blob: 5c3bce41a9245b91ac08f062ab911191d1df692e [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ENTRY(f) .text; .align 4; .globl f; .type f,#function; f: .fnstart
#define END(f) .fnend; .size f, .-f;
.eabi_attribute 25,1 @Tag_ABI_align8_preserved
.arm
/* Perform the actual YuvToRGB conversion in a macro, from register to
* register. This macro will be called from within several different wrapper
* variants for different data layouts. Y data starts in q8, but with the even
* and odd bytes split into d16 and d17 respectively. U and V are in d20
* and d21. Working constants are pre-loaded into q13-q15, and q3 is
* pre-loaded with a constant 0xff alpha channel.
*
* The complicated arithmetic is the result of refactoring the original
* equations to avoid 16-bit overflow without losing any precision.
*/
.macro yuvkern
vmov.i8 d15, #149
vmull.u8 q1, d16, d15 // g0 = y0 * 149
vmull.u8 q5, d17, d15 // g1 = y1 * 149
vmov.i8 d14, #50
vmov.i8 d15, #104
vmull.u8 q8, d20, d14 // g2 = u * 50 + v * 104
vmlal.u8 q8, d21, d15
vshr.u8 d14, d21, #1
vaddw.u8 q0, q1, d14 // r0 = y0 * 149 + (v >> 1)
vaddw.u8 q4, q5, d14 // r1 = y1 * 149 + (v >> 1)
vshll.u8 q7, d20, #2
vadd.u16 q2, q1, q7 // b0 = y0 * 149 + (u << 2)
vadd.u16 q6, q5, q7 // b1 = y1 * 149 + (u << 2)
vmov.i8 d14, #204
vmov.i8 d15, #254
vmull.u8 q11, d21, d14 // r2 = v * 204
vmull.u8 q12, d20, d15 // b2 = u * 254
vhadd.u16 q0, q11 // r0 = (r0 + r2) >> 1
vhadd.u16 q4, q11 // r1 = (r1 + r2) >> 1
vqadd.u16 q1, q14 // g0 = satu16(g0 + (-16 * 149 + 128 * 50 + 128 * 104) >> 0)
vqadd.u16 q5, q14 // g1 = satu16(g1 + (-16 * 149 + 128 * 50 + 128 * 104) >> 0)
vhadd.u16 q2, q12 // b0 = (b0 + b2) >> 1
vhadd.u16 q6, q12 // b1 = (b1 + b2) >> 1
vqsub.u16 q0, q13 // r0 = satu16(r0 - (16 * 149 + (128 >> 1) + 128 * 204) >> 1)
vqsub.u16 q4, q13 // r1 = satu16(r1 - (16 * 149 + (128 >> 1) + 128 * 204) >> 1)
vqsub.u16 q1, q8 // g0 = satu16(g0 - g2)
vqsub.u16 q5, q8 // g1 = satu16(g1 - g2)
vqsub.u16 q2, q15 // b0 = satu16(b0 - (16 * 149 + (128 << 2) + 128 * 254) >> 1)
vqsub.u16 q6, q15 // b1 = satu16(b1 - (16 * 149 + (128 << 2) + 128 * 254) >> 1)
vqrshrn.u16 d0, q0, #6
vqrshrn.u16 d1, q1, #7
vqrshrn.u16 d2, q4, #6
vqrshrn.u16 d3, q5, #7
vqrshrn.u16 d4, q2, #6
vqrshrn.u16 d5, q6, #6
vzip.u8 q0, q1
vzip.u8 d4, d5
.endm
/* Define the wrapper code which will load and store the data, iterate the
* correct number of times, and safely handle the remainder at the end of the
* loop. Some sections of code are switched out depending on the data packing
* being handled.
*/
.macro wrap_line kernel, interleaved=0, swapuv=0
movw r5, #((16 * 149 + (128 >> 1) + 128 * 204) >> 1)
vdup.i16 q13, r5
movw r5, #((-16 * 149 + 128 * 50 + 128 * 104) >> 0)
vdup.i16 q14, r5
movw r5, #((16 * 149 + (128 << 2) + 128 * 254) >> 1)
vdup.i16 q15, r5
vmov.i8 q3, #0xff
subs r2, #16
bhs 1f
b 2f
.align 4
1: vld2.u8 {d16,d17}, [r1]!
pld [r1, #256]
.if \interleaved
vld2.u8 {d20,d21}, [r3]!
.if \swapuv
vswp d20, d21
.endif
pld [r3, #256]
.else
vld1.u8 d20, [r3]!
vld1.u8 d21, [r4]!
pld [r3, #128]
pld [r4, #128]
.endif
\kernel
subs r2, #16
vst4.u8 {d0,d2,d4,d6}, [r0]!
vst4.u8 {d1,d3,d5,d7}, [r0]!
bhs 1b
2: adds r2, #16
beq 2f
/* To handle the tail portion of the data (something less than 16
* bytes) load small power-of-two chunks into working registers. It
* doesn't matter where they end up in the register; the same process
* will store them back out using the same positions and the
* interaction between neighbouring pixels is constrained to odd
* boundaries where the load operations don't interfere.
*/
vmov.i8 q8, #0
vmov.i8 q10, #0
tst r2, #8
beq 1f
vld1.u8 d17, [r1]!
.if \interleaved
vld1.u8 d21, [r3]!
.else
vld1.u32 d20[1], [r3]!
vld1.u32 d21[1], [r4]!
.endif
1: tst r2, #4
beq 1f
vld1.u32 d16[1], [r1]!
.if \interleaved
vld1.u32 d20[1], [r3]!
.else
vld1.u16 d20[1], [r3]!
vld1.u16 d21[1], [r4]!
.endif
1: tst r2, #2
beq 1f
vld1.u16 d16[1], [r1]!
.if \interleaved
vld1.u16 d20[1], [r3]!
.else
vld1.u8 d20[1], [r3]!
vld1.u8 d21[1], [r4]!
.endif
1: tst r2, #1
beq 1f
vld1.u8 d16[1], [r1]!
.if \interleaved
vld1.u16 d20[0], [r3]!
.else
vld1.u8 d20[0], [r3]!
vld1.u8 d21[0], [r4]!
.endif
/* One small impediment in the process above is that some of the load
* operations can't perform byte-wise structure deinterleaving at the
* same time as loading only part of a register. So the data is loaded
* linearly and unpacked manually at this point if necessary.
*/
1: vuzp.8 d16, d17
.if \interleaved
vuzp.8 d20, d21
.if \swapuv
vswp d20, d21
.endif
.endif
\kernel
/* As above but with the output; structured stores for partial vectors
* aren't available, so the data is re-packed first and stored linearly.
*/
vzip.8 q0, q2
vzip.8 q1, q3
vzip.8 q0, q1
vzip.8 q2, q3
1: tst r2, #8
beq 1f
vst1.u8 {d4,d5,d6,d7}, [r0]!
1: tst r2, #4
beq 1f
vst1.u8 {d2,d3}, [r0]!
1: tst r2, #2
beq 1f
vst1.u8 d1, [r0]!
1: tst r2, #1
beq 2f
vst1.u32 d0[1], [r0]!
2:
.endm
/* void rsdIntrinsicYuv2_K(
* void *out, // r0
* void const *yin, // r1
* void const *uin, // r2
* void const *vin, // r3
* size_t xstart, // [sp]
* size_t xend); // [sp+#4]
*/
ENTRY(rsdIntrinsicYuv2_K)
push {r4,r5}
ldr r5, [sp, #8]
mov r4, r3
mov r3, r2
ldr r2, [sp, #12]
add r0, r5, LSL #2
add r1, r5
add r3, r5, LSR #1
add r4, r5, LSR #1
sub r2, r5
vpush {d8-d15}
wrap_line yuvkern, 0
vpop {d8-d15}
pop {r4,r5}
bx lr
END(rsdIntrinsicYuv2_K)
/* void rsdIntrinsicYuv_K(
* void *out, // r0
* void const *yin, // r1
* void const *uvin, // r2
* size_t xstart, // r3
* size_t xend); // [sp]
*/
ENTRY(rsdIntrinsicYuv_K)
push {r4,r5}
bic r4, r3, #1
add r3, r2, r4
ldr r2, [sp, #8]
add r0, r4, LSL #2
add r1, r4
sub r2, r4
vpush {d8-d15}
wrap_line yuvkern, 1, 1
vpop {d8-d15}
pop {r4,r5}
bx lr
END(rsdIntrinsicYuv_K)
/* void rsdIntrinsicYuvR_K(
* void *out, // r0
* void const *yin, // r1
* void const *uvin, // r2
* size_t xstart, // r3
* size_t xend); // [sp]
*/
ENTRY(rsdIntrinsicYuvR_K)
push {r4,r5}
bic r4, r3, #1
add r3, r2, r4
ldr r2, [sp, #8]
add r0, r4, LSL #2
add r1, r4
sub r2, r4
vpush {d8-d15}
wrap_line yuvkern, 1
vpop {d8-d15}
pop {r4,r5}
bx lr
END(rsdIntrinsicYuvR_K)