| #include "rs_core.rsh" |
| #include "rs_f16_util.h" |
| |
| extern float2 __attribute__((overloadable)) convert_float2(int2 c); |
| extern float3 __attribute__((overloadable)) convert_float3(int3 c); |
| extern float4 __attribute__((overloadable)) convert_float4(int4 c); |
| |
| extern int2 __attribute__((overloadable)) convert_int2(float2 c); |
| extern int3 __attribute__((overloadable)) convert_int3(float3 c); |
| extern int4 __attribute__((overloadable)) convert_int4(float4 c); |
| |
| |
| extern float __attribute__((overloadable)) fmin(float v, float v2); |
| extern float2 __attribute__((overloadable)) fmin(float2 v, float v2); |
| extern float3 __attribute__((overloadable)) fmin(float3 v, float v2); |
| extern float4 __attribute__((overloadable)) fmin(float4 v, float v2); |
| |
| extern float __attribute__((overloadable)) fmax(float v, float v2); |
| extern float2 __attribute__((overloadable)) fmax(float2 v, float v2); |
| extern float3 __attribute__((overloadable)) fmax(float3 v, float v2); |
| extern float4 __attribute__((overloadable)) fmax(float4 v, float v2); |
| |
| // Float ops, 6.11.2 |
| |
| #define FN_FUNC_FN(fnc) \ |
| extern float2 __attribute__((overloadable)) fnc(float2 v) { \ |
| float2 r; \ |
| r.x = fnc(v.x); \ |
| r.y = fnc(v.y); \ |
| return r; \ |
| } \ |
| extern float3 __attribute__((overloadable)) fnc(float3 v) { \ |
| float3 r; \ |
| r.x = fnc(v.x); \ |
| r.y = fnc(v.y); \ |
| r.z = fnc(v.z); \ |
| return r; \ |
| } \ |
| extern float4 __attribute__((overloadable)) fnc(float4 v) { \ |
| float4 r; \ |
| r.x = fnc(v.x); \ |
| r.y = fnc(v.y); \ |
| r.z = fnc(v.z); \ |
| r.w = fnc(v.w); \ |
| return r; \ |
| } |
| |
| #define IN_FUNC_FN(fnc) \ |
| extern int2 __attribute__((overloadable)) fnc(float2 v) { \ |
| int2 r; \ |
| r.x = fnc(v.x); \ |
| r.y = fnc(v.y); \ |
| return r; \ |
| } \ |
| extern int3 __attribute__((overloadable)) fnc(float3 v) { \ |
| int3 r; \ |
| r.x = fnc(v.x); \ |
| r.y = fnc(v.y); \ |
| r.z = fnc(v.z); \ |
| return r; \ |
| } \ |
| extern int4 __attribute__((overloadable)) fnc(float4 v) { \ |
| int4 r; \ |
| r.x = fnc(v.x); \ |
| r.y = fnc(v.y); \ |
| r.z = fnc(v.z); \ |
| r.w = fnc(v.w); \ |
| return r; \ |
| } |
| |
| #define FN_FUNC_FN_FN(fnc) \ |
| extern float2 __attribute__((overloadable)) fnc(float2 v1, float2 v2) { \ |
| float2 r; \ |
| r.x = fnc(v1.x, v2.x); \ |
| r.y = fnc(v1.y, v2.y); \ |
| return r; \ |
| } \ |
| extern float3 __attribute__((overloadable)) fnc(float3 v1, float3 v2) { \ |
| float3 r; \ |
| r.x = fnc(v1.x, v2.x); \ |
| r.y = fnc(v1.y, v2.y); \ |
| r.z = fnc(v1.z, v2.z); \ |
| return r; \ |
| } \ |
| extern float4 __attribute__((overloadable)) fnc(float4 v1, float4 v2) { \ |
| float4 r; \ |
| r.x = fnc(v1.x, v2.x); \ |
| r.y = fnc(v1.y, v2.y); \ |
| r.z = fnc(v1.z, v2.z); \ |
| r.w = fnc(v1.w, v2.w); \ |
| return r; \ |
| } |
| |
| #define FN_FUNC_FN_F(fnc) \ |
| extern float2 __attribute__((overloadable)) fnc(float2 v1, float v2) { \ |
| float2 r; \ |
| r.x = fnc(v1.x, v2); \ |
| r.y = fnc(v1.y, v2); \ |
| return r; \ |
| } \ |
| extern float3 __attribute__((overloadable)) fnc(float3 v1, float v2) { \ |
| float3 r; \ |
| r.x = fnc(v1.x, v2); \ |
| r.y = fnc(v1.y, v2); \ |
| r.z = fnc(v1.z, v2); \ |
| return r; \ |
| } \ |
| extern float4 __attribute__((overloadable)) fnc(float4 v1, float v2) { \ |
| float4 r; \ |
| r.x = fnc(v1.x, v2); \ |
| r.y = fnc(v1.y, v2); \ |
| r.z = fnc(v1.z, v2); \ |
| r.w = fnc(v1.w, v2); \ |
| return r; \ |
| } |
| |
| #define FN_FUNC_FN_IN(fnc) \ |
| extern float2 __attribute__((overloadable)) fnc(float2 v1, int2 v2) { \ |
| float2 r; \ |
| r.x = fnc(v1.x, v2.x); \ |
| r.y = fnc(v1.y, v2.y); \ |
| return r; \ |
| } \ |
| extern float3 __attribute__((overloadable)) fnc(float3 v1, int3 v2) { \ |
| float3 r; \ |
| r.x = fnc(v1.x, v2.x); \ |
| r.y = fnc(v1.y, v2.y); \ |
| r.z = fnc(v1.z, v2.z); \ |
| return r; \ |
| } \ |
| extern float4 __attribute__((overloadable)) fnc(float4 v1, int4 v2) { \ |
| float4 r; \ |
| r.x = fnc(v1.x, v2.x); \ |
| r.y = fnc(v1.y, v2.y); \ |
| r.z = fnc(v1.z, v2.z); \ |
| r.w = fnc(v1.w, v2.w); \ |
| return r; \ |
| } |
| |
| #define FN_FUNC_FN_I(fnc) \ |
| extern float2 __attribute__((overloadable)) fnc(float2 v1, int v2) { \ |
| float2 r; \ |
| r.x = fnc(v1.x, v2); \ |
| r.y = fnc(v1.y, v2); \ |
| return r; \ |
| } \ |
| extern float3 __attribute__((overloadable)) fnc(float3 v1, int v2) { \ |
| float3 r; \ |
| r.x = fnc(v1.x, v2); \ |
| r.y = fnc(v1.y, v2); \ |
| r.z = fnc(v1.z, v2); \ |
| return r; \ |
| } \ |
| extern float4 __attribute__((overloadable)) fnc(float4 v1, int v2) { \ |
| float4 r; \ |
| r.x = fnc(v1.x, v2); \ |
| r.y = fnc(v1.y, v2); \ |
| r.z = fnc(v1.z, v2); \ |
| r.w = fnc(v1.w, v2); \ |
| return r; \ |
| } |
| |
| #define FN_FUNC_FN_PFN(fnc) \ |
| extern float2 __attribute__((overloadable)) \ |
| fnc(float2 v1, float2 *v2) { \ |
| float2 r; \ |
| float t[2]; \ |
| r.x = fnc(v1.x, &t[0]); \ |
| r.y = fnc(v1.y, &t[1]); \ |
| v2->x = t[0]; \ |
| v2->y = t[1]; \ |
| return r; \ |
| } \ |
| extern float3 __attribute__((overloadable)) \ |
| fnc(float3 v1, float3 *v2) { \ |
| float3 r; \ |
| float t[3]; \ |
| r.x = fnc(v1.x, &t[0]); \ |
| r.y = fnc(v1.y, &t[1]); \ |
| r.z = fnc(v1.z, &t[2]); \ |
| v2->x = t[0]; \ |
| v2->y = t[1]; \ |
| v2->z = t[2]; \ |
| return r; \ |
| } \ |
| extern float4 __attribute__((overloadable)) \ |
| fnc(float4 v1, float4 *v2) { \ |
| float4 r; \ |
| float t[4]; \ |
| r.x = fnc(v1.x, &t[0]); \ |
| r.y = fnc(v1.y, &t[1]); \ |
| r.z = fnc(v1.z, &t[2]); \ |
| r.w = fnc(v1.w, &t[3]); \ |
| v2->x = t[0]; \ |
| v2->y = t[1]; \ |
| v2->z = t[2]; \ |
| v2->w = t[3]; \ |
| return r; \ |
| } |
| |
| #define FN_FUNC_FN_PIN(fnc) \ |
| extern float2 __attribute__((overloadable)) fnc(float2 v1, int2 *v2) { \ |
| float2 r; \ |
| int t[2]; \ |
| r.x = fnc(v1.x, &t[0]); \ |
| r.y = fnc(v1.y, &t[1]); \ |
| v2->x = t[0]; \ |
| v2->y = t[1]; \ |
| return r; \ |
| } \ |
| extern float3 __attribute__((overloadable)) fnc(float3 v1, int3 *v2) { \ |
| float3 r; \ |
| int t[3]; \ |
| r.x = fnc(v1.x, &t[0]); \ |
| r.y = fnc(v1.y, &t[1]); \ |
| r.z = fnc(v1.z, &t[2]); \ |
| v2->x = t[0]; \ |
| v2->y = t[1]; \ |
| v2->z = t[2]; \ |
| return r; \ |
| } \ |
| extern float4 __attribute__((overloadable)) fnc(float4 v1, int4 *v2) { \ |
| float4 r; \ |
| int t[4]; \ |
| r.x = fnc(v1.x, &t[0]); \ |
| r.y = fnc(v1.y, &t[1]); \ |
| r.z = fnc(v1.z, &t[2]); \ |
| r.w = fnc(v1.w, &t[3]); \ |
| v2->x = t[0]; \ |
| v2->y = t[1]; \ |
| v2->z = t[2]; \ |
| v2->w = t[3]; \ |
| return r; \ |
| } |
| |
| #define FN_FUNC_FN_FN_FN(fnc) \ |
| extern float2 __attribute__((overloadable)) \ |
| fnc(float2 v1, float2 v2, float2 v3) { \ |
| float2 r; \ |
| r.x = fnc(v1.x, v2.x, v3.x); \ |
| r.y = fnc(v1.y, v2.y, v3.y); \ |
| return r; \ |
| } \ |
| extern float3 __attribute__((overloadable)) \ |
| fnc(float3 v1, float3 v2, float3 v3) { \ |
| float3 r; \ |
| r.x = fnc(v1.x, v2.x, v3.x); \ |
| r.y = fnc(v1.y, v2.y, v3.y); \ |
| r.z = fnc(v1.z, v2.z, v3.z); \ |
| return r; \ |
| } \ |
| extern float4 __attribute__((overloadable)) \ |
| fnc(float4 v1, float4 v2, float4 v3) { \ |
| float4 r; \ |
| r.x = fnc(v1.x, v2.x, v3.x); \ |
| r.y = fnc(v1.y, v2.y, v3.y); \ |
| r.z = fnc(v1.z, v2.z, v3.z); \ |
| r.w = fnc(v1.w, v2.w, v3.w); \ |
| return r; \ |
| } |
| |
| #define FN_FUNC_FN_FN_PIN(fnc) \ |
| extern float2 __attribute__((overloadable)) \ |
| fnc(float2 v1, float2 v2, int2 *v3) { \ |
| float2 r; \ |
| int t[2]; \ |
| r.x = fnc(v1.x, v2.x, &t[0]); \ |
| r.y = fnc(v1.y, v2.y, &t[1]); \ |
| v3->x = t[0]; \ |
| v3->y = t[1]; \ |
| return r; \ |
| } \ |
| extern float3 __attribute__((overloadable)) \ |
| fnc(float3 v1, float3 v2, int3 *v3) { \ |
| float3 r; \ |
| int t[3]; \ |
| r.x = fnc(v1.x, v2.x, &t[0]); \ |
| r.y = fnc(v1.y, v2.y, &t[1]); \ |
| r.z = fnc(v1.z, v2.z, &t[2]); \ |
| v3->x = t[0]; \ |
| v3->y = t[1]; \ |
| v3->z = t[2]; \ |
| return r; \ |
| } \ |
| extern float4 __attribute__((overloadable)) \ |
| fnc(float4 v1, float4 v2, int4 *v3) { \ |
| float4 r; \ |
| int t[4]; \ |
| r.x = fnc(v1.x, v2.x, &t[0]); \ |
| r.y = fnc(v1.y, v2.y, &t[1]); \ |
| r.z = fnc(v1.z, v2.z, &t[2]); \ |
| r.w = fnc(v1.w, v2.w, &t[3]); \ |
| v3->x = t[0]; \ |
| v3->y = t[1]; \ |
| v3->z = t[2]; \ |
| v3->w = t[3]; \ |
| return r; \ |
| } |
| |
| static const unsigned int iposinf = 0x7f800000; |
| static const unsigned int ineginf = 0xff800000; |
| |
| static float posinf() { |
| float f = *((float*)&iposinf); |
| return f; |
| } |
| |
| static unsigned int float_bits(float f) { |
| /* TODO(jeanluc) Use this better approach once the Mac(SDK) build issues are fixed. |
| // Get the bits while following the strict aliasing rules. |
| unsigned int result; |
| memcpy(&result, &f, sizeof(f)); |
| return result; |
| */ |
| return *(unsigned int*)(char*)(&f); |
| } |
| |
| static bool isinf(float f) { |
| unsigned int i = float_bits(f); |
| return (i == iposinf) || (i == ineginf); |
| } |
| |
| static bool isnan(float f) { |
| unsigned int i = float_bits(f); |
| return (((i & 0x7f800000) == 0x7f800000) && (i & 0x007fffff)); |
| } |
| |
| static bool isposzero(float f) { |
| return (float_bits(f) == 0x00000000); |
| } |
| |
| static bool isnegzero(float f) { |
| return (float_bits(f) == 0x80000000); |
| } |
| |
| static bool iszero(float f) { |
| return isposzero(f) || isnegzero(f); |
| } |
| |
| |
| extern float __attribute__((overloadable)) SC_acosf(float); |
| float __attribute__((overloadable)) acos(float v) { |
| return SC_acosf(v); |
| } |
| FN_FUNC_FN(acos) |
| |
| extern float __attribute__((overloadable)) SC_acoshf(float); |
| float __attribute__((overloadable)) acosh(float v) { |
| return SC_acoshf(v); |
| } |
| FN_FUNC_FN(acosh) |
| |
| |
| extern float __attribute__((overloadable)) acospi(float v) { |
| return acos(v) / M_PI; |
| } |
| FN_FUNC_FN(acospi) |
| |
| extern float __attribute__((overloadable)) SC_asinf(float); |
| float __attribute__((overloadable)) asin(float v) { |
| return SC_asinf(v); |
| } |
| FN_FUNC_FN(asin) |
| |
| extern float __attribute__((overloadable)) SC_asinhf(float); |
| float __attribute__((overloadable)) asinh(float v) { |
| return SC_asinhf(v); |
| } |
| FN_FUNC_FN(asinh) |
| |
| extern float __attribute__((overloadable)) asinpi(float v) { |
| return asin(v) / M_PI; |
| } |
| FN_FUNC_FN(asinpi) |
| |
| extern float __attribute__((overloadable)) SC_atanf(float); |
| float __attribute__((overloadable)) atan(float v) { |
| return SC_atanf(v); |
| } |
| FN_FUNC_FN(atan) |
| |
| extern float __attribute__((overloadable)) SC_atan2f(float, float); |
| float __attribute__((overloadable)) atan2(float v1, float v2) { |
| return SC_atan2f(v1, v2); |
| } |
| FN_FUNC_FN_FN(atan2) |
| |
| extern float __attribute__((overloadable)) SC_atanhf(float); |
| float __attribute__((overloadable)) atanh(float v) { |
| return SC_atanhf(v); |
| } |
| FN_FUNC_FN(atanh) |
| |
| extern float __attribute__((overloadable)) atanpi(float v) { |
| return atan(v) / M_PI; |
| } |
| FN_FUNC_FN(atanpi) |
| |
| |
| extern float __attribute__((overloadable)) atan2pi(float y, float x) { |
| return atan2(y, x) / M_PI; |
| } |
| FN_FUNC_FN_FN(atan2pi) |
| |
| extern float __attribute__((overloadable)) SC_cbrtf(float); |
| float __attribute__((overloadable)) cbrt(float v) { |
| return SC_cbrtf(v); |
| } |
| FN_FUNC_FN(cbrt) |
| |
| extern float __attribute__((overloadable)) SC_ceilf(float); |
| float __attribute__((overloadable)) ceil(float v) { |
| return SC_ceilf(v); |
| } |
| FN_FUNC_FN(ceil) |
| |
| extern float __attribute__((overloadable)) SC_copysignf(float, float); |
| float __attribute__((overloadable)) copysign(float v1, float v2) { |
| return SC_copysignf(v1, v2); |
| } |
| FN_FUNC_FN_FN(copysign) |
| |
| extern float __attribute__((overloadable)) SC_cosf(float); |
| float __attribute__((overloadable)) cos(float v) { |
| return SC_cosf(v); |
| } |
| FN_FUNC_FN(cos) |
| |
| extern float __attribute__((overloadable)) SC_coshf(float); |
| float __attribute__((overloadable)) cosh(float v) { |
| return SC_coshf(v); |
| } |
| FN_FUNC_FN(cosh) |
| |
| extern float __attribute__((overloadable)) cospi(float v) { |
| return cos(v * M_PI); |
| } |
| FN_FUNC_FN(cospi) |
| |
| extern float __attribute__((overloadable)) SC_erfcf(float); |
| float __attribute__((overloadable)) erfc(float v) { |
| return SC_erfcf(v); |
| } |
| FN_FUNC_FN(erfc) |
| |
| extern float __attribute__((overloadable)) SC_erff(float); |
| float __attribute__((overloadable)) erf(float v) { |
| return SC_erff(v); |
| } |
| FN_FUNC_FN(erf) |
| |
| extern float __attribute__((overloadable)) SC_expf(float); |
| float __attribute__((overloadable)) exp(float v) { |
| return SC_expf(v); |
| } |
| FN_FUNC_FN(exp) |
| |
| extern float __attribute__((overloadable)) SC_exp2f(float); |
| float __attribute__((overloadable)) exp2(float v) { |
| return SC_exp2f(v); |
| } |
| FN_FUNC_FN(exp2) |
| |
| extern float __attribute__((overloadable)) pow(float, float); |
| |
| extern float __attribute__((overloadable)) exp10(float v) { |
| return exp2(v * 3.321928095f); |
| } |
| FN_FUNC_FN(exp10) |
| |
| extern float __attribute__((overloadable)) SC_expm1f(float); |
| float __attribute__((overloadable)) expm1(float v) { |
| return SC_expm1f(v); |
| } |
| FN_FUNC_FN(expm1) |
| |
| extern float __attribute__((overloadable)) fabs(float v) { |
| int i = *((int*)(void*)&v) & 0x7fffffff; |
| return *((float*)(void*)&i); |
| } |
| FN_FUNC_FN(fabs) |
| |
| extern float __attribute__((overloadable)) SC_fdimf(float, float); |
| float __attribute__((overloadable)) fdim(float v1, float v2) { |
| return SC_fdimf(v1, v2); |
| } |
| FN_FUNC_FN_FN(fdim) |
| |
| extern float __attribute__((overloadable)) SC_floorf(float); |
| float __attribute__((overloadable)) floor(float v) { |
| return SC_floorf(v); |
| } |
| FN_FUNC_FN(floor) |
| |
| extern float __attribute__((overloadable)) SC_fmaf(float, float, float); |
| float __attribute__((overloadable)) fma(float v1, float v2, float v3) { |
| return SC_fmaf(v1, v2, v3); |
| } |
| FN_FUNC_FN_FN_FN(fma) |
| |
| extern float __attribute__((overloadable)) SC_fminf(float, float); |
| |
| extern float __attribute__((overloadable)) SC_fmodf(float, float); |
| float __attribute__((overloadable)) fmod(float v1, float v2) { |
| return SC_fmodf(v1, v2); |
| } |
| FN_FUNC_FN_FN(fmod) |
| |
| extern float __attribute__((overloadable)) fract(float v, float *iptr) { |
| int i = (int)floor(v); |
| if (iptr) { |
| iptr[0] = i; |
| } |
| return fmin(v - i, 0x1.fffffep-1f); |
| } |
| FN_FUNC_FN_PFN(fract) |
| |
| extern float __attribute__((const, overloadable)) fract(float v) { |
| float unused; |
| return fract(v, &unused); |
| } |
| FN_FUNC_FN(fract) |
| |
| extern float __attribute__((overloadable)) SC_frexpf(float, int *); |
| float __attribute__((overloadable)) frexp(float v1, int* v2) { |
| return SC_frexpf(v1, v2); |
| } |
| FN_FUNC_FN_PIN(frexp) |
| |
| extern float __attribute__((overloadable)) SC_hypotf(float, float); |
| float __attribute__((overloadable)) hypot(float v1, float v2) { |
| return SC_hypotf(v1, v2); |
| } |
| FN_FUNC_FN_FN(hypot) |
| |
| extern int __attribute__((overloadable)) SC_ilogbf(float); |
| int __attribute__((overloadable)) ilogb(float v) { |
| return SC_ilogbf(v); |
| } |
| IN_FUNC_FN(ilogb) |
| |
| extern float __attribute__((overloadable)) SC_ldexpf(float, int); |
| float __attribute__((overloadable)) ldexp(float v1, int v2) { |
| return SC_ldexpf(v1, v2); |
| } |
| FN_FUNC_FN_IN(ldexp) |
| FN_FUNC_FN_I(ldexp) |
| |
| extern float __attribute__((overloadable)) SC_lgammaf(float); |
| float __attribute__((overloadable)) lgamma(float v) { |
| return SC_lgammaf(v); |
| } |
| FN_FUNC_FN(lgamma) |
| extern float __attribute__((overloadable)) SC_lgammaf_r(float, int*); |
| float __attribute__((overloadable)) lgamma(float v, int* ptr) { |
| return SC_lgammaf_r(v, ptr); |
| } |
| FN_FUNC_FN_PIN(lgamma) |
| |
| extern float __attribute__((overloadable)) SC_logf(float); |
| float __attribute__((overloadable)) log(float v) { |
| return SC_logf(v); |
| } |
| FN_FUNC_FN(log) |
| |
| extern float __attribute__((overloadable)) SC_log10f(float); |
| float __attribute__((overloadable)) log10(float v) { |
| return SC_log10f(v); |
| } |
| FN_FUNC_FN(log10) |
| |
| |
| extern float __attribute__((overloadable)) log2(float v) { |
| return log10(v) * 3.321928095f; |
| } |
| FN_FUNC_FN(log2) |
| |
| extern float __attribute__((overloadable)) SC_log1pf(float); |
| float __attribute__((overloadable)) log1p(float v) { |
| return SC_log1pf(v); |
| } |
| FN_FUNC_FN(log1p) |
| |
| extern float __attribute__((overloadable)) SC_logbf(float); |
| float __attribute__((overloadable)) logb(float v) { |
| return SC_logbf(v); |
| } |
| FN_FUNC_FN(logb) |
| |
| extern float __attribute__((overloadable)) mad(float a, float b, float c) { |
| return a * b + c; |
| } |
| extern float2 __attribute__((overloadable)) mad(float2 a, float2 b, float2 c) { |
| return a * b + c; |
| } |
| extern float3 __attribute__((overloadable)) mad(float3 a, float3 b, float3 c) { |
| return a * b + c; |
| } |
| extern float4 __attribute__((overloadable)) mad(float4 a, float4 b, float4 c) { |
| return a * b + c; |
| } |
| |
| extern float __attribute__((overloadable)) SC_modff(float, float *); |
| float __attribute__((overloadable)) modf(float v1, float *v2) { |
| return SC_modff(v1, v2); |
| } |
| FN_FUNC_FN_PFN(modf); |
| |
| extern float __attribute__((overloadable)) nan(uint v) { |
| float f[1]; |
| uint32_t *ip = (uint32_t *)f; |
| *ip = v | 0x7fc00000; |
| return f[0]; |
| } |
| |
| extern float __attribute__((overloadable)) SC_nextafterf(float, float); |
| float __attribute__((overloadable)) nextafter(float v1, float v2) { |
| return SC_nextafterf(v1, v2); |
| } |
| FN_FUNC_FN_FN(nextafter) |
| |
| // This function must be defined here if we're compiling with debug info |
| // (libclcore_g.bc), because we need a C source to get debug information. |
| // Otherwise the implementation can be found in IR. |
| #if defined(RS_G_RUNTIME) |
| extern float __attribute__((overloadable)) SC_powf(float, float); |
| float __attribute__((overloadable)) pow(float v1, float v2) { |
| return SC_powf(v1, v2); |
| } |
| #endif // defined(RS_G_RUNTIME) |
| FN_FUNC_FN_FN(pow) |
| |
| extern float __attribute__((overloadable)) pown(float v, int p) { |
| /* The mantissa of a float has fewer bits than an int (24 effective vs. 31). |
| * For very large ints, we'll lose whether the exponent is even or odd, making |
| * the selection of a correct sign incorrect. We correct this. Use copysign |
| * to handle the negative zero case. |
| */ |
| float sign = (p & 0x1) ? copysign(1.f, v) : 1.f; |
| float f = pow(v, (float)p); |
| return copysign(f, sign); |
| } |
| FN_FUNC_FN_IN(pown) |
| |
| extern float __attribute__((overloadable)) powr(float v, float p) { |
| return pow(v, p); |
| } |
| extern float2 __attribute__((overloadable)) powr(float2 v, float2 p) { |
| return pow(v, p); |
| } |
| extern float3 __attribute__((overloadable)) powr(float3 v, float3 p) { |
| return pow(v, p); |
| } |
| extern float4 __attribute__((overloadable)) powr(float4 v, float4 p) { |
| return pow(v, p); |
| } |
| |
| extern float __attribute__((overloadable)) SC_remainderf(float, float); |
| float __attribute__((overloadable)) remainder(float v1, float v2) { |
| return SC_remainderf(v1, v2); |
| } |
| FN_FUNC_FN_FN(remainder) |
| |
| extern float __attribute__((overloadable)) SC_remquof(float, float, int *); |
| float __attribute__((overloadable)) remquo(float v1, float v2, int *v3) { |
| return SC_remquof(v1, v2, v3); |
| } |
| FN_FUNC_FN_FN_PIN(remquo) |
| |
| extern float __attribute__((overloadable)) SC_rintf(float); |
| float __attribute__((overloadable)) rint(float v) { |
| return SC_rintf(v); |
| } |
| FN_FUNC_FN(rint) |
| |
| extern float __attribute__((overloadable)) rootn(float v, int r) { |
| if (r == 0) { |
| return posinf(); |
| } |
| |
| if (iszero(v)) { |
| if (r < 0) { |
| if (r & 1) { |
| return copysign(posinf(), v); |
| } else { |
| return posinf(); |
| } |
| } else { |
| if (r & 1) { |
| return copysign(0.f, v); |
| } else { |
| return 0.f; |
| } |
| } |
| } |
| |
| if (!isinf(v) && !isnan(v) && (v < 0.f)) { |
| if (r & 1) { |
| return (-1.f * pow(-1.f * v, 1.f / r)); |
| } else { |
| return nan(0); |
| } |
| } |
| |
| return pow(v, 1.f / r); |
| } |
| FN_FUNC_FN_IN(rootn); |
| |
| extern float __attribute__((overloadable)) SC_roundf(float); |
| float __attribute__((overloadable)) round(float v) { |
| return SC_roundf(v); |
| } |
| FN_FUNC_FN(round) |
| |
| extern float __attribute__((overloadable)) SC_randf2(float, float); |
| float __attribute__((overloadable)) rsRand(float min, float max) { |
| return SC_randf2(min, max); |
| } |
| |
| |
| extern float __attribute__((overloadable)) rsqrt(float v) { |
| return 1.f / sqrt(v); |
| } |
| |
| #if !defined(ARCH_X86_HAVE_SSSE3) || defined(RS_DEBUG_RUNTIME) || defined(RS_G_RUNTIME) |
| // These functions must be defined here if we are not using the SSE |
| // implementation, which includes when we are built as part of the |
| // debug runtime (libclcore_debug.bc) or compiling with debug info. |
| #if defined(RS_G_RUNTIME) |
| extern float __attribute__((overloadable)) SC_sqrtf(float); |
| float __attribute__((overloadable)) sqrt(float v) { |
| return SC_sqrtf(v); |
| } |
| #endif // defined(RS_G_RUNTIME) |
| |
| FN_FUNC_FN(sqrt) |
| #else |
| extern float2 __attribute__((overloadable)) sqrt(float2); |
| extern float3 __attribute__((overloadable)) sqrt(float3); |
| extern float4 __attribute__((overloadable)) sqrt(float4); |
| #endif // !defined(ARCH_X86_HAVE_SSSE3) || defined(RS_DEBUG_RUNTIME) || defined(RS_G_RUNTIME) |
| |
| FN_FUNC_FN(rsqrt) |
| |
| extern float __attribute__((overloadable)) SC_sinf(float); |
| float __attribute__((overloadable)) sin(float v) { |
| return SC_sinf(v); |
| } |
| FN_FUNC_FN(sin) |
| |
| extern float __attribute__((overloadable)) sincos(float v, float *cosptr) { |
| *cosptr = cos(v); |
| return sin(v); |
| } |
| extern float2 __attribute__((overloadable)) sincos(float2 v, float2 *cosptr) { |
| *cosptr = cos(v); |
| return sin(v); |
| } |
| extern float3 __attribute__((overloadable)) sincos(float3 v, float3 *cosptr) { |
| *cosptr = cos(v); |
| return sin(v); |
| } |
| extern float4 __attribute__((overloadable)) sincos(float4 v, float4 *cosptr) { |
| *cosptr = cos(v); |
| return sin(v); |
| } |
| |
| extern float __attribute__((overloadable)) SC_sinhf(float); |
| float __attribute__((overloadable)) sinh(float v) { |
| return SC_sinhf(v); |
| } |
| FN_FUNC_FN(sinh) |
| |
| extern float __attribute__((overloadable)) sinpi(float v) { |
| return sin(v * M_PI); |
| } |
| FN_FUNC_FN(sinpi) |
| |
| extern float __attribute__((overloadable)) SC_tanf(float); |
| float __attribute__((overloadable)) tan(float v) { |
| return SC_tanf(v); |
| } |
| FN_FUNC_FN(tan) |
| |
| extern float __attribute__((overloadable)) SC_tanhf(float); |
| float __attribute__((overloadable)) tanh(float v) { |
| return SC_tanhf(v); |
| } |
| FN_FUNC_FN(tanh) |
| |
| extern float __attribute__((overloadable)) tanpi(float v) { |
| return tan(v * M_PI); |
| } |
| FN_FUNC_FN(tanpi) |
| |
| |
| extern float __attribute__((overloadable)) SC_tgammaf(float); |
| float __attribute__((overloadable)) tgamma(float v) { |
| return SC_tgammaf(v); |
| } |
| FN_FUNC_FN(tgamma) |
| |
| extern float __attribute__((overloadable)) SC_truncf(float); |
| float __attribute__((overloadable)) trunc(float v) { |
| return SC_truncf(v); |
| } |
| FN_FUNC_FN(trunc) |
| |
| // Int ops (partial), 6.11.3 |
| |
| #define XN_FUNC_YN(typeout, fnc, typein) \ |
| extern typeout __attribute__((overloadable)) fnc(typein); \ |
| extern typeout##2 __attribute__((overloadable)) fnc(typein##2 v) { \ |
| typeout##2 r; \ |
| r.x = fnc(v.x); \ |
| r.y = fnc(v.y); \ |
| return r; \ |
| } \ |
| extern typeout##3 __attribute__((overloadable)) fnc(typein##3 v) { \ |
| typeout##3 r; \ |
| r.x = fnc(v.x); \ |
| r.y = fnc(v.y); \ |
| r.z = fnc(v.z); \ |
| return r; \ |
| } \ |
| extern typeout##4 __attribute__((overloadable)) fnc(typein##4 v) { \ |
| typeout##4 r; \ |
| r.x = fnc(v.x); \ |
| r.y = fnc(v.y); \ |
| r.z = fnc(v.z); \ |
| r.w = fnc(v.w); \ |
| return r; \ |
| } |
| |
| |
| #define UIN_FUNC_IN(fnc) \ |
| XN_FUNC_YN(uchar, fnc, char) \ |
| XN_FUNC_YN(ushort, fnc, short) \ |
| XN_FUNC_YN(uint, fnc, int) |
| |
| #define IN_FUNC_IN(fnc) \ |
| XN_FUNC_YN(uchar, fnc, uchar) \ |
| XN_FUNC_YN(char, fnc, char) \ |
| XN_FUNC_YN(ushort, fnc, ushort) \ |
| XN_FUNC_YN(short, fnc, short) \ |
| XN_FUNC_YN(uint, fnc, uint) \ |
| XN_FUNC_YN(int, fnc, int) |
| |
| |
| #define XN_FUNC_XN_XN_BODY(type, fnc, body) \ |
| extern type __attribute__((overloadable)) \ |
| fnc(type v1, type v2) { \ |
| return body; \ |
| } \ |
| extern type##2 __attribute__((overloadable)) \ |
| fnc(type##2 v1, type##2 v2) { \ |
| type##2 r; \ |
| r.x = fnc(v1.x, v2.x); \ |
| r.y = fnc(v1.y, v2.y); \ |
| return r; \ |
| } \ |
| extern type##3 __attribute__((overloadable)) \ |
| fnc(type##3 v1, type##3 v2) { \ |
| type##3 r; \ |
| r.x = fnc(v1.x, v2.x); \ |
| r.y = fnc(v1.y, v2.y); \ |
| r.z = fnc(v1.z, v2.z); \ |
| return r; \ |
| } \ |
| extern type##4 __attribute__((overloadable)) \ |
| fnc(type##4 v1, type##4 v2) { \ |
| type##4 r; \ |
| r.x = fnc(v1.x, v2.x); \ |
| r.y = fnc(v1.y, v2.y); \ |
| r.z = fnc(v1.z, v2.z); \ |
| r.w = fnc(v1.w, v2.w); \ |
| return r; \ |
| } |
| |
| #define IN_FUNC_IN_IN_BODY(fnc, body) \ |
| XN_FUNC_XN_XN_BODY(uchar, fnc, body) \ |
| XN_FUNC_XN_XN_BODY(char, fnc, body) \ |
| XN_FUNC_XN_XN_BODY(ushort, fnc, body) \ |
| XN_FUNC_XN_XN_BODY(short, fnc, body) \ |
| XN_FUNC_XN_XN_BODY(uint, fnc, body) \ |
| XN_FUNC_XN_XN_BODY(int, fnc, body) \ |
| XN_FUNC_XN_XN_BODY(float, fnc, body) |
| |
| |
| /** |
| * abs |
| */ |
| extern uint32_t __attribute__((overloadable)) abs(int32_t v) { |
| if (v < 0) |
| return -v; |
| return v; |
| } |
| extern uint16_t __attribute__((overloadable)) abs(int16_t v) { |
| if (v < 0) |
| return -v; |
| return v; |
| } |
| extern uint8_t __attribute__((overloadable)) abs(int8_t v) { |
| if (v < 0) |
| return -v; |
| return v; |
| } |
| |
| /** |
| * clz |
| * __builtin_clz only accepts a 32-bit unsigned int, so every input will be |
| * expanded to 32 bits. For our smaller data types, we need to subtract off |
| * these unused top bits (that will be always be composed of zeros). |
| */ |
| extern uint32_t __attribute__((overloadable)) clz(uint32_t v) { |
| return __builtin_clz(v); |
| } |
| extern uint16_t __attribute__((overloadable)) clz(uint16_t v) { |
| return __builtin_clz(v) - 16; |
| } |
| extern uint8_t __attribute__((overloadable)) clz(uint8_t v) { |
| return __builtin_clz(v) - 24; |
| } |
| extern int32_t __attribute__((overloadable)) clz(int32_t v) { |
| return __builtin_clz(v); |
| } |
| extern int16_t __attribute__((overloadable)) clz(int16_t v) { |
| return __builtin_clz(((uint32_t)v) & 0x0000ffff) - 16; |
| } |
| extern int8_t __attribute__((overloadable)) clz(int8_t v) { |
| return __builtin_clz(((uint32_t)v) & 0x000000ff) - 24; |
| } |
| |
| |
| UIN_FUNC_IN(abs) |
| IN_FUNC_IN(clz) |
| |
| |
| // 6.11.4 |
| |
| |
| extern float __attribute__((overloadable)) degrees(float radians) { |
| return radians * (180.f / M_PI); |
| } |
| extern float2 __attribute__((overloadable)) degrees(float2 radians) { |
| return radians * (180.f / M_PI); |
| } |
| extern float3 __attribute__((overloadable)) degrees(float3 radians) { |
| return radians * (180.f / M_PI); |
| } |
| extern float4 __attribute__((overloadable)) degrees(float4 radians) { |
| return radians * (180.f / M_PI); |
| } |
| |
| extern float __attribute__((overloadable)) mix(float start, float stop, float amount) { |
| return start + (stop - start) * amount; |
| } |
| extern float2 __attribute__((overloadable)) mix(float2 start, float2 stop, float2 amount) { |
| return start + (stop - start) * amount; |
| } |
| extern float3 __attribute__((overloadable)) mix(float3 start, float3 stop, float3 amount) { |
| return start + (stop - start) * amount; |
| } |
| extern float4 __attribute__((overloadable)) mix(float4 start, float4 stop, float4 amount) { |
| return start + (stop - start) * amount; |
| } |
| extern float2 __attribute__((overloadable)) mix(float2 start, float2 stop, float amount) { |
| return start + (stop - start) * amount; |
| } |
| extern float3 __attribute__((overloadable)) mix(float3 start, float3 stop, float amount) { |
| return start + (stop - start) * amount; |
| } |
| extern float4 __attribute__((overloadable)) mix(float4 start, float4 stop, float amount) { |
| return start + (stop - start) * amount; |
| } |
| |
| extern float __attribute__((overloadable)) radians(float degrees) { |
| return degrees * (M_PI / 180.f); |
| } |
| extern float2 __attribute__((overloadable)) radians(float2 degrees) { |
| return degrees * (M_PI / 180.f); |
| } |
| extern float3 __attribute__((overloadable)) radians(float3 degrees) { |
| return degrees * (M_PI / 180.f); |
| } |
| extern float4 __attribute__((overloadable)) radians(float4 degrees) { |
| return degrees * (M_PI / 180.f); |
| } |
| |
| extern float __attribute__((overloadable)) step(float edge, float v) { |
| return (v < edge) ? 0.f : 1.f; |
| } |
| extern float2 __attribute__((overloadable)) step(float2 edge, float2 v) { |
| float2 r; |
| r.x = (v.x < edge.x) ? 0.f : 1.f; |
| r.y = (v.y < edge.y) ? 0.f : 1.f; |
| return r; |
| } |
| extern float3 __attribute__((overloadable)) step(float3 edge, float3 v) { |
| float3 r; |
| r.x = (v.x < edge.x) ? 0.f : 1.f; |
| r.y = (v.y < edge.y) ? 0.f : 1.f; |
| r.z = (v.z < edge.z) ? 0.f : 1.f; |
| return r; |
| } |
| extern float4 __attribute__((overloadable)) step(float4 edge, float4 v) { |
| float4 r; |
| r.x = (v.x < edge.x) ? 0.f : 1.f; |
| r.y = (v.y < edge.y) ? 0.f : 1.f; |
| r.z = (v.z < edge.z) ? 0.f : 1.f; |
| r.w = (v.w < edge.w) ? 0.f : 1.f; |
| return r; |
| } |
| extern float2 __attribute__((overloadable)) step(float2 edge, float v) { |
| float2 r; |
| r.x = (v < edge.x) ? 0.f : 1.f; |
| r.y = (v < edge.y) ? 0.f : 1.f; |
| return r; |
| } |
| extern float3 __attribute__((overloadable)) step(float3 edge, float v) { |
| float3 r; |
| r.x = (v < edge.x) ? 0.f : 1.f; |
| r.y = (v < edge.y) ? 0.f : 1.f; |
| r.z = (v < edge.z) ? 0.f : 1.f; |
| return r; |
| } |
| extern float4 __attribute__((overloadable)) step(float4 edge, float v) { |
| float4 r; |
| r.x = (v < edge.x) ? 0.f : 1.f; |
| r.y = (v < edge.y) ? 0.f : 1.f; |
| r.z = (v < edge.z) ? 0.f : 1.f; |
| r.w = (v < edge.w) ? 0.f : 1.f; |
| return r; |
| } |
| extern float2 __attribute__((overloadable)) step(float edge, float2 v) { |
| float2 r; |
| r.x = (v.x < edge) ? 0.f : 1.f; |
| r.y = (v.y < edge) ? 0.f : 1.f; |
| return r; |
| } |
| extern float3 __attribute__((overloadable)) step(float edge, float3 v) { |
| float3 r; |
| r.x = (v.x < edge) ? 0.f : 1.f; |
| r.y = (v.y < edge) ? 0.f : 1.f; |
| r.z = (v.z < edge) ? 0.f : 1.f; |
| return r; |
| } |
| extern float4 __attribute__((overloadable)) step(float edge, float4 v) { |
| float4 r; |
| r.x = (v.x < edge) ? 0.f : 1.f; |
| r.y = (v.y < edge) ? 0.f : 1.f; |
| r.z = (v.z < edge) ? 0.f : 1.f; |
| r.w = (v.w < edge) ? 0.f : 1.f; |
| return r; |
| } |
| |
| extern float __attribute__((overloadable)) sign(float v) { |
| if (v > 0) return 1.f; |
| if (v < 0) return -1.f; |
| return v; |
| } |
| FN_FUNC_FN(sign) |
| |
| |
| // 6.11.5 |
| extern float3 __attribute__((overloadable)) cross(float3 lhs, float3 rhs) { |
| float3 r; |
| r.x = lhs.y * rhs.z - lhs.z * rhs.y; |
| r.y = lhs.z * rhs.x - lhs.x * rhs.z; |
| r.z = lhs.x * rhs.y - lhs.y * rhs.x; |
| return r; |
| } |
| |
| extern float4 __attribute__((overloadable)) cross(float4 lhs, float4 rhs) { |
| float4 r; |
| r.x = lhs.y * rhs.z - lhs.z * rhs.y; |
| r.y = lhs.z * rhs.x - lhs.x * rhs.z; |
| r.z = lhs.x * rhs.y - lhs.y * rhs.x; |
| r.w = 0.f; |
| return r; |
| } |
| |
| #if !defined(ARCH_X86_HAVE_SSSE3) || defined(RS_DEBUG_RUNTIME) || defined(RS_G_RUNTIME) |
| // These functions must be defined here if we are not using the SSE |
| // implementation, which includes when we are built as part of the |
| // debug runtime (libclcore_debug.bc) or compiling with debug info. |
| |
| extern float __attribute__((overloadable)) dot(float lhs, float rhs) { |
| return lhs * rhs; |
| } |
| extern float __attribute__((overloadable)) dot(float2 lhs, float2 rhs) { |
| return lhs.x*rhs.x + lhs.y*rhs.y; |
| } |
| extern float __attribute__((overloadable)) dot(float3 lhs, float3 rhs) { |
| return lhs.x*rhs.x + lhs.y*rhs.y + lhs.z*rhs.z; |
| } |
| extern float __attribute__((overloadable)) dot(float4 lhs, float4 rhs) { |
| return lhs.x*rhs.x + lhs.y*rhs.y + lhs.z*rhs.z + lhs.w*rhs.w; |
| } |
| |
| extern float __attribute__((overloadable)) length(float v) { |
| return fabs(v); |
| } |
| extern float __attribute__((overloadable)) length(float2 v) { |
| return sqrt(v.x*v.x + v.y*v.y); |
| } |
| extern float __attribute__((overloadable)) length(float3 v) { |
| return sqrt(v.x*v.x + v.y*v.y + v.z*v.z); |
| } |
| extern float __attribute__((overloadable)) length(float4 v) { |
| return sqrt(v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w); |
| } |
| |
| #else |
| |
| extern float __attribute__((overloadable)) length(float v); |
| extern float __attribute__((overloadable)) length(float2 v); |
| extern float __attribute__((overloadable)) length(float3 v); |
| extern float __attribute__((overloadable)) length(float4 v); |
| |
| #endif // !defined(ARCH_X86_HAVE_SSSE3) || defined(RS_DEBUG_RUNTIME) || defined(RS_G_RUNTIME) |
| |
| extern float __attribute__((overloadable)) distance(float lhs, float rhs) { |
| return length(lhs - rhs); |
| } |
| extern float __attribute__((overloadable)) distance(float2 lhs, float2 rhs) { |
| return length(lhs - rhs); |
| } |
| extern float __attribute__((overloadable)) distance(float3 lhs, float3 rhs) { |
| return length(lhs - rhs); |
| } |
| extern float __attribute__((overloadable)) distance(float4 lhs, float4 rhs) { |
| return length(lhs - rhs); |
| } |
| |
| /* For the normalization functions, vectors of length 0 should simply be |
| * returned (i.e. all the components of that vector are 0). |
| */ |
| extern float __attribute__((overloadable)) normalize(float v) { |
| if (v == 0.0f) { |
| return 0.0f; |
| } else if (v < 0.0f) { |
| return -1.0f; |
| } else { |
| return 1.0f; |
| } |
| } |
| extern float2 __attribute__((overloadable)) normalize(float2 v) { |
| float l = length(v); |
| return l == 0.0f ? v : v / l; |
| } |
| extern float3 __attribute__((overloadable)) normalize(float3 v) { |
| float l = length(v); |
| return l == 0.0f ? v : v / l; |
| } |
| extern float4 __attribute__((overloadable)) normalize(float4 v) { |
| float l = length(v); |
| return l == 0.0f ? v : v / l; |
| } |
| |
| extern float __attribute__((overloadable)) half_sqrt(float v) { |
| return sqrt(v); |
| } |
| FN_FUNC_FN(half_sqrt) |
| |
| extern float __attribute__((overloadable)) fast_length(float v) { |
| return fabs(v); |
| } |
| extern float __attribute__((overloadable)) fast_length(float2 v) { |
| return half_sqrt(v.x*v.x + v.y*v.y); |
| } |
| extern float __attribute__((overloadable)) fast_length(float3 v) { |
| return half_sqrt(v.x*v.x + v.y*v.y + v.z*v.z); |
| } |
| extern float __attribute__((overloadable)) fast_length(float4 v) { |
| return half_sqrt(v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w); |
| } |
| |
| extern float __attribute__((overloadable)) fast_distance(float lhs, float rhs) { |
| return fast_length(lhs - rhs); |
| } |
| extern float __attribute__((overloadable)) fast_distance(float2 lhs, float2 rhs) { |
| return fast_length(lhs - rhs); |
| } |
| extern float __attribute__((overloadable)) fast_distance(float3 lhs, float3 rhs) { |
| return fast_length(lhs - rhs); |
| } |
| extern float __attribute__((overloadable)) fast_distance(float4 lhs, float4 rhs) { |
| return fast_length(lhs - rhs); |
| } |
| |
| extern float __attribute__((overloadable)) half_rsqrt(float); |
| |
| /* For the normalization functions, vectors of length 0 should simply be |
| * returned (i.e. all the components of that vector are 0). |
| */ |
| extern float __attribute__((overloadable)) fast_normalize(float v) { |
| if (v == 0.0f) { |
| return 0.0f; |
| } else if (v < 0.0f) { |
| return -1.0f; |
| } else { |
| return 1.0f; |
| } |
| } |
| // If the length is 0, then rlength should be NaN. |
| extern float2 __attribute__((overloadable)) fast_normalize(float2 v) { |
| float rlength = half_rsqrt(v.x*v.x + v.y*v.y); |
| return (rlength == rlength) ? v * rlength : v; |
| } |
| extern float3 __attribute__((overloadable)) fast_normalize(float3 v) { |
| float rlength = half_rsqrt(v.x*v.x + v.y*v.y + v.z*v.z); |
| return (rlength == rlength) ? v * rlength : v; |
| } |
| extern float4 __attribute__((overloadable)) fast_normalize(float4 v) { |
| float rlength = half_rsqrt(v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w); |
| return (rlength == rlength) ? v * rlength : v; |
| } |
| |
| extern float __attribute__((overloadable)) half_recip(float v) { |
| return 1.f / v; |
| } |
| |
| /* |
| extern float __attribute__((overloadable)) approx_atan(float x) { |
| if (x == 0.f) |
| return 0.f; |
| if (x < 0.f) |
| return -1.f * approx_atan(-1.f * x); |
| if (x > 1.f) |
| return M_PI_2 - approx_atan(approx_recip(x)); |
| return x * approx_recip(1.f + 0.28f * x*x); |
| } |
| FN_FUNC_FN(approx_atan) |
| */ |
| |
| typedef union |
| { |
| float fv; |
| int32_t iv; |
| } ieee_float_shape_type; |
| |
| /* Get a 32 bit int from a float. */ |
| |
| #define GET_FLOAT_WORD(i,d) \ |
| do { \ |
| ieee_float_shape_type gf_u; \ |
| gf_u.fv = (d); \ |
| (i) = gf_u.iv; \ |
| } while (0) |
| |
| /* Set a float from a 32 bit int. */ |
| |
| #define SET_FLOAT_WORD(d,i) \ |
| do { \ |
| ieee_float_shape_type sf_u; \ |
| sf_u.iv = (i); \ |
| (d) = sf_u.fv; \ |
| } while (0) |
| |
| |
| |
| // Valid -125 to 125 |
| extern float __attribute__((overloadable)) native_exp2(float v) { |
| int32_t iv = (int)v; |
| int32_t x = iv + (iv >> 31); // ~floor(v) |
| float r = (v - x); |
| |
| float fo; |
| SET_FLOAT_WORD(fo, (x + 127) << 23); |
| |
| r *= 0.694f; // ~ log(e) / log(2) |
| float r2 = r*r; |
| float adj = 1.f + r + (r2 * 0.5f) + (r2*r * 0.166666f) + (r2*r2 * 0.0416666f); |
| return fo * adj; |
| } |
| |
| extern float2 __attribute__((overloadable)) native_exp2(float2 v) { |
| int2 iv = convert_int2(v); |
| int2 x = iv + (iv >> (int2)31);//floor(v); |
| float2 r = (v - convert_float2(x)); |
| |
| x += 127; |
| |
| float2 fo = (float2)(x << (int2)23); |
| |
| r *= 0.694f; // ~ log(e) / log(2) |
| float2 r2 = r*r; |
| float2 adj = 1.f + r + (r2 * 0.5f) + (r2*r * 0.166666f) + (r2*r2 * 0.0416666f); |
| return fo * adj; |
| } |
| |
| extern float4 __attribute__((overloadable)) native_exp2(float4 v) { |
| int4 iv = convert_int4(v); |
| int4 x = iv + (iv >> (int4)31);//floor(v); |
| float4 r = (v - convert_float4(x)); |
| |
| x += 127; |
| |
| float4 fo = (float4)(x << (int4)23); |
| |
| r *= 0.694f; // ~ log(e) / log(2) |
| float4 r2 = r*r; |
| float4 adj = 1.f + r + (r2 * 0.5f) + (r2*r * 0.166666f) + (r2*r2 * 0.0416666f); |
| return fo * adj; |
| } |
| |
| extern float3 __attribute__((overloadable)) native_exp2(float3 v) { |
| float4 t = 1.f; |
| t.xyz = v; |
| return native_exp2(t).xyz; |
| } |
| |
| |
| extern float __attribute__((overloadable)) native_exp(float v) { |
| return native_exp2(v * 1.442695041f); |
| } |
| extern float2 __attribute__((overloadable)) native_exp(float2 v) { |
| return native_exp2(v * 1.442695041f); |
| } |
| extern float3 __attribute__((overloadable)) native_exp(float3 v) { |
| return native_exp2(v * 1.442695041f); |
| } |
| extern float4 __attribute__((overloadable)) native_exp(float4 v) { |
| return native_exp2(v * 1.442695041f); |
| } |
| |
| extern float __attribute__((overloadable)) native_exp10(float v) { |
| return native_exp2(v * 3.321928095f); |
| } |
| extern float2 __attribute__((overloadable)) native_exp10(float2 v) { |
| return native_exp2(v * 3.321928095f); |
| } |
| extern float3 __attribute__((overloadable)) native_exp10(float3 v) { |
| return native_exp2(v * 3.321928095f); |
| } |
| extern float4 __attribute__((overloadable)) native_exp10(float4 v) { |
| return native_exp2(v * 3.321928095f); |
| } |
| |
| extern float __attribute__((overloadable)) native_log2(float v) { |
| int32_t ibits; |
| GET_FLOAT_WORD(ibits, v); |
| |
| int32_t e = (ibits >> 23) & 0xff; |
| |
| ibits &= 0x7fffff; |
| ibits |= 127 << 23; |
| |
| float ir; |
| SET_FLOAT_WORD(ir, ibits); |
| ir -= 1.5f; |
| float ir2 = ir*ir; |
| float adj2 = (0.405465108f / 0.693147181f) + |
| ((0.666666667f / 0.693147181f) * ir) - |
| ((0.222222222f / 0.693147181f) * ir2) + |
| ((0.098765432f / 0.693147181f) * ir*ir2) - |
| ((0.049382716f / 0.693147181f) * ir2*ir2) + |
| ((0.026337449f / 0.693147181f) * ir*ir2*ir2) - |
| ((0.014631916f / 0.693147181f) * ir2*ir2*ir2); |
| return (float)(e - 127) + adj2; |
| } |
| extern float2 __attribute__((overloadable)) native_log2(float2 v) { |
| float2 v2 = {native_log2(v.x), native_log2(v.y)}; |
| return v2; |
| } |
| extern float3 __attribute__((overloadable)) native_log2(float3 v) { |
| float3 v2 = {native_log2(v.x), native_log2(v.y), native_log2(v.z)}; |
| return v2; |
| } |
| extern float4 __attribute__((overloadable)) native_log2(float4 v) { |
| float4 v2 = {native_log2(v.x), native_log2(v.y), native_log2(v.z), native_log2(v.w)}; |
| return v2; |
| } |
| |
| extern float __attribute__((overloadable)) native_log(float v) { |
| return native_log2(v) * (1.f / 1.442695041f); |
| } |
| extern float2 __attribute__((overloadable)) native_log(float2 v) { |
| return native_log2(v) * (1.f / 1.442695041f); |
| } |
| extern float3 __attribute__((overloadable)) native_log(float3 v) { |
| return native_log2(v) * (1.f / 1.442695041f); |
| } |
| extern float4 __attribute__((overloadable)) native_log(float4 v) { |
| return native_log2(v) * (1.f / 1.442695041f); |
| } |
| |
| extern float __attribute__((overloadable)) native_log10(float v) { |
| return native_log2(v) * (1.f / 3.321928095f); |
| } |
| extern float2 __attribute__((overloadable)) native_log10(float2 v) { |
| return native_log2(v) * (1.f / 3.321928095f); |
| } |
| extern float3 __attribute__((overloadable)) native_log10(float3 v) { |
| return native_log2(v) * (1.f / 3.321928095f); |
| } |
| extern float4 __attribute__((overloadable)) native_log10(float4 v) { |
| return native_log2(v) * (1.f / 3.321928095f); |
| } |
| |
| |
| extern float __attribute__((overloadable)) native_powr(float v, float y) { |
| float v2 = native_log2(v); |
| v2 = fmax(v2 * y, -125.f); |
| return native_exp2(v2); |
| } |
| extern float2 __attribute__((overloadable)) native_powr(float2 v, float2 y) { |
| float2 v2 = native_log2(v); |
| v2 = fmax(v2 * y, -125.f); |
| return native_exp2(v2); |
| } |
| extern float3 __attribute__((overloadable)) native_powr(float3 v, float3 y) { |
| float3 v2 = native_log2(v); |
| v2 = fmax(v2 * y, -125.f); |
| return native_exp2(v2); |
| } |
| extern float4 __attribute__((overloadable)) native_powr(float4 v, float4 y) { |
| float4 v2 = native_log2(v); |
| v2 = fmax(v2 * y, -125.f); |
| return native_exp2(v2); |
| } |
| |
| extern double __attribute__((overloadable)) min(double v1, double v2) { |
| return v1 < v2 ? v1 : v2; |
| } |
| |
| extern double2 __attribute__((overloadable)) min(double2 v1, double2 v2) { |
| double2 r; |
| r.x = v1.x < v2.x ? v1.x : v2.x; |
| r.y = v1.y < v2.y ? v1.y : v2.y; |
| return r; |
| } |
| |
| extern double3 __attribute__((overloadable)) min(double3 v1, double3 v2) { |
| double3 r; |
| r.x = v1.x < v2.x ? v1.x : v2.x; |
| r.y = v1.y < v2.y ? v1.y : v2.y; |
| r.z = v1.z < v2.z ? v1.z : v2.z; |
| return r; |
| } |
| |
| extern double4 __attribute__((overloadable)) min(double4 v1, double4 v2) { |
| double4 r; |
| r.x = v1.x < v2.x ? v1.x : v2.x; |
| r.y = v1.y < v2.y ? v1.y : v2.y; |
| r.z = v1.z < v2.z ? v1.z : v2.z; |
| r.w = v1.w < v2.w ? v1.w : v2.w; |
| return r; |
| } |
| |
| extern long __attribute__((overloadable)) min(long v1, long v2) { |
| return v1 < v2 ? v1 : v2; |
| } |
| extern long2 __attribute__((overloadable)) min(long2 v1, long2 v2) { |
| long2 r; |
| r.x = v1.x < v2.x ? v1.x : v2.x; |
| r.y = v1.y < v2.y ? v1.y : v2.y; |
| return r; |
| } |
| extern long3 __attribute__((overloadable)) min(long3 v1, long3 v2) { |
| long3 r; |
| r.x = v1.x < v2.x ? v1.x : v2.x; |
| r.y = v1.y < v2.y ? v1.y : v2.y; |
| r.z = v1.z < v2.z ? v1.z : v2.z; |
| return r; |
| } |
| extern long4 __attribute__((overloadable)) min(long4 v1, long4 v2) { |
| long4 r; |
| r.x = v1.x < v2.x ? v1.x : v2.x; |
| r.y = v1.y < v2.y ? v1.y : v2.y; |
| r.z = v1.z < v2.z ? v1.z : v2.z; |
| r.w = v1.w < v2.w ? v1.w : v2.w; |
| return r; |
| } |
| |
| extern ulong __attribute__((overloadable)) min(ulong v1, ulong v2) { |
| return v1 < v2 ? v1 : v2; |
| } |
| extern ulong2 __attribute__((overloadable)) min(ulong2 v1, ulong2 v2) { |
| ulong2 r; |
| r.x = v1.x < v2.x ? v1.x : v2.x; |
| r.y = v1.y < v2.y ? v1.y : v2.y; |
| return r; |
| } |
| extern ulong3 __attribute__((overloadable)) min(ulong3 v1, ulong3 v2) { |
| ulong3 r; |
| r.x = v1.x < v2.x ? v1.x : v2.x; |
| r.y = v1.y < v2.y ? v1.y : v2.y; |
| r.z = v1.z < v2.z ? v1.z : v2.z; |
| return r; |
| } |
| extern ulong4 __attribute__((overloadable)) min(ulong4 v1, ulong4 v2) { |
| ulong4 r; |
| r.x = v1.x < v2.x ? v1.x : v2.x; |
| r.y = v1.y < v2.y ? v1.y : v2.y; |
| r.z = v1.z < v2.z ? v1.z : v2.z; |
| r.w = v1.w < v2.w ? v1.w : v2.w; |
| return r; |
| } |
| |
| extern double __attribute__((overloadable)) max(double v1, double v2) { |
| return v1 > v2 ? v1 : v2; |
| } |
| |
| extern double2 __attribute__((overloadable)) max(double2 v1, double2 v2) { |
| double2 r; |
| r.x = v1.x > v2.x ? v1.x : v2.x; |
| r.y = v1.y > v2.y ? v1.y : v2.y; |
| return r; |
| } |
| |
| extern double3 __attribute__((overloadable)) max(double3 v1, double3 v2) { |
| double3 r; |
| r.x = v1.x > v2.x ? v1.x : v2.x; |
| r.y = v1.y > v2.y ? v1.y : v2.y; |
| r.z = v1.z > v2.z ? v1.z : v2.z; |
| return r; |
| } |
| |
| extern double4 __attribute__((overloadable)) max(double4 v1, double4 v2) { |
| double4 r; |
| r.x = v1.x > v2.x ? v1.x : v2.x; |
| r.y = v1.y > v2.y ? v1.y : v2.y; |
| r.z = v1.z > v2.z ? v1.z : v2.z; |
| r.w = v1.w > v2.w ? v1.w : v2.w; |
| return r; |
| } |
| |
| extern long __attribute__((overloadable)) max(long v1, long v2) { |
| return v1 > v2 ? v1 : v2; |
| } |
| extern long2 __attribute__((overloadable)) max(long2 v1, long2 v2) { |
| long2 r; |
| r.x = v1.x > v2.x ? v1.x : v2.x; |
| r.y = v1.y > v2.y ? v1.y : v2.y; |
| return r; |
| } |
| extern long3 __attribute__((overloadable)) max(long3 v1, long3 v2) { |
| long3 r; |
| r.x = v1.x > v2.x ? v1.x : v2.x; |
| r.y = v1.y > v2.y ? v1.y : v2.y; |
| r.z = v1.z > v2.z ? v1.z : v2.z; |
| return r; |
| } |
| extern long4 __attribute__((overloadable)) max(long4 v1, long4 v2) { |
| long4 r; |
| r.x = v1.x > v2.x ? v1.x : v2.x; |
| r.y = v1.y > v2.y ? v1.y : v2.y; |
| r.z = v1.z > v2.z ? v1.z : v2.z; |
| r.w = v1.w > v2.w ? v1.w : v2.w; |
| return r; |
| } |
| |
| extern ulong __attribute__((overloadable)) max(ulong v1, ulong v2) { |
| return v1 > v2 ? v1 : v2; |
| } |
| extern ulong2 __attribute__((overloadable)) max(ulong2 v1, ulong2 v2) { |
| ulong2 r; |
| r.x = v1.x > v2.x ? v1.x : v2.x; |
| r.y = v1.y > v2.y ? v1.y : v2.y; |
| return r; |
| } |
| extern ulong3 __attribute__((overloadable)) max(ulong3 v1, ulong3 v2) { |
| ulong3 r; |
| r.x = v1.x > v2.x ? v1.x : v2.x; |
| r.y = v1.y > v2.y ? v1.y : v2.y; |
| r.z = v1.z > v2.z ? v1.z : v2.z; |
| return r; |
| } |
| extern ulong4 __attribute__((overloadable)) max(ulong4 v1, ulong4 v2) { |
| ulong4 r; |
| r.x = v1.x > v2.x ? v1.x : v2.x; |
| r.y = v1.y > v2.y ? v1.y : v2.y; |
| r.z = v1.z > v2.z ? v1.z : v2.z; |
| r.w = v1.w > v2.w ? v1.w : v2.w; |
| return r; |
| } |
| |
| #define THUNK_NATIVE_F(fn) \ |
| float __attribute__((overloadable)) native_##fn(float v) { return fn(v);} \ |
| float2 __attribute__((overloadable)) native_##fn(float2 v) { return fn(v);} \ |
| float3 __attribute__((overloadable)) native_##fn(float3 v) { return fn(v);} \ |
| float4 __attribute__((overloadable)) native_##fn(float4 v) { return fn(v);} |
| |
| #define THUNK_NATIVE_F_F(fn) \ |
| float __attribute__((overloadable)) native_##fn(float v1, float v2) { return fn(v1, v2);} \ |
| float2 __attribute__((overloadable)) native_##fn(float2 v1, float2 v2) { return fn(v1, v2);} \ |
| float3 __attribute__((overloadable)) native_##fn(float3 v1, float3 v2) { return fn(v1, v2);} \ |
| float4 __attribute__((overloadable)) native_##fn(float4 v1, float4 v2) { return fn(v1, v2);} |
| |
| #define THUNK_NATIVE_F_FP(fn) \ |
| float __attribute__((overloadable)) native_##fn(float v1, float *v2) { return fn(v1, v2);} \ |
| float2 __attribute__((overloadable)) native_##fn(float2 v1, float2 *v2) { return fn(v1, v2);} \ |
| float3 __attribute__((overloadable)) native_##fn(float3 v1, float3 *v2) { return fn(v1, v2);} \ |
| float4 __attribute__((overloadable)) native_##fn(float4 v1, float4 *v2) { return fn(v1, v2);} |
| |
| #define THUNK_NATIVE_F_I(fn) \ |
| float __attribute__((overloadable)) native_##fn(float v1, int v2) { return fn(v1, v2);} \ |
| float2 __attribute__((overloadable)) native_##fn(float2 v1, int2 v2) { return fn(v1, v2);} \ |
| float3 __attribute__((overloadable)) native_##fn(float3 v1, int3 v2) { return fn(v1, v2);} \ |
| float4 __attribute__((overloadable)) native_##fn(float4 v1, int4 v2) { return fn(v1, v2);} |
| |
| THUNK_NATIVE_F(acos) |
| THUNK_NATIVE_F(acosh) |
| THUNK_NATIVE_F(acospi) |
| THUNK_NATIVE_F(asin) |
| THUNK_NATIVE_F(asinh) |
| THUNK_NATIVE_F(asinpi) |
| THUNK_NATIVE_F(atan) |
| THUNK_NATIVE_F_F(atan2) |
| THUNK_NATIVE_F(atanh) |
| THUNK_NATIVE_F(atanpi) |
| THUNK_NATIVE_F_F(atan2pi) |
| THUNK_NATIVE_F(cbrt) |
| THUNK_NATIVE_F(cos) |
| THUNK_NATIVE_F(cosh) |
| THUNK_NATIVE_F(cospi) |
| THUNK_NATIVE_F(expm1) |
| THUNK_NATIVE_F_F(hypot) |
| THUNK_NATIVE_F(log1p) |
| THUNK_NATIVE_F_I(rootn) |
| THUNK_NATIVE_F(rsqrt) |
| THUNK_NATIVE_F(sqrt) |
| THUNK_NATIVE_F(sin) |
| THUNK_NATIVE_F_FP(sincos) |
| THUNK_NATIVE_F(sinh) |
| THUNK_NATIVE_F(sinpi) |
| THUNK_NATIVE_F(tan) |
| THUNK_NATIVE_F(tanh) |
| THUNK_NATIVE_F(tanpi) |
| |
| #undef THUNK_NATIVE_F |
| #undef THUNK_NATIVE_F_F |
| #undef THUNK_NATIVE_F_I |
| #undef THUNK_NATIVE_F_FP |
| |
| float __attribute__((overloadable)) native_normalize(float v) { return fast_normalize(v);} |
| float2 __attribute__((overloadable)) native_normalize(float2 v) { return fast_normalize(v);} |
| float3 __attribute__((overloadable)) native_normalize(float3 v) { return fast_normalize(v);} |
| float4 __attribute__((overloadable)) native_normalize(float4 v) { return fast_normalize(v);} |
| |
| float __attribute__((overloadable)) native_distance(float v1, float v2) { return fast_distance(v1, v2);} |
| float __attribute__((overloadable)) native_distance(float2 v1, float2 v2) { return fast_distance(v1, v2);} |
| float __attribute__((overloadable)) native_distance(float3 v1, float3 v2) { return fast_distance(v1, v2);} |
| float __attribute__((overloadable)) native_distance(float4 v1, float4 v2) { return fast_distance(v1, v2);} |
| |
| float __attribute__((overloadable)) native_length(float v) { return fast_length(v);} |
| float __attribute__((overloadable)) native_length(float2 v) { return fast_length(v);} |
| float __attribute__((overloadable)) native_length(float3 v) { return fast_length(v);} |
| float __attribute__((overloadable)) native_length(float4 v) { return fast_length(v);} |
| |
| float __attribute__((overloadable)) native_divide(float v1, float v2) { return v1 / v2;} |
| float2 __attribute__((overloadable)) native_divide(float2 v1, float2 v2) { return v1 / v2;} |
| float3 __attribute__((overloadable)) native_divide(float3 v1, float3 v2) { return v1 / v2;} |
| float4 __attribute__((overloadable)) native_divide(float4 v1, float4 v2) { return v1 / v2;} |
| |
| float __attribute__((overloadable)) native_recip(float v) { return 1.f / v;} |
| float2 __attribute__((overloadable)) native_recip(float2 v) { return ((float2)1.f) / v;} |
| float3 __attribute__((overloadable)) native_recip(float3 v) { return ((float3)1.f) / v;} |
| float4 __attribute__((overloadable)) native_recip(float4 v) { return ((float4)1.f) / v;} |
| |
| |
| |
| |
| |
| #undef FN_FUNC_FN |
| #undef IN_FUNC_FN |
| #undef FN_FUNC_FN_FN |
| #undef FN_FUNC_FN_F |
| #undef FN_FUNC_FN_IN |
| #undef FN_FUNC_FN_I |
| #undef FN_FUNC_FN_PFN |
| #undef FN_FUNC_FN_PIN |
| #undef FN_FUNC_FN_FN_FN |
| #undef FN_FUNC_FN_FN_PIN |
| #undef XN_FUNC_YN |
| #undef UIN_FUNC_IN |
| #undef IN_FUNC_IN |
| #undef XN_FUNC_XN_XN_BODY |
| #undef IN_FUNC_IN_IN_BODY |
| |
| static const unsigned short kHalfPositiveInfinity = 0x7c00; |
| |
| /* Define f16 functions of the form |
| * HN output = fn(HN input) |
| * where HN is scalar or vector half type |
| */ |
| #define HN_FUNC_HN(fn) \ |
| extern half __attribute__((overloadable)) fn(half h) { \ |
| return (half) fn((float) h); \ |
| } \ |
| extern half2 __attribute__((overloadable)) fn(half2 v) { \ |
| return convert_half2(fn(convert_float2(v))); \ |
| } \ |
| extern half3 __attribute__((overloadable)) fn(half3 v) { \ |
| return convert_half3(fn(convert_float3(v))); \ |
| } \ |
| extern half4 __attribute__((overloadable)) fn(half4 v) { \ |
| return convert_half4(fn(convert_float4(v))); \ |
| } |
| |
| /* Define f16 functions of the form |
| * HN output = fn(HN input1, HN input2) |
| * where HN is scalar or vector half type |
| */ |
| #define HN_FUNC_HN_HN(fn) \ |
| extern half __attribute__((overloadable)) fn(half h1, half h2) { \ |
| return (half) fn((float) h1, (float) h2); \ |
| } \ |
| extern half2 __attribute__((overloadable)) fn(half2 v1, half2 v2) { \ |
| return convert_half2(fn(convert_float2(v1), \ |
| convert_float2(v2))); \ |
| } \ |
| extern half3 __attribute__((overloadable)) fn(half3 v1, half3 v2) { \ |
| return convert_half3(fn(convert_float3(v1), \ |
| convert_float3(v2))); \ |
| } \ |
| extern half4 __attribute__((overloadable)) fn(half4 v1, half4 v2) { \ |
| return convert_half4(fn(convert_float4(v1), \ |
| convert_float4(v2))); \ |
| } |
| |
| /* Define f16 functions of the form |
| * HN output = fn(HN input1, half input2) |
| * where HN is scalar or vector half type |
| */ |
| #define HN_FUNC_HN_H(fn) \ |
| extern half2 __attribute__((overloadable)) fn(half2 v1, half v2) { \ |
| return convert_half2(fn(convert_float2(v1), (float) v2)); \ |
| } \ |
| extern half3 __attribute__((overloadable)) fn(half3 v1, half v2) { \ |
| return convert_half3(fn(convert_float3(v1), (float) v2)); \ |
| } \ |
| extern half4 __attribute__((overloadable)) fn(half4 v1, half v2) { \ |
| return convert_half4(fn(convert_float4(v1), (float) v2)); \ |
| } |
| |
| /* Define f16 functions of the form |
| * HN output = fn(HN input1, HN input2, HN input3) |
| * where HN is scalar or vector half type |
| */ |
| #define HN_FUNC_HN_HN_HN(fn) \ |
| extern half __attribute__((overloadable)) fn(half h1, half h2, half h3) { \ |
| return (half) fn((float) h1, (float) h2, (float) h3); \ |
| } \ |
| extern half2 __attribute__((overloadable)) fn(half2 v1, half2 v2, half2 v3) { \ |
| return convert_half2(fn(convert_float2(v1), \ |
| convert_float2(v2), \ |
| convert_float2(v3))); \ |
| } \ |
| extern half3 __attribute__((overloadable)) fn(half3 v1, half3 v2, half3 v3) { \ |
| return convert_half3(fn(convert_float3(v1), \ |
| convert_float3(v2), \ |
| convert_float3(v3))); \ |
| } \ |
| extern half4 __attribute__((overloadable)) fn(half4 v1, half4 v2, half4 v3) { \ |
| return convert_half4(fn(convert_float4(v1), \ |
| convert_float4(v2), \ |
| convert_float4(v3))); \ |
| } |
| |
| /* Define f16 functions of the form |
| * HN output = fn(HN input1, IN input2) |
| * where HN is scalar or vector half type and IN the equivalent integer type |
| * of same vector length. |
| */ |
| #define HN_FUNC_HN_IN(fn) \ |
| extern half __attribute__((overloadable)) fn(half h1, int v) { \ |
| return (half) fn((float) h1, v); \ |
| } \ |
| extern half2 __attribute__((overloadable)) fn(half2 v1, int2 v2) { \ |
| return convert_half2(fn(convert_float2(v1), v2)); \ |
| } \ |
| extern half3 __attribute__((overloadable)) fn(half3 v1, int3 v2) { \ |
| return convert_half3(fn(convert_float3(v1), v2)); \ |
| } \ |
| extern half4 __attribute__((overloadable)) fn(half4 v1, int4 v2) { \ |
| return convert_half4(fn(convert_float4(v1), v2)); \ |
| } |
| |
| /* Define f16 functions of the form |
| * half output = fn(HN input1) |
| * where HN is a scalar or vector half type. |
| */ |
| #define H_FUNC_HN(fn) \ |
| extern half __attribute__((overloadable)) fn(half h) { \ |
| return (half) fn((float) h); \ |
| } \ |
| extern half __attribute__((overloadable)) fn(half2 v) { \ |
| return fn(convert_float2(v)); \ |
| } \ |
| extern half __attribute__((overloadable)) fn(half3 v) { \ |
| return fn(convert_float3(v)); \ |
| } \ |
| extern half __attribute__((overloadable)) fn(half4 v) { \ |
| return fn(convert_float4(v)); \ |
| } |
| |
| /* Define f16 functions of the form |
| * half output = fn(HN input1, HN input2) |
| * where HN is a scalar or vector half type. |
| */ |
| #define H_FUNC_HN_HN(fn) \ |
| extern half __attribute__((overloadable)) fn(half h1, half h2) { \ |
| return (half) fn((float) h1, (float) h2); \ |
| } \ |
| extern half __attribute__((overloadable)) fn(half2 v1, half2 v2) { \ |
| return fn(convert_float2(v1), convert_float2(v2)); \ |
| } \ |
| extern half __attribute__((overloadable)) fn(half3 v1, half3 v2) { \ |
| return fn(convert_float3(v1), convert_float3(v2)); \ |
| } \ |
| extern half __attribute__((overloadable)) fn(half4 v1, half4 v2) { \ |
| return fn(convert_float4(v1), convert_float4(v2)); \ |
| } |
| |
| #define SCALARIZE_HN_FUNC_HN_PHN(fnc) \ |
| extern half2 __attribute__((overloadable)) fnc(half2 v1, half2 *v2) { \ |
| half2 ret; \ |
| half t[2]; \ |
| ret.x = fnc(v1.x, &t[0]); \ |
| ret.y = fnc(v1.y, &t[1]); \ |
| v2->x = t[0]; \ |
| v2->y = t[1]; \ |
| return ret; \ |
| } \ |
| extern half3 __attribute__((overloadable)) fnc(half3 v1, half3 *v2) { \ |
| half3 ret; \ |
| half t[3]; \ |
| ret.x = fnc(v1.x, &t[0]); \ |
| ret.y = fnc(v1.y, &t[1]); \ |
| ret.z = fnc(v1.z, &t[2]); \ |
| v2->x = t[0]; \ |
| v2->y = t[1]; \ |
| v2->z = t[2]; \ |
| return ret; \ |
| } \ |
| extern half4 __attribute__((overloadable)) fnc(half4 v1, half4 *v2) { \ |
| half4 ret; \ |
| half t[4]; \ |
| ret.x = fnc(v1.x, &t[0]); \ |
| ret.y = fnc(v1.y, &t[1]); \ |
| ret.z = fnc(v1.z, &t[2]); \ |
| ret.w = fnc(v1.w, &t[3]); \ |
| v2->x = t[0]; \ |
| v2->y = t[1]; \ |
| v2->z = t[2]; \ |
| v2->w = t[3]; \ |
| return ret; \ |
| } |
| |
| /* Define f16 functions of the form |
| * HN output = fn(HN input1, HN input2) |
| * where HN is a vector half type. The functions are defined to call the |
| * scalar function of the same name. |
| */ |
| #define SCALARIZE_HN_FUNC_HN_HN(fn) \ |
| extern half2 __attribute__((overloadable)) fn(half2 v1, half2 v2) { \ |
| half2 ret; \ |
| ret.x = fn(v1.x, v2.x); \ |
| ret.y = fn(v1.y, v2.y); \ |
| return ret; \ |
| } \ |
| extern half3 __attribute__((overloadable)) fn(half3 v1, half3 v2) { \ |
| half3 ret; \ |
| ret.x = fn(v1.x, v2.x); \ |
| ret.y = fn(v1.y, v2.y); \ |
| ret.z = fn(v1.z, v2.z); \ |
| return ret; \ |
| } \ |
| extern half4 __attribute__((overloadable)) fn(half4 v1, half4 v2) { \ |
| half4 ret; \ |
| ret.x = fn(v1.x, v2.x); \ |
| ret.y = fn(v1.y, v2.y); \ |
| ret.z = fn(v1.z, v2.z); \ |
| ret.w = fn(v1.w, v2.w); \ |
| return ret; \ |
| } \ |
| |
| HN_FUNC_HN(acos); |
| HN_FUNC_HN(acosh); |
| HN_FUNC_HN(acospi); |
| HN_FUNC_HN(asin); |
| HN_FUNC_HN(asinh); |
| HN_FUNC_HN(asinpi); |
| HN_FUNC_HN(atan); |
| HN_FUNC_HN(atanh); |
| HN_FUNC_HN(atanpi); |
| HN_FUNC_HN_HN(atan2); |
| HN_FUNC_HN_HN(atan2pi); |
| |
| HN_FUNC_HN(cbrt); |
| HN_FUNC_HN(ceil); |
| |
| extern half __attribute__((overloadable)) copysign(half x, half y); |
| SCALARIZE_HN_FUNC_HN_HN(copysign); |
| |
| HN_FUNC_HN(cos); |
| HN_FUNC_HN(cosh); |
| HN_FUNC_HN(cospi); |
| |
| extern half3 __attribute__((overloadable)) cross(half3 lhs, half3 rhs) { |
| half3 r; |
| r.x = lhs.y * rhs.z - lhs.z * rhs.y; |
| r.y = lhs.z * rhs.x - lhs.x * rhs.z; |
| r.z = lhs.x * rhs.y - lhs.y * rhs.x; |
| return r; |
| } |
| |
| extern half4 __attribute__((overloadable)) cross(half4 lhs, half4 rhs) { |
| half4 r; |
| r.x = lhs.y * rhs.z - lhs.z * rhs.y; |
| r.y = lhs.z * rhs.x - lhs.x * rhs.z; |
| r.z = lhs.x * rhs.y - lhs.y * rhs.x; |
| r.w = 0.f; |
| return r; |
| } |
| |
| HN_FUNC_HN(degrees); |
| H_FUNC_HN_HN(distance); |
| H_FUNC_HN_HN(dot); |
| |
| HN_FUNC_HN(erf); |
| HN_FUNC_HN(erfc); |
| HN_FUNC_HN(exp); |
| HN_FUNC_HN(exp10); |
| HN_FUNC_HN(exp2); |
| HN_FUNC_HN(expm1); |
| |
| HN_FUNC_HN(fabs); |
| HN_FUNC_HN_HN(fdim); |
| HN_FUNC_HN(floor); |
| HN_FUNC_HN_HN_HN(fma); |
| HN_FUNC_HN_HN(fmax); |
| HN_FUNC_HN_H(fmax); |
| HN_FUNC_HN_HN(fmin); |
| HN_FUNC_HN_H(fmin); |
| HN_FUNC_HN_HN(fmod); |
| |
| extern half __attribute__((overloadable)) fract(half v, half *iptr) { |
| // maxLessThanOne = 0.99951171875, the largest value < 1.0 |
| half maxLessThanOne; |
| SET_HALF_WORD(maxLessThanOne, 0x3bff); |
| |
| int i = (int) floor(v); |
| if (iptr) { |
| *iptr = i; |
| } |
| // return v - floor(v), if strictly less than one |
| return fmin(v - i, maxLessThanOne); |
| } |
| |
| SCALARIZE_HN_FUNC_HN_PHN(fract); |
| |
| extern half __attribute__((const, overloadable)) fract(half v) { |
| half unused; |
| return fract(v, &unused); |
| } |
| |
| extern half2 __attribute__((const, overloadable)) fract(half2 v) { |
| half2 unused; |
| return fract(v, &unused); |
| } |
| |
| extern half3 __attribute__((const, overloadable)) fract(half3 v) { |
| half3 unused; |
| return fract(v, &unused); |
| } |
| |
| extern half4 __attribute__((const, overloadable)) fract(half4 v) { |
| half4 unused; |
| return fract(v, &unused); |
| } |
| |
| extern half __attribute__((overloadable)) frexp(half x, int *eptr); |
| |
| extern half2 __attribute__((overloadable)) frexp(half2 v1, int2 *eptr) { |
| half2 ret; |
| int e[2]; |
| ret.x = frexp(v1.x, &e[0]); |
| ret.y = frexp(v1.y, &e[1]); |
| eptr->x = e[0]; |
| eptr->y = e[1]; |
| return ret; |
| } |
| |
| extern half3 __attribute__((overloadable)) frexp(half3 v1, int3 *eptr) { |
| half3 ret; |
| int e[3]; |
| ret.x = frexp(v1.x, &e[0]); |
| ret.y = frexp(v1.y, &e[1]); |
| ret.z = frexp(v1.z, &e[2]); |
| eptr->x = e[0]; |
| eptr->y = e[1]; |
| eptr->z = e[2]; |
| return ret; |
| } |
| |
| extern half4 __attribute__((overloadable)) frexp(half4 v1, int4 *eptr) { |
| half4 ret; |
| int e[4]; |
| ret.x = frexp(v1.x, &e[0]); |
| ret.y = frexp(v1.y, &e[1]); |
| ret.z = frexp(v1.z, &e[2]); |
| ret.w = frexp(v1.w, &e[3]); |
| eptr->x = e[0]; |
| eptr->y = e[1]; |
| eptr->z = e[2]; |
| eptr->w = e[3]; |
| return ret; |
| } |
| |
| HN_FUNC_HN_HN(hypot); |
| |
| extern int __attribute__((overloadable)) ilogb(half x); |
| |
| extern int2 __attribute__((overloadable)) ilogb(half2 v) { |
| int2 ret; |
| ret.x = ilogb(v.x); |
| ret.y = ilogb(v.y); |
| return ret; |
| } |
| extern int3 __attribute__((overloadable)) ilogb(half3 v) { |
| int3 ret; |
| ret.x = ilogb(v.x); |
| ret.y = ilogb(v.y); |
| ret.z = ilogb(v.z); |
| return ret; |
| } |
| extern int4 __attribute__((overloadable)) ilogb(half4 v) { |
| int4 ret; |
| ret.x = ilogb(v.x); |
| ret.y = ilogb(v.y); |
| ret.z = ilogb(v.z); |
| ret.w = ilogb(v.w); |
| return ret; |
| } |
| |
| HN_FUNC_HN_IN(ldexp); |
| extern half2 __attribute__((overloadable)) ldexp(half2 v, int exponent) { |
| return convert_half2(ldexp(convert_float2(v), exponent)); |
| } |
| extern half3 __attribute__((overloadable)) ldexp(half3 v, int exponent) { |
| return convert_half3(ldexp(convert_float3(v), exponent)); |
| } |
| extern half4 __attribute__((overloadable)) ldexp(half4 v, int exponent) { |
| return convert_half4(ldexp(convert_float4(v), exponent)); |
| } |
| |
| H_FUNC_HN(length); |
| HN_FUNC_HN(lgamma); |
| |
| extern half __attribute__((overloadable)) lgamma(half h, int *signp) { |
| return (half) lgamma((float) h, signp); |
| } |
| extern half2 __attribute__((overloadable)) lgamma(half2 v, int2 *signp) { |
| return convert_half2(lgamma(convert_float2(v), signp)); |
| } |
| extern half3 __attribute__((overloadable)) lgamma(half3 v, int3 *signp) { |
| return convert_half3(lgamma(convert_float3(v), signp)); |
| } |
| extern half4 __attribute__((overloadable)) lgamma(half4 v, int4 *signp) { |
| return convert_half4(lgamma(convert_float4(v), signp)); |
| } |
| |
| HN_FUNC_HN(log); |
| HN_FUNC_HN(log10); |
| HN_FUNC_HN(log1p); |
| HN_FUNC_HN(log2); |
| HN_FUNC_HN(logb); |
| |
| HN_FUNC_HN_HN_HN(mad); |
| HN_FUNC_HN_HN(max); |
| HN_FUNC_HN_H(max); // TODO can this be arch-specific similar to _Z3maxDv2_ff? |
| HN_FUNC_HN_HN(min); |
| HN_FUNC_HN_H(min); // TODO can this be arch-specific similar to _Z3minDv2_ff? |
| |
| extern half __attribute__((overloadable)) mix(half start, half stop, half amount) { |
| return start + (stop - start) * amount; |
| } |
| extern half2 __attribute__((overloadable)) mix(half2 start, half2 stop, half2 amount) { |
| return start + (stop - start) * amount; |
| } |
| extern half3 __attribute__((overloadable)) mix(half3 start, half3 stop, half3 amount) { |
| return start + (stop - start) * amount; |
| } |
| extern half4 __attribute__((overloadable)) mix(half4 start, half4 stop, half4 amount) { |
| return start + (stop - start) * amount; |
| } |
| extern half2 __attribute__((overloadable)) mix(half2 start, half2 stop, half amount) { |
| return start + (stop - start) * amount; |
| } |
| extern half3 __attribute__((overloadable)) mix(half3 start, half3 stop, half amount) { |
| return start + (stop - start) * amount; |
| } |
| extern half4 __attribute__((overloadable)) mix(half4 start, half4 stop, half amount) { |
| return start + (stop - start) * amount; |
| } |
| |
| extern half __attribute__((overloadable)) modf(half x, half *iptr); |
| SCALARIZE_HN_FUNC_HN_PHN(modf); |
| |
| half __attribute__((overloadable)) nan_half() { |
| unsigned short nan_short = kHalfPositiveInfinity | 0x0200; |
| half nan; |
| SET_HALF_WORD(nan, nan_short); |
| return nan; |
| } |
| |
| HN_FUNC_HN(normalize); |
| |
| extern half __attribute__((overloadable)) nextafter(half x, half y); |
| SCALARIZE_HN_FUNC_HN_HN(nextafter); |
| |
| HN_FUNC_HN_HN(pow); |
| HN_FUNC_HN_IN(pown); |
| HN_FUNC_HN_HN(powr); |
| HN_FUNC_HN(radians); |
| HN_FUNC_HN_HN(remainder); |
| |
| extern half __attribute__((overloadable)) remquo(half n, half d, int *quo) { |
| return (float) remquo((float) n, (float) d, quo); |
| } |
| extern half2 __attribute__((overloadable)) remquo(half2 n, half2 d, int2 *quo) { |
| return convert_half2(remquo(convert_float2(d), convert_float2(n), quo)); |
| } |
| extern half3 __attribute__((overloadable)) remquo(half3 n, half3 d, int3 *quo) { |
| return convert_half3(remquo(convert_float3(d), convert_float3(n), quo)); |
| } |
| extern half4 __attribute__((overloadable)) remquo(half4 n, half4 d, int4 *quo) { |
| return convert_half4(remquo(convert_float4(d), convert_float4(n), quo)); |
| } |
| |
| HN_FUNC_HN(rint); |
| HN_FUNC_HN_IN(rootn); |
| HN_FUNC_HN(round); |
| HN_FUNC_HN(rsqrt); |
| |
| extern half __attribute__((overloadable)) sign(half h) { |
| if (h > 0) return (half) 1.f; |
| if (h < 0) return (half) -1.f; |
| return h; |
| } |
| extern half2 __attribute__((overloadable)) sign(half2 v) { |
| half2 ret; |
| ret.x = sign(v.x); |
| ret.y = sign(v.y); |
| return ret; |
| } |
| extern half3 __attribute__((overloadable)) sign(half3 v) { |
| half3 ret; |
| ret.x = sign(v.x); |
| ret.y = sign(v.y); |
| ret.z = sign(v.z); |
| return ret; |
| } |
| extern half4 __attribute__((overloadable)) sign(half4 v) { |
| half4 ret; |
| ret.x = sign(v.x); |
| ret.y = sign(v.y); |
| ret.z = sign(v.z); |
| ret.w = sign(v.w); |
| return ret; |
| } |
| |
| HN_FUNC_HN(sin); |
| |
| extern half __attribute__((overloadable)) sincos(half v, half *cosptr) { |
| *cosptr = cos(v); |
| return sin(v); |
| } |
| // TODO verify if LLVM eliminates the duplicate convert_float2 |
| extern half2 __attribute__((overloadable)) sincos(half2 v, half2 *cosptr) { |
| *cosptr = cos(v); |
| return sin(v); |
| } |
| extern half3 __attribute__((overloadable)) sincos(half3 v, half3 *cosptr) { |
| *cosptr = cos(v); |
| return sin(v); |
| } |
| extern half4 __attribute__((overloadable)) sincos(half4 v, half4 *cosptr) { |
| *cosptr = cos(v); |
| return sin(v); |
| } |
| |
| HN_FUNC_HN(sinh); |
| HN_FUNC_HN(sinpi); |
| HN_FUNC_HN(sqrt); |
| |
| extern half __attribute__((overloadable)) step(half edge, half v) { |
| return (v < edge) ? 0.f : 1.f; |
| } |
| extern half2 __attribute__((overloadable)) step(half2 edge, half2 v) { |
| half2 r; |
| r.x = (v.x < edge.x) ? 0.f : 1.f; |
| r.y = (v.y < edge.y) ? 0.f : 1.f; |
| return r; |
| } |
| extern half3 __attribute__((overloadable)) step(half3 edge, half3 v) { |
| half3 r; |
| r.x = (v.x < edge.x) ? 0.f : 1.f; |
| r.y = (v.y < edge.y) ? 0.f : 1.f; |
| r.z = (v.z < edge.z) ? 0.f : 1.f; |
| return r; |
| } |
| extern half4 __attribute__((overloadable)) step(half4 edge, half4 v) { |
| half4 r; |
| r.x = (v.x < edge.x) ? 0.f : 1.f; |
| r.y = (v.y < edge.y) ? 0.f : 1.f; |
| r.z = (v.z < edge.z) ? 0.f : 1.f; |
| r.w = (v.w < edge.w) ? 0.f : 1.f; |
| return r; |
| } |
| extern half2 __attribute__((overloadable)) step(half2 edge, half v) { |
| half2 r; |
| r.x = (v < edge.x) ? 0.f : 1.f; |
| r.y = (v < edge.y) ? 0.f : 1.f; |
| return r; |
| } |
| extern half3 __attribute__((overloadable)) step(half3 edge, half v) { |
| half3 r; |
| r.x = (v < edge.x) ? 0.f : 1.f; |
| r.y = (v < edge.y) ? 0.f : 1.f; |
| r.z = (v < edge.z) ? 0.f : 1.f; |
| return r; |
| } |
| extern half4 __attribute__((overloadable)) step(half4 edge, half v) { |
| half4 r; |
| r.x = (v < edge.x) ? 0.f : 1.f; |
| r.y = (v < edge.y) ? 0.f : 1.f; |
| r.z = (v < edge.z) ? 0.f : 1.f; |
| r.w = (v < edge.w) ? 0.f : 1.f; |
| return r; |
| } |
| extern half2 __attribute__((overloadable)) step(half edge, half2 v) { |
| half2 r; |
| r.x = (v.x < edge) ? 0.f : 1.f; |
| r.y = (v.y < edge) ? 0.f : 1.f; |
| return r; |
| } |
| extern half3 __attribute__((overloadable)) step(half edge, half3 v) { |
| half3 r; |
| r.x = (v.x < edge) ? 0.f : 1.f; |
| r.y = (v.y < edge) ? 0.f : 1.f; |
| r.z = (v.z < edge) ? 0.f : 1.f; |
| return r; |
| } |
| extern half4 __attribute__((overloadable)) step(half edge, half4 v) { |
| half4 r; |
| r.x = (v.x < edge) ? 0.f : 1.f; |
| r.y = (v.y < edge) ? 0.f : 1.f; |
| r.z = (v.z < edge) ? 0.f : 1.f; |
| r.w = (v.w < edge) ? 0.f : 1.f; |
| return r; |
| } |
| |
| HN_FUNC_HN(tan); |
| HN_FUNC_HN(tanh); |
| HN_FUNC_HN(tanpi); |
| HN_FUNC_HN(tgamma); |
| HN_FUNC_HN(trunc); // TODO: rethink: needs half-specific implementation? |
| |
| HN_FUNC_HN(native_acos); |
| HN_FUNC_HN(native_acosh); |
| HN_FUNC_HN(native_acospi); |
| HN_FUNC_HN(native_asin); |
| HN_FUNC_HN(native_asinh); |
| HN_FUNC_HN(native_asinpi); |
| HN_FUNC_HN(native_atan); |
| HN_FUNC_HN(native_atanh); |
| HN_FUNC_HN(native_atanpi); |
| HN_FUNC_HN_HN(native_atan2); |
| HN_FUNC_HN_HN(native_atan2pi); |
| |
| HN_FUNC_HN(native_cbrt); |
| HN_FUNC_HN(native_cos); |
| HN_FUNC_HN(native_cosh); |
| HN_FUNC_HN(native_cospi); |
| |
| H_FUNC_HN_HN(native_distance); |
| HN_FUNC_HN_HN(native_divide); |
| |
| HN_FUNC_HN(native_exp); |
| HN_FUNC_HN(native_exp10); |
| HN_FUNC_HN(native_exp2); |
| HN_FUNC_HN(native_expm1); |
| |
| HN_FUNC_HN_HN(native_hypot); |
| H_FUNC_HN(native_length); |
| |
| HN_FUNC_HN(native_log); |
| HN_FUNC_HN(native_log10); |
| HN_FUNC_HN(native_log1p); |
| HN_FUNC_HN(native_log2); |
| |
| HN_FUNC_HN(native_normalize); |
| |
| HN_FUNC_HN_HN(native_powr); // TODO are parameter limits different for half? |
| |
| HN_FUNC_HN(native_recip); |
| HN_FUNC_HN_IN(native_rootn); |
| HN_FUNC_HN(native_rsqrt); |
| |
| HN_FUNC_HN(native_sin); |
| |
| extern half __attribute__((overloadable)) native_sincos(half v, half *cosptr) { |
| return sincos(v, cosptr); |
| } |
| extern half2 __attribute__((overloadable)) native_sincos(half2 v, half2 *cosptr) { |
| return sincos(v, cosptr); |
| } |
| extern half3 __attribute__((overloadable)) native_sincos(half3 v, half3 *cosptr) { |
| return sincos(v, cosptr); |
| } |
| extern half4 __attribute__((overloadable)) native_sincos(half4 v, half4 *cosptr) { |
| return sincos(v, cosptr); |
| } |
| |
| HN_FUNC_HN(native_sinh); |
| HN_FUNC_HN(native_sinpi); |
| HN_FUNC_HN(native_sqrt); |
| |
| HN_FUNC_HN(native_tan); |
| HN_FUNC_HN(native_tanh); |
| HN_FUNC_HN(native_tanpi); |
| |
| #undef HN_FUNC_HN |
| #undef HN_FUNC_HN_HN |
| #undef HN_FUNC_HN_H |
| #undef HN_FUNC_HN_HN_HN |
| #undef HN_FUNC_HN_IN |
| #undef H_FUNC_HN |
| #undef H_FUNC_HN_HN |
| #undef SCALARIZE_HN_FUNC_HN_HN |
| |
| // exports unavailable mathlib functions to compat lib |
| |
| #ifdef RS_COMPATIBILITY_LIB |
| |
| // !!! DANGER !!! |
| // These functions are potentially missing on older Android versions. |
| // Work around the issue by supplying our own variants. |
| // !!! DANGER !!! |
| |
| // The logbl() implementation is taken from the latest bionic/, since |
| // double == long double on Android. |
| extern "C" long double logbl(long double x) { return logb(x); } |
| |
| // __aeabi_idiv0 is a missing function in libcompiler_rt.so, so we just |
| // pick the simplest implementation based on the ARM EABI doc. |
| extern "C" int __aeabi_idiv0(int v) { return v; } |
| |
| #endif // compatibility lib |