, uint32_t xend,
uint32_t currentY, size_t sizeX, size_t sizeY,
size_t vectorSize, float* fp) {
const uchar* pin = (const uchar*)in;
const size_t stride = sizeX * vectorSize * 4; // float takes 4 bytes
uint32_t y1 = std::min((int32_t)currentY + 1, (int32_t)(sizeY - 1));
uint32_t y2 = std::max((int32_t)currentY - 1, 0);
const T* py0 = (const T*)(pin + stride * y2);
const T* py1 = (const T*)(pin + stride * currentY);
const T* py2 = (const T*)(pin + stride * y1);
for (uint32_t x = xstart; x < xend; x++, out++) {
ConvolveOneF<T>(x, out, py0, py1, py2, fp, sizeX);
}
}
#endif // ANDROID_RENDERSCRIPT_TOOLKIT_SUPPORTS_FLOAT
template <typename InputOutputType, typename ComputationType>
static void convolveU(const uchar* pin, uchar* pout, size_t vectorSize, size_t sizeX, size_t sizeY,
size_t startX, size_t startY, size_t endX, size_t endY, float* fp) {
const size_t stride = vectorSize * sizeX;
for (size_t y = startY; y < endY; y++) {
uint32_t y1 = std::min((int32_t)y + 1, (int32_t)(sizeY - 1));
uint32_t y2 = std::max((int32_t)y - 1, 0);
size_t offset = (y * sizeX + startX) * vectorSize;
InputOutputType* px = (InputOutputType*)(pout + offset);
InputOutputType* py0 = (InputOutputType*)(pin + stride * y2);
InputOutputType* py1 = (InputOutputType*)(pin + stride * y);
InputOutputType* py2 = (InputOutputType*)(pin + stride * y1);
for (uint32_t x = startX; x < endX; x++, px++) {
convolveOneU<InputOutputType, ComputationType>(x, px, py0, py1, py2, fp, sizeX);
}
}
}
void Convolve3x3Task::convolveU4(const uchar* pin, uchar* pout, size_t vectorSize, size_t sizeX,
size_t sizeY, size_t startX, size_t startY, size_t endX,
size_t endY) {
const size_t stride = paddedSize(vectorSize) * sizeX;
for (size_t y = startY; y < endY; y++) {
uint32_t y1 = std::min((int32_t)y + 1, (int32_t)(sizeY - 1));
uint32_t y2 = std::max((int32_t)y - 1, 0);
size_t offset = (y * sizeX + startX) * paddedSize(vectorSize);
uchar* px = pout + offset;
const uchar* py0 = pin + stride * y2;
const uchar* py1 = pin + stride * y;
const uchar* py2 = pin + stride * y1;
kernelU4(px, startX, endX, py0, py1, py2);
}
}
void Convolve3x3Task::processData(int /* threadIndex */, size_t startX, size_t startY, size_t endX,
size_t endY) {
// ALOGI("Thread %d start tile from (%zd, %zd) to (%zd, %zd)", threadIndex, startX, startY,
// endX, endY);
switch (mVectorSize) {
case 1:
convolveU<uchar, float>((const uchar*)mIn, (uchar*)mOut, mVectorSize, mSizeX, mSizeY,
startX, startY, endX, endY, mFp);
break;
case 2:
convolveU<uchar2, float2>((const uchar*)mIn, (uchar*)mOut, mVectorSize, mSizeX, mSizeY,
startX, startY, endX, endY, mFp);
break;
case 3:
case 4:
convolveU4((const uchar*)mIn, (uchar*)mOut, mVectorSize, mSizeX, mSizeY, startX, startY,
endX, endY);
break;
}
}
void RenderScriptToolkit::convolve3x3(const void* in, void* out, size_t vectorSize, size_t sizeX,
size_t sizeY, const float* coefficients,
const Restriction* restriction) {
#ifdef ANDROID_RENDERSCRIPT_TOOLKIT_VALIDATE
if (!validRestriction(LOG_TAG, sizeX, sizeY, restriction)) {
return;
}
if (vectorSize < 1 || vectorSize > 4) {
ALOGE("The vectorSize should be between 1 and 4. %zu provided.", vectorSize);
return;
}
#endif
Convolve3x3Task task(in, out, vectorSize, sizeX, sizeY, coefficients, restriction);
processor->doTask(&task);
}
} // namespace renderscript
} // namespace android