| /* |
| * Copyright © 2009,2012 Intel Corporation |
| * Copyright © 1988-2004 Keith Packard and Bart Massey. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Except as contained in this notice, the names of the authors |
| * or their institutions shall not be used in advertising or |
| * otherwise to promote the sale, use or other dealings in this |
| * Software without prior written authorization from the |
| * authors. |
| * |
| * Authors: |
| * Eric Anholt <[email protected]> |
| * Keith Packard <[email protected]> |
| */ |
| |
| /** |
| * Implements an open-addressing, linear-reprobing hash table. |
| * |
| * For more information, see: |
| * |
| * http://cgit.freedesktop.org/~anholt/hash_table/tree/README |
| */ |
| |
| #include <stdlib.h> |
| #include <string.h> |
| #include <assert.h> |
| |
| #include "hash_table.h" |
| #include "ralloc.h" |
| #include "macros.h" |
| #include "u_memory.h" |
| #include "fast_urem_by_const.h" |
| #include "util/u_memory.h" |
| |
| #define XXH_INLINE_ALL |
| #include "xxhash.h" |
| |
| /** |
| * Magic number that gets stored outside of the struct hash_table. |
| * |
| * The hash table needs a particular pointer to be the marker for a key that |
| * was deleted from the table, along with NULL for the "never allocated in the |
| * table" marker. Legacy GL allows any GLuint to be used as a GL object name, |
| * and we use a 1:1 mapping from GLuints to key pointers, so we need to be |
| * able to track a GLuint that happens to match the deleted key outside of |
| * struct hash_table. We tell the hash table to use "1" as the deleted key |
| * value, so that we test the deleted-key-in-the-table path as best we can. |
| */ |
| #define DELETED_KEY_VALUE 1 |
| |
| static inline void * |
| uint_key(unsigned id) |
| { |
| return (void *)(uintptr_t) id; |
| } |
| |
| static const uint32_t deleted_key_value; |
| |
| /** |
| * From Knuth -- a good choice for hash/rehash values is p, p-2 where |
| * p and p-2 are both prime. These tables are sized to have an extra 10% |
| * free to avoid exponential performance degradation as the hash table fills |
| */ |
| static const struct { |
| uint32_t max_entries, size, rehash; |
| uint64_t size_magic, rehash_magic; |
| } hash_sizes[] = { |
| #define ENTRY(max_entries, size, rehash) \ |
| { max_entries, size, rehash, \ |
| REMAINDER_MAGIC(size), REMAINDER_MAGIC(rehash) } |
| |
| ENTRY(2, 5, 3 ), |
| ENTRY(4, 7, 5 ), |
| ENTRY(8, 13, 11 ), |
| ENTRY(16, 19, 17 ), |
| ENTRY(32, 43, 41 ), |
| ENTRY(64, 73, 71 ), |
| ENTRY(128, 151, 149 ), |
| ENTRY(256, 283, 281 ), |
| ENTRY(512, 571, 569 ), |
| ENTRY(1024, 1153, 1151 ), |
| ENTRY(2048, 2269, 2267 ), |
| ENTRY(4096, 4519, 4517 ), |
| ENTRY(8192, 9013, 9011 ), |
| ENTRY(16384, 18043, 18041 ), |
| ENTRY(32768, 36109, 36107 ), |
| ENTRY(65536, 72091, 72089 ), |
| ENTRY(131072, 144409, 144407 ), |
| ENTRY(262144, 288361, 288359 ), |
| ENTRY(524288, 576883, 576881 ), |
| ENTRY(1048576, 1153459, 1153457 ), |
| ENTRY(2097152, 2307163, 2307161 ), |
| ENTRY(4194304, 4613893, 4613891 ), |
| ENTRY(8388608, 9227641, 9227639 ), |
| ENTRY(16777216, 18455029, 18455027 ), |
| ENTRY(33554432, 36911011, 36911009 ), |
| ENTRY(67108864, 73819861, 73819859 ), |
| ENTRY(134217728, 147639589, 147639587 ), |
| ENTRY(268435456, 295279081, 295279079 ), |
| ENTRY(536870912, 590559793, 590559791 ), |
| ENTRY(1073741824, 1181116273, 1181116271 ), |
| ENTRY(2147483648ul, 2362232233ul, 2362232231ul ) |
| }; |
| |
| ASSERTED static inline bool |
| key_pointer_is_reserved(const struct hash_table *ht, const void *key) |
| { |
| return key == NULL || key == ht->deleted_key; |
| } |
| |
| static int |
| entry_is_free(const struct hash_entry *entry) |
| { |
| return entry->key == NULL; |
| } |
| |
| static int |
| entry_is_deleted(const struct hash_table *ht, struct hash_entry *entry) |
| { |
| return entry->key == ht->deleted_key; |
| } |
| |
| static int |
| entry_is_present(const struct hash_table *ht, struct hash_entry *entry) |
| { |
| return entry->key != NULL && entry->key != ht->deleted_key; |
| } |
| |
| bool |
| _mesa_hash_table_init(struct hash_table *ht, |
| void *mem_ctx, |
| uint32_t (*key_hash_function)(const void *key), |
| bool (*key_equals_function)(const void *a, |
| const void *b)) |
| { |
| ht->size_index = 0; |
| ht->size = hash_sizes[ht->size_index].size; |
| ht->rehash = hash_sizes[ht->size_index].rehash; |
| ht->size_magic = hash_sizes[ht->size_index].size_magic; |
| ht->rehash_magic = hash_sizes[ht->size_index].rehash_magic; |
| ht->max_entries = hash_sizes[ht->size_index].max_entries; |
| ht->key_hash_function = key_hash_function; |
| ht->key_equals_function = key_equals_function; |
| ht->table = rzalloc_array(mem_ctx, struct hash_entry, ht->size); |
| ht->entries = 0; |
| ht->deleted_entries = 0; |
| ht->deleted_key = &deleted_key_value; |
| |
| return ht->table != NULL; |
| } |
| |
| struct hash_table * |
| _mesa_hash_table_create(void *mem_ctx, |
| uint32_t (*key_hash_function)(const void *key), |
| bool (*key_equals_function)(const void *a, |
| const void *b)) |
| { |
| struct hash_table *ht; |
| |
| /* mem_ctx is used to allocate the hash table, but the hash table is used |
| * to allocate all of the suballocations. |
| */ |
| ht = ralloc(mem_ctx, struct hash_table); |
| if (ht == NULL) |
| return NULL; |
| |
| if (!_mesa_hash_table_init(ht, ht, key_hash_function, key_equals_function)) { |
| ralloc_free(ht); |
| return NULL; |
| } |
| |
| return ht; |
| } |
| |
| static uint32_t |
| key_u32_hash(const void *key) |
| { |
| uint32_t u = (uint32_t)(uintptr_t)key; |
| return _mesa_hash_uint(&u); |
| } |
| |
| static bool |
| key_u32_equals(const void *a, const void *b) |
| { |
| return (uint32_t)(uintptr_t)a == (uint32_t)(uintptr_t)b; |
| } |
| |
| /* key == 0 and key == deleted_key are not allowed */ |
| struct hash_table * |
| _mesa_hash_table_create_u32_keys(void *mem_ctx) |
| { |
| return _mesa_hash_table_create(mem_ctx, key_u32_hash, key_u32_equals); |
| } |
| |
| struct hash_table * |
| _mesa_hash_table_clone(struct hash_table *src, void *dst_mem_ctx) |
| { |
| struct hash_table *ht; |
| |
| ht = ralloc(dst_mem_ctx, struct hash_table); |
| if (ht == NULL) |
| return NULL; |
| |
| memcpy(ht, src, sizeof(struct hash_table)); |
| |
| ht->table = ralloc_array(ht, struct hash_entry, ht->size); |
| if (ht->table == NULL) { |
| ralloc_free(ht); |
| return NULL; |
| } |
| |
| memcpy(ht->table, src->table, ht->size * sizeof(struct hash_entry)); |
| |
| return ht; |
| } |
| |
| /** |
| * Frees the given hash table. |
| * |
| * If delete_function is passed, it gets called on each entry present before |
| * freeing. |
| */ |
| void |
| _mesa_hash_table_destroy(struct hash_table *ht, |
| void (*delete_function)(struct hash_entry *entry)) |
| { |
| if (!ht) |
| return; |
| |
| if (delete_function) { |
| hash_table_foreach(ht, entry) { |
| delete_function(entry); |
| } |
| } |
| ralloc_free(ht); |
| } |
| |
| static void |
| hash_table_clear_fast(struct hash_table *ht) |
| { |
| memset(ht->table, 0, sizeof(struct hash_entry) * hash_sizes[ht->size_index].size); |
| ht->entries = ht->deleted_entries = 0; |
| } |
| |
| /** |
| * Deletes all entries of the given hash table without deleting the table |
| * itself or changing its structure. |
| * |
| * If delete_function is passed, it gets called on each entry present. |
| */ |
| void |
| _mesa_hash_table_clear(struct hash_table *ht, |
| void (*delete_function)(struct hash_entry *entry)) |
| { |
| if (!ht) |
| return; |
| |
| struct hash_entry *entry; |
| |
| if (delete_function) { |
| for (entry = ht->table; entry != ht->table + ht->size; entry++) { |
| if (entry_is_present(ht, entry)) |
| delete_function(entry); |
| |
| entry->key = NULL; |
| } |
| ht->entries = 0; |
| ht->deleted_entries = 0; |
| } else |
| hash_table_clear_fast(ht); |
| } |
| |
| /** Sets the value of the key pointer used for deleted entries in the table. |
| * |
| * The assumption is that usually keys are actual pointers, so we use a |
| * default value of a pointer to an arbitrary piece of storage in the library. |
| * But in some cases a consumer wants to store some other sort of value in the |
| * table, like a uint32_t, in which case that pointer may conflict with one of |
| * their valid keys. This lets that user select a safe value. |
| * |
| * This must be called before any keys are actually deleted from the table. |
| */ |
| void |
| _mesa_hash_table_set_deleted_key(struct hash_table *ht, const void *deleted_key) |
| { |
| ht->deleted_key = deleted_key; |
| } |
| |
| static struct hash_entry * |
| hash_table_search(struct hash_table *ht, uint32_t hash, const void *key) |
| { |
| assert(!key_pointer_is_reserved(ht, key)); |
| |
| uint32_t size = ht->size; |
| uint32_t start_hash_address = util_fast_urem32(hash, size, ht->size_magic); |
| uint32_t double_hash = 1 + util_fast_urem32(hash, ht->rehash, |
| ht->rehash_magic); |
| uint32_t hash_address = start_hash_address; |
| |
| do { |
| struct hash_entry *entry = ht->table + hash_address; |
| |
| if (entry_is_free(entry)) { |
| return NULL; |
| } else if (entry_is_present(ht, entry) && entry->hash == hash) { |
| if (ht->key_equals_function(key, entry->key)) { |
| return entry; |
| } |
| } |
| |
| hash_address += double_hash; |
| if (hash_address >= size) |
| hash_address -= size; |
| } while (hash_address != start_hash_address); |
| |
| return NULL; |
| } |
| |
| /** |
| * Finds a hash table entry with the given key and hash of that key. |
| * |
| * Returns NULL if no entry is found. Note that the data pointer may be |
| * modified by the user. |
| */ |
| struct hash_entry * |
| _mesa_hash_table_search(struct hash_table *ht, const void *key) |
| { |
| assert(ht->key_hash_function); |
| return hash_table_search(ht, ht->key_hash_function(key), key); |
| } |
| |
| struct hash_entry * |
| _mesa_hash_table_search_pre_hashed(struct hash_table *ht, uint32_t hash, |
| const void *key) |
| { |
| assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key)); |
| return hash_table_search(ht, hash, key); |
| } |
| |
| static struct hash_entry * |
| hash_table_insert(struct hash_table *ht, uint32_t hash, |
| const void *key, void *data); |
| |
| static void |
| hash_table_insert_rehash(struct hash_table *ht, uint32_t hash, |
| const void *key, void *data) |
| { |
| uint32_t size = ht->size; |
| uint32_t start_hash_address = util_fast_urem32(hash, size, ht->size_magic); |
| uint32_t double_hash = 1 + util_fast_urem32(hash, ht->rehash, |
| ht->rehash_magic); |
| uint32_t hash_address = start_hash_address; |
| do { |
| struct hash_entry *entry = ht->table + hash_address; |
| |
| if (likely(entry->key == NULL)) { |
| entry->hash = hash; |
| entry->key = key; |
| entry->data = data; |
| return; |
| } |
| |
| hash_address += double_hash; |
| if (hash_address >= size) |
| hash_address -= size; |
| } while (true); |
| } |
| |
| static void |
| _mesa_hash_table_rehash(struct hash_table *ht, unsigned new_size_index) |
| { |
| struct hash_table old_ht; |
| struct hash_entry *table; |
| |
| if (ht->size_index == new_size_index && ht->deleted_entries == ht->max_entries) { |
| hash_table_clear_fast(ht); |
| assert(!ht->entries); |
| return; |
| } |
| |
| if (new_size_index >= ARRAY_SIZE(hash_sizes)) |
| return; |
| |
| table = rzalloc_array(ralloc_parent(ht->table), struct hash_entry, |
| hash_sizes[new_size_index].size); |
| if (table == NULL) |
| return; |
| |
| old_ht = *ht; |
| |
| ht->table = table; |
| ht->size_index = new_size_index; |
| ht->size = hash_sizes[ht->size_index].size; |
| ht->rehash = hash_sizes[ht->size_index].rehash; |
| ht->size_magic = hash_sizes[ht->size_index].size_magic; |
| ht->rehash_magic = hash_sizes[ht->size_index].rehash_magic; |
| ht->max_entries = hash_sizes[ht->size_index].max_entries; |
| ht->entries = 0; |
| ht->deleted_entries = 0; |
| |
| hash_table_foreach(&old_ht, entry) { |
| hash_table_insert_rehash(ht, entry->hash, entry->key, entry->data); |
| } |
| |
| ht->entries = old_ht.entries; |
| |
| ralloc_free(old_ht.table); |
| } |
| |
| static struct hash_entry * |
| hash_table_insert(struct hash_table *ht, uint32_t hash, |
| const void *key, void *data) |
| { |
| struct hash_entry *available_entry = NULL; |
| |
| assert(!key_pointer_is_reserved(ht, key)); |
| |
| if (ht->entries >= ht->max_entries) { |
| _mesa_hash_table_rehash(ht, ht->size_index + 1); |
| } else if (ht->deleted_entries + ht->entries >= ht->max_entries) { |
| _mesa_hash_table_rehash(ht, ht->size_index); |
| } |
| |
| uint32_t size = ht->size; |
| uint32_t start_hash_address = util_fast_urem32(hash, size, ht->size_magic); |
| uint32_t double_hash = 1 + util_fast_urem32(hash, ht->rehash, |
| ht->rehash_magic); |
| uint32_t hash_address = start_hash_address; |
| do { |
| struct hash_entry *entry = ht->table + hash_address; |
| |
| if (!entry_is_present(ht, entry)) { |
| /* Stash the first available entry we find */ |
| if (available_entry == NULL) |
| available_entry = entry; |
| if (entry_is_free(entry)) |
| break; |
| } |
| |
| /* Implement replacement when another insert happens |
| * with a matching key. This is a relatively common |
| * feature of hash tables, with the alternative |
| * generally being "insert the new value as well, and |
| * return it first when the key is searched for". |
| * |
| * Note that the hash table doesn't have a delete |
| * callback. If freeing of old data pointers is |
| * required to avoid memory leaks, perform a search |
| * before inserting. |
| */ |
| if (!entry_is_deleted(ht, entry) && |
| entry->hash == hash && |
| ht->key_equals_function(key, entry->key)) { |
| entry->key = key; |
| entry->data = data; |
| return entry; |
| } |
| |
| hash_address += double_hash; |
| if (hash_address >= size) |
| hash_address -= size; |
| } while (hash_address != start_hash_address); |
| |
| if (available_entry) { |
| if (entry_is_deleted(ht, available_entry)) |
| ht->deleted_entries--; |
| available_entry->hash = hash; |
| available_entry->key = key; |
| available_entry->data = data; |
| ht->entries++; |
| return available_entry; |
| } |
| |
| /* We could hit here if a required resize failed. An unchecked-malloc |
| * application could ignore this result. |
| */ |
| return NULL; |
| } |
| |
| /** |
| * Inserts the key with the given hash into the table. |
| * |
| * Note that insertion may rearrange the table on a resize or rehash, |
| * so previously found hash_entries are no longer valid after this function. |
| */ |
| struct hash_entry * |
| _mesa_hash_table_insert(struct hash_table *ht, const void *key, void *data) |
| { |
| assert(ht->key_hash_function); |
| return hash_table_insert(ht, ht->key_hash_function(key), key, data); |
| } |
| |
| struct hash_entry * |
| _mesa_hash_table_insert_pre_hashed(struct hash_table *ht, uint32_t hash, |
| const void *key, void *data) |
| { |
| assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key)); |
| return hash_table_insert(ht, hash, key, data); |
| } |
| |
| /** |
| * This function deletes the given hash table entry. |
| * |
| * Note that deletion doesn't otherwise modify the table, so an iteration over |
| * the table deleting entries is safe. |
| */ |
| void |
| _mesa_hash_table_remove(struct hash_table *ht, |
| struct hash_entry *entry) |
| { |
| if (!entry) |
| return; |
| |
| entry->key = ht->deleted_key; |
| ht->entries--; |
| ht->deleted_entries++; |
| } |
| |
| /** |
| * Removes the entry with the corresponding key, if exists. |
| */ |
| void _mesa_hash_table_remove_key(struct hash_table *ht, |
| const void *key) |
| { |
| _mesa_hash_table_remove(ht, _mesa_hash_table_search(ht, key)); |
| } |
| |
| /** |
| * This function is an iterator over the hash_table when no deleted entries are present. |
| * |
| * Pass in NULL for the first entry, as in the start of a for loop. |
| */ |
| struct hash_entry * |
| _mesa_hash_table_next_entry_unsafe(const struct hash_table *ht, struct hash_entry *entry) |
| { |
| assert(!ht->deleted_entries); |
| if (!ht->entries) |
| return NULL; |
| if (entry == NULL) |
| entry = ht->table; |
| else |
| entry = entry + 1; |
| if (entry != ht->table + ht->size) |
| return entry->key ? entry : _mesa_hash_table_next_entry_unsafe(ht, entry); |
| |
| return NULL; |
| } |
| |
| /** |
| * This function is an iterator over the hash table. |
| * |
| * Pass in NULL for the first entry, as in the start of a for loop. Note that |
| * an iteration over the table is O(table_size) not O(entries). |
| */ |
| struct hash_entry * |
| _mesa_hash_table_next_entry(struct hash_table *ht, |
| struct hash_entry *entry) |
| { |
| if (entry == NULL) |
| entry = ht->table; |
| else |
| entry = entry + 1; |
| |
| for (; entry != ht->table + ht->size; entry++) { |
| if (entry_is_present(ht, entry)) { |
| return entry; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * Returns a random entry from the hash table. |
| * |
| * This may be useful in implementing random replacement (as opposed |
| * to just removing everything) in caches based on this hash table |
| * implementation. @predicate may be used to filter entries, or may |
| * be set to NULL for no filtering. |
| */ |
| struct hash_entry * |
| _mesa_hash_table_random_entry(struct hash_table *ht, |
| bool (*predicate)(struct hash_entry *entry)) |
| { |
| struct hash_entry *entry; |
| uint32_t i = rand() % ht->size; |
| |
| if (ht->entries == 0) |
| return NULL; |
| |
| for (entry = ht->table + i; entry != ht->table + ht->size; entry++) { |
| if (entry_is_present(ht, entry) && |
| (!predicate || predicate(entry))) { |
| return entry; |
| } |
| } |
| |
| for (entry = ht->table; entry != ht->table + i; entry++) { |
| if (entry_is_present(ht, entry) && |
| (!predicate || predicate(entry))) { |
| return entry; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| |
| uint32_t |
| _mesa_hash_data(const void *data, size_t size) |
| { |
| return XXH32(data, size, 0); |
| } |
| |
| uint32_t |
| _mesa_hash_data_with_seed(const void *data, size_t size, uint32_t seed) |
| { |
| return XXH32(data, size, seed); |
| } |
| |
| uint32_t |
| _mesa_hash_int(const void *key) |
| { |
| return XXH32(key, sizeof(int), 0); |
| } |
| |
| uint32_t |
| _mesa_hash_uint(const void *key) |
| { |
| return XXH32(key, sizeof(unsigned), 0); |
| } |
| |
| uint32_t |
| _mesa_hash_u32(const void *key) |
| { |
| return XXH32(key, 4, 0); |
| } |
| |
| /** FNV-1a string hash implementation */ |
| uint32_t |
| _mesa_hash_string(const void *_key) |
| { |
| return _mesa_hash_string_with_length(_key, strlen((const char *)_key)); |
| } |
| |
| uint32_t |
| _mesa_hash_string_with_length(const void *_key, unsigned length) |
| { |
| uint32_t hash = 0; |
| const char *key = _key; |
| #if defined(_WIN64) || defined(__x86_64__) |
| hash = (uint32_t)XXH64(key, length, hash); |
| #else |
| hash = XXH32(key, length, hash); |
| #endif |
| return hash; |
| } |
| |
| uint32_t |
| _mesa_hash_pointer(const void *pointer) |
| { |
| uintptr_t num = (uintptr_t) pointer; |
| return (uint32_t) ((num >> 2) ^ (num >> 6) ^ (num >> 10) ^ (num >> 14)); |
| } |
| |
| bool |
| _mesa_key_int_equal(const void *a, const void *b) |
| { |
| return *((const int *)a) == *((const int *)b); |
| } |
| |
| bool |
| _mesa_key_uint_equal(const void *a, const void *b) |
| { |
| |
| return *((const unsigned *)a) == *((const unsigned *)b); |
| } |
| |
| bool |
| _mesa_key_u32_equal(const void *a, const void *b) |
| { |
| return *((const uint32_t *)a) == *((const uint32_t *)b); |
| } |
| |
| /** |
| * String compare function for use as the comparison callback in |
| * _mesa_hash_table_create(). |
| */ |
| bool |
| _mesa_key_string_equal(const void *a, const void *b) |
| { |
| return strcmp(a, b) == 0; |
| } |
| |
| bool |
| _mesa_key_pointer_equal(const void *a, const void *b) |
| { |
| return a == b; |
| } |
| |
| /** |
| * Helper to create a hash table with pointer keys. |
| */ |
| struct hash_table * |
| _mesa_pointer_hash_table_create(void *mem_ctx) |
| { |
| return _mesa_hash_table_create(mem_ctx, _mesa_hash_pointer, |
| _mesa_key_pointer_equal); |
| } |
| |
| |
| bool |
| _mesa_hash_table_reserve(struct hash_table *ht, unsigned size) |
| { |
| if (size < ht->max_entries) |
| return true; |
| for (unsigned i = ht->size_index + 1; i < ARRAY_SIZE(hash_sizes); i++) { |
| if (hash_sizes[i].max_entries >= size) { |
| _mesa_hash_table_rehash(ht, i); |
| break; |
| } |
| } |
| return ht->max_entries >= size; |
| } |
| |
| /** |
| * Hash table wrapper which supports 64-bit keys. |
| * |
| * TODO: unify all hash table implementations. |
| */ |
| |
| struct hash_key_u64 { |
| uint64_t value; |
| }; |
| |
| static uint32_t |
| key_u64_hash(const void *key) |
| { |
| return _mesa_hash_data(key, sizeof(struct hash_key_u64)); |
| } |
| |
| static bool |
| key_u64_equals(const void *a, const void *b) |
| { |
| const struct hash_key_u64 *aa = a; |
| const struct hash_key_u64 *bb = b; |
| |
| return aa->value == bb->value; |
| } |
| |
| #define FREED_KEY_VALUE 0 |
| |
| struct hash_table_u64 * |
| _mesa_hash_table_u64_create(void *mem_ctx) |
| { |
| STATIC_ASSERT(FREED_KEY_VALUE != DELETED_KEY_VALUE); |
| struct hash_table_u64 *ht; |
| |
| ht = rzalloc(mem_ctx, struct hash_table_u64); |
| if (!ht) |
| return NULL; |
| |
| if (sizeof(void *) == 8) { |
| ht->table = _mesa_hash_table_create(ht, _mesa_hash_pointer, |
| _mesa_key_pointer_equal); |
| } else { |
| ht->table = _mesa_hash_table_create(ht, key_u64_hash, |
| key_u64_equals); |
| } |
| |
| if (ht->table) |
| _mesa_hash_table_set_deleted_key(ht->table, uint_key(DELETED_KEY_VALUE)); |
| |
| return ht; |
| } |
| |
| static void |
| _mesa_hash_table_u64_delete_key(struct hash_entry *entry) |
| { |
| if (sizeof(void *) == 8) |
| return; |
| |
| struct hash_key_u64 *_key = (struct hash_key_u64 *)entry->key; |
| |
| if (_key) |
| free(_key); |
| } |
| |
| void |
| _mesa_hash_table_u64_clear(struct hash_table_u64 *ht) |
| { |
| if (!ht) |
| return; |
| |
| _mesa_hash_table_clear(ht->table, _mesa_hash_table_u64_delete_key); |
| ht->freed_key_data = NULL; |
| ht->deleted_key_data = NULL; |
| } |
| |
| void |
| _mesa_hash_table_u64_destroy(struct hash_table_u64 *ht) |
| { |
| if (!ht) |
| return; |
| ralloc_free(ht); |
| } |
| |
| void |
| _mesa_hash_table_u64_insert(struct hash_table_u64 *ht, uint64_t key, |
| void *data) |
| { |
| if (key == FREED_KEY_VALUE) { |
| ht->freed_key_data = data; |
| return; |
| } |
| |
| if (key == DELETED_KEY_VALUE) { |
| ht->deleted_key_data = data; |
| return; |
| } |
| |
| if (sizeof(void *) == 8) { |
| _mesa_hash_table_insert(ht->table, (void *)(uintptr_t)key, data); |
| } else { |
| struct hash_key_u64 *_key = CALLOC_STRUCT(hash_key_u64); |
| |
| if (!_key) |
| return; |
| _key->value = key; |
| |
| _mesa_hash_table_insert(ht->table, _key, data); |
| } |
| } |
| |
| static struct hash_entry * |
| hash_table_u64_search(struct hash_table_u64 *ht, uint64_t key) |
| { |
| if (sizeof(void *) == 8) { |
| return _mesa_hash_table_search(ht->table, (void *)(uintptr_t)key); |
| } else { |
| struct hash_key_u64 _key = { .value = key }; |
| return _mesa_hash_table_search(ht->table, &_key); |
| } |
| } |
| |
| void * |
| _mesa_hash_table_u64_search(struct hash_table_u64 *ht, uint64_t key) |
| { |
| struct hash_entry *entry; |
| |
| if (key == FREED_KEY_VALUE) |
| return ht->freed_key_data; |
| |
| if (key == DELETED_KEY_VALUE) |
| return ht->deleted_key_data; |
| |
| entry = hash_table_u64_search(ht, key); |
| if (!entry) |
| return NULL; |
| |
| return entry->data; |
| } |
| |
| void |
| _mesa_hash_table_u64_remove(struct hash_table_u64 *ht, uint64_t key) |
| { |
| struct hash_entry *entry; |
| |
| if (key == FREED_KEY_VALUE) { |
| ht->freed_key_data = NULL; |
| return; |
| } |
| |
| if (key == DELETED_KEY_VALUE) { |
| ht->deleted_key_data = NULL; |
| return; |
| } |
| |
| entry = hash_table_u64_search(ht, key); |
| if (!entry) |
| return; |
| |
| if (sizeof(void *) == 8) { |
| _mesa_hash_table_remove(ht->table, entry); |
| } else { |
| struct hash_key *_key = (struct hash_key *)entry->key; |
| |
| _mesa_hash_table_remove(ht->table, entry); |
| free(_key); |
| } |
| } |