| /* |
| * Copyright © 2010 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| */ |
| |
| /** |
| * \file ralloc.h |
| * |
| * ralloc: a recursive memory allocator |
| * |
| * The ralloc memory allocator creates a hierarchy of allocated |
| * objects. Every allocation is in reference to some parent, and |
| * every allocated object can in turn be used as the parent of a |
| * subsequent allocation. This allows for extremely convenient |
| * discarding of an entire tree/sub-tree of allocations by calling |
| * ralloc_free on any particular object to free it and all of its |
| * children. |
| * |
| * The conceptual working of ralloc was directly inspired by Andrew |
| * Tridgell's talloc, but ralloc is an independent implementation |
| * released under the MIT license and tuned for Mesa. |
| * |
| * talloc is more sophisticated than ralloc in that it includes reference |
| * counting and useful debugging features. However, it is released under |
| * a non-permissive open source license. |
| */ |
| |
| #ifndef RALLOC_H |
| #define RALLOC_H |
| |
| #include <stddef.h> |
| #include <stdarg.h> |
| #include <stdbool.h> |
| |
| #include "macros.h" |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| /** |
| * \def ralloc(ctx, type) |
| * Allocate a new object chained off of the given context. |
| * |
| * This is equivalent to: |
| * \code |
| * ((type *) ralloc_size(ctx, sizeof(type)) |
| * \endcode |
| */ |
| #define ralloc(ctx, type) ((type *) ralloc_size(ctx, sizeof(type))) |
| |
| /** |
| * \def rzalloc(ctx, type) |
| * Allocate a new object out of the given context and initialize it to zero. |
| * |
| * This is equivalent to: |
| * \code |
| * ((type *) rzalloc_size(ctx, sizeof(type)) |
| * \endcode |
| */ |
| #define rzalloc(ctx, type) ((type *) rzalloc_size(ctx, sizeof(type))) |
| |
| /** |
| * Allocate a new ralloc context. |
| * |
| * While any ralloc'd pointer can be used as a context, sometimes it is useful |
| * to simply allocate a context with no associated memory. |
| * |
| * It is equivalent to: |
| * \code |
| * ((type *) ralloc_size(ctx, 0) |
| * \endcode |
| */ |
| void *ralloc_context(const void *ctx); |
| |
| /** |
| * Allocate memory chained off of the given context. |
| * |
| * This is the core allocation routine which is used by all others. It |
| * simply allocates storage for \p size bytes and returns the pointer, |
| * similar to \c malloc. |
| */ |
| void *ralloc_size(const void *ctx, size_t size) MALLOCLIKE; |
| |
| /** |
| * Allocate zero-initialized memory chained off of the given context. |
| * |
| * This is similar to \c calloc with a size of 1. |
| */ |
| void *rzalloc_size(const void *ctx, size_t size) MALLOCLIKE; |
| |
| /** |
| * Resize a piece of ralloc-managed memory, preserving data. |
| * |
| * Similar to \c realloc. Unlike C89, passing 0 for \p size does not free the |
| * memory. Instead, it resizes it to a 0-byte ralloc context, just like |
| * calling ralloc_size(ctx, 0). This is different from talloc. |
| * |
| * \param ctx The context to use for new allocation. If \p ptr != NULL, |
| * it must be the same as ralloc_parent(\p ptr). |
| * \param ptr Pointer to the memory to be resized. May be NULL. |
| * \param size The amount of memory to allocate, in bytes. |
| */ |
| void *reralloc_size(const void *ctx, void *ptr, size_t size); |
| |
| /** |
| * Resize a ralloc-managed array, preserving data and initializing any newly |
| * allocated data to zero. |
| * |
| * Similar to \c realloc. Unlike C89, passing 0 for \p size does not free the |
| * memory. Instead, it resizes it to a 0-byte ralloc context, just like |
| * calling ralloc_size(ctx, 0). This is different from talloc. |
| * |
| * \param ctx The context to use for new allocation. If \p ptr != NULL, |
| * it must be the same as ralloc_parent(\p ptr). |
| * \param ptr Pointer to the memory to be resized. May be NULL. |
| * \param old_size The amount of memory in the previous allocation, in bytes. |
| * \param new_size The amount of memory to allocate, in bytes. |
| */ |
| void *rerzalloc_size(const void *ctx, void *ptr, |
| size_t old_size, size_t new_size); |
| |
| /// \defgroup array Array Allocators @{ |
| |
| /** |
| * \def ralloc_array(ctx, type, count) |
| * Allocate an array of objects chained off the given context. |
| * |
| * Similar to \c calloc, but does not initialize the memory to zero. |
| * |
| * More than a convenience function, this also checks for integer overflow when |
| * multiplying \c sizeof(type) and \p count. This is necessary for security. |
| * |
| * This is equivalent to: |
| * \code |
| * ((type *) ralloc_array_size(ctx, sizeof(type), count) |
| * \endcode |
| */ |
| #define ralloc_array(ctx, type, count) \ |
| ((type *) ralloc_array_size(ctx, sizeof(type), count)) |
| |
| /** |
| * \def rzalloc_array(ctx, type, count) |
| * Allocate a zero-initialized array chained off the given context. |
| * |
| * Similar to \c calloc. |
| * |
| * More than a convenience function, this also checks for integer overflow when |
| * multiplying \c sizeof(type) and \p count. This is necessary for security. |
| * |
| * This is equivalent to: |
| * \code |
| * ((type *) rzalloc_array_size(ctx, sizeof(type), count) |
| * \endcode |
| */ |
| #define rzalloc_array(ctx, type, count) \ |
| ((type *) rzalloc_array_size(ctx, sizeof(type), count)) |
| |
| /** |
| * \def reralloc(ctx, ptr, type, count) |
| * Resize a ralloc-managed array, preserving data. |
| * |
| * Similar to \c realloc. Unlike C89, passing 0 for \p size does not free the |
| * memory. Instead, it resizes it to a 0-byte ralloc context, just like |
| * calling ralloc_size(ctx, 0). This is different from talloc. |
| * |
| * More than a convenience function, this also checks for integer overflow when |
| * multiplying \c sizeof(type) and \p count. This is necessary for security. |
| * |
| * \param ctx The context to use for new allocation. If \p ptr != NULL, |
| * it must be the same as ralloc_parent(\p ptr). |
| * \param ptr Pointer to the array to be resized. May be NULL. |
| * \param type The element type. |
| * \param count The number of elements to allocate. |
| */ |
| #define reralloc(ctx, ptr, type, count) \ |
| ((type *) reralloc_array_size(ctx, ptr, sizeof(type), count)) |
| |
| /** |
| * \def rerzalloc(ctx, ptr, type, count) |
| * Resize a ralloc-managed array, preserving data and initializing any newly |
| * allocated data to zero. |
| * |
| * Similar to \c realloc. Unlike C89, passing 0 for \p size does not free the |
| * memory. Instead, it resizes it to a 0-byte ralloc context, just like |
| * calling ralloc_size(ctx, 0). This is different from talloc. |
| * |
| * More than a convenience function, this also checks for integer overflow when |
| * multiplying \c sizeof(type) and \p count. This is necessary for security. |
| * |
| * \param ctx The context to use for new allocation. If \p ptr != NULL, |
| * it must be the same as ralloc_parent(\p ptr). |
| * \param ptr Pointer to the array to be resized. May be NULL. |
| * \param type The element type. |
| * \param old_count The number of elements in the previous allocation. |
| * \param new_count The number of elements to allocate. |
| */ |
| #define rerzalloc(ctx, ptr, type, old_count, new_count) \ |
| ((type *) rerzalloc_array_size(ctx, ptr, sizeof(type), old_count, new_count)) |
| |
| /** |
| * Allocate memory for an array chained off the given context. |
| * |
| * Similar to \c calloc, but does not initialize the memory to zero. |
| * |
| * More than a convenience function, this also checks for integer overflow when |
| * multiplying \p size and \p count. This is necessary for security. |
| */ |
| void *ralloc_array_size(const void *ctx, size_t size, unsigned count) MALLOCLIKE; |
| |
| /** |
| * Allocate a zero-initialized array chained off the given context. |
| * |
| * Similar to \c calloc. |
| * |
| * More than a convenience function, this also checks for integer overflow when |
| * multiplying \p size and \p count. This is necessary for security. |
| */ |
| void *rzalloc_array_size(const void *ctx, size_t size, unsigned count) MALLOCLIKE; |
| |
| /** |
| * Resize a ralloc-managed array, preserving data. |
| * |
| * Similar to \c realloc. Unlike C89, passing 0 for \p size does not free the |
| * memory. Instead, it resizes it to a 0-byte ralloc context, just like |
| * calling ralloc_size(ctx, 0). This is different from talloc. |
| * |
| * More than a convenience function, this also checks for integer overflow when |
| * multiplying \c sizeof(type) and \p count. This is necessary for security. |
| * |
| * \param ctx The context to use for new allocation. If \p ptr != NULL, |
| * it must be the same as ralloc_parent(\p ptr). |
| * \param ptr Pointer to the array to be resized. May be NULL. |
| * \param size The size of an individual element. |
| * \param count The number of elements to allocate. |
| * |
| * \return True unless allocation failed. |
| */ |
| void *reralloc_array_size(const void *ctx, void *ptr, size_t size, |
| unsigned count); |
| |
| /** |
| * Resize a ralloc-managed array, preserving data and initializing any newly |
| * allocated data to zero. |
| * |
| * Similar to \c realloc. Unlike C89, passing 0 for \p size does not free the |
| * memory. Instead, it resizes it to a 0-byte ralloc context, just like |
| * calling ralloc_size(ctx, 0). This is different from talloc. |
| * |
| * More than a convenience function, this also checks for integer overflow when |
| * multiplying \c sizeof(type) and \p count. This is necessary for security. |
| * |
| * \param ctx The context to use for new allocation. If \p ptr != NULL, |
| * it must be the same as ralloc_parent(\p ptr). |
| * \param ptr Pointer to the array to be resized. May be NULL. |
| * \param size The size of an individual element. |
| * \param old_count The number of elements in the previous allocation. |
| * \param new_count The number of elements to allocate. |
| * |
| * \return True unless allocation failed. |
| */ |
| void *rerzalloc_array_size(const void *ctx, void *ptr, size_t size, |
| unsigned old_count, unsigned new_count); |
| /// @} |
| |
| /** |
| * Free a piece of ralloc-managed memory. |
| * |
| * This will also free the memory of any children allocated this context. |
| */ |
| void ralloc_free(void *ptr); |
| |
| /** |
| * "Steal" memory from one context, changing it to another. |
| * |
| * This changes \p ptr's context to \p new_ctx. This is quite useful if |
| * memory is allocated out of a temporary context. |
| */ |
| void ralloc_steal(const void *new_ctx, void *ptr); |
| |
| /** |
| * Reparent all children from one context to another. |
| * |
| * This effectively calls ralloc_steal(new_ctx, child) for all children of \p old_ctx. |
| */ |
| void ralloc_adopt(const void *new_ctx, void *old_ctx); |
| |
| /** |
| * Return the given pointer's ralloc context. |
| */ |
| void *ralloc_parent(const void *ptr); |
| |
| /** |
| * Set a callback to occur just before an object is freed. |
| */ |
| void ralloc_set_destructor(const void *ptr, void(*destructor)(void *)); |
| |
| /// \defgroup array String Functions @{ |
| /** |
| * Duplicate a string, allocating the memory from the given context. |
| */ |
| char *ralloc_strdup(const void *ctx, const char *str) MALLOCLIKE; |
| |
| /** |
| * Duplicate a string, allocating the memory from the given context. |
| * |
| * Like \c strndup, at most \p n characters are copied. If \p str is longer |
| * than \p n characters, \p n are copied, and a termining \c '\0' byte is added. |
| */ |
| char *ralloc_strndup(const void *ctx, const char *str, size_t n) MALLOCLIKE; |
| |
| /** |
| * Concatenate two strings, allocating the necessary space. |
| * |
| * This appends \p str to \p *dest, similar to \c strcat, using ralloc_resize |
| * to expand \p *dest to the appropriate size. \p dest will be updated to the |
| * new pointer unless allocation fails. |
| * |
| * The result will always be null-terminated. |
| * |
| * \return True unless allocation failed. |
| */ |
| bool ralloc_strcat(char **dest, const char *str); |
| |
| /** |
| * Concatenate two strings, allocating the necessary space. |
| * |
| * This appends at most \p n bytes of \p str to \p *dest, using ralloc_resize |
| * to expand \p *dest to the appropriate size. \p dest will be updated to the |
| * new pointer unless allocation fails. |
| * |
| * The result will always be null-terminated; \p str does not need to be null |
| * terminated if it is longer than \p n. |
| * |
| * \return True unless allocation failed. |
| */ |
| bool ralloc_strncat(char **dest, const char *str, size_t n); |
| |
| /** |
| * Concatenate two strings, allocating the necessary space. |
| * |
| * This appends \p n bytes of \p str to \p *dest, using ralloc_resize |
| * to expand \p *dest to the appropriate size. \p dest will be updated to the |
| * new pointer unless allocation fails. |
| * |
| * The result will always be null-terminated. |
| * |
| * This function differs from ralloc_strcat() and ralloc_strncat() in that it |
| * does not do any strlen() calls which can become costly on large strings. |
| * |
| * \return True unless allocation failed. |
| */ |
| bool |
| ralloc_str_append(char **dest, const char *str, |
| size_t existing_length, size_t str_size); |
| |
| /** |
| * Print to a string. |
| * |
| * This is analogous to \c sprintf, but allocates enough space (using \p ctx |
| * as the context) for the resulting string. |
| * |
| * \return The newly allocated string. |
| */ |
| char *ralloc_asprintf (const void *ctx, const char *fmt, ...) PRINTFLIKE(2, 3) MALLOCLIKE; |
| |
| /** |
| * Print to a string, given a va_list. |
| * |
| * This is analogous to \c vsprintf, but allocates enough space (using \p ctx |
| * as the context) for the resulting string. |
| * |
| * \return The newly allocated string. |
| */ |
| char *ralloc_vasprintf(const void *ctx, const char *fmt, va_list args) MALLOCLIKE; |
| |
| /** |
| * Rewrite the tail of an existing string, starting at a given index. |
| * |
| * Overwrites the contents of *str starting at \p start with newly formatted |
| * text, including a new null-terminator. Allocates more memory as necessary. |
| * |
| * This can be used to append formatted text when the length of the existing |
| * string is already known, saving a strlen() call. |
| * |
| * \sa ralloc_asprintf_append |
| * |
| * \param str The string to be updated. |
| * \param start The index to start appending new data at. |
| * \param fmt A printf-style formatting string |
| * |
| * \p str will be updated to the new pointer unless allocation fails. |
| * \p start will be increased by the length of the newly formatted text. |
| * |
| * \return True unless allocation failed. |
| */ |
| bool ralloc_asprintf_rewrite_tail(char **str, size_t *start, |
| const char *fmt, ...) |
| PRINTFLIKE(3, 4); |
| |
| /** |
| * Rewrite the tail of an existing string, starting at a given index. |
| * |
| * Overwrites the contents of *str starting at \p start with newly formatted |
| * text, including a new null-terminator. Allocates more memory as necessary. |
| * |
| * This can be used to append formatted text when the length of the existing |
| * string is already known, saving a strlen() call. |
| * |
| * \sa ralloc_vasprintf_append |
| * |
| * \param str The string to be updated. |
| * \param start The index to start appending new data at. |
| * \param fmt A printf-style formatting string |
| * \param args A va_list containing the data to be formatted |
| * |
| * \p str will be updated to the new pointer unless allocation fails. |
| * \p start will be increased by the length of the newly formatted text. |
| * |
| * \return True unless allocation failed. |
| */ |
| bool ralloc_vasprintf_rewrite_tail(char **str, size_t *start, const char *fmt, |
| va_list args); |
| |
| /** |
| * Append formatted text to the supplied string. |
| * |
| * This is equivalent to |
| * \code |
| * ralloc_asprintf_rewrite_tail(str, strlen(*str), fmt, ...) |
| * \endcode |
| * |
| * \sa ralloc_asprintf |
| * \sa ralloc_asprintf_rewrite_tail |
| * \sa ralloc_strcat |
| * |
| * \p str will be updated to the new pointer unless allocation fails. |
| * |
| * \return True unless allocation failed. |
| */ |
| bool ralloc_asprintf_append (char **str, const char *fmt, ...) |
| PRINTFLIKE(2, 3); |
| |
| /** |
| * Append formatted text to the supplied string, given a va_list. |
| * |
| * This is equivalent to |
| * \code |
| * ralloc_vasprintf_rewrite_tail(str, strlen(*str), fmt, args) |
| * \endcode |
| * |
| * \sa ralloc_vasprintf |
| * \sa ralloc_vasprintf_rewrite_tail |
| * \sa ralloc_strcat |
| * |
| * \p str will be updated to the new pointer unless allocation fails. |
| * |
| * \return True unless allocation failed. |
| */ |
| bool ralloc_vasprintf_append(char **str, const char *fmt, va_list args); |
| /// @} |
| |
| typedef struct gc_ctx gc_ctx; |
| |
| /** |
| * Allocate a new garbage collection context. The children of the |
| * context are not necessarily ralloc'd pointers and cannot be stolen to a ralloc context. Instead, |
| * The user should use the mark-and-sweep interface below to free any unused children. Under the |
| * hood, this restriction lets us manage allocations ourselves, using a freelist. This means that |
| * GC contexts should be used for scenarios where there are many allocations and frees, most of |
| * which use only a few different sizes. |
| */ |
| gc_ctx *gc_context(const void *parent); |
| |
| #define gc_alloc(ctx, type, count) gc_alloc_size(ctx, sizeof(type) * (count), alignof(type)) |
| #define gc_zalloc(ctx, type, count) gc_zalloc_size(ctx, sizeof(type) * (count), alignof(type)) |
| |
| #define gc_alloc_zla(ctx, type, type2, count) \ |
| gc_alloc_size(ctx, sizeof(type) + sizeof(type2) * (count), MAX2(alignof(type), alignof(type2))) |
| #define gc_zalloc_zla(ctx, type, type2, count) \ |
| gc_zalloc_size(ctx, sizeof(type) + sizeof(type2) * (count), MAX2(alignof(type), alignof(type2))) |
| |
| void *gc_alloc_size(gc_ctx *ctx, size_t size, size_t align) MALLOCLIKE; |
| void *gc_zalloc_size(gc_ctx *ctx, size_t size, size_t align) MALLOCLIKE; |
| void gc_free(void *ptr); |
| gc_ctx *gc_get_context(void *ptr); |
| |
| void gc_sweep_start(gc_ctx *ctx); |
| void gc_mark_live(gc_ctx *ctx, const void *mem); |
| void gc_sweep_end(gc_ctx *ctx); |
| |
| /** |
| * Declare C++ new and delete operators which use ralloc. |
| * |
| * Placing this macro in the body of a class makes it possible to do: |
| * |
| * TYPE *var = new(mem_ctx) TYPE(...); |
| * delete var; |
| * |
| * which is more idiomatic in C++ than calling ralloc. |
| */ |
| #define DECLARE_ALLOC_CXX_OPERATORS_TEMPLATE(TYPE, ALLOC_FUNC) \ |
| private: \ |
| static void _ralloc_destructor(void *p) \ |
| { \ |
| reinterpret_cast<TYPE *>(p)->TYPE::~TYPE(); \ |
| } \ |
| public: \ |
| static void* operator new(size_t size, void *mem_ctx) \ |
| { \ |
| void *p = ALLOC_FUNC(mem_ctx, size); \ |
| assert(p != NULL); \ |
| if (!HAS_TRIVIAL_DESTRUCTOR(TYPE)) \ |
| ralloc_set_destructor(p, _ralloc_destructor); \ |
| return p; \ |
| } \ |
| \ |
| static void operator delete(void *p) \ |
| { \ |
| /* The object's destructor is guaranteed to have already been \ |
| * called by the delete operator at this point -- Make sure it's \ |
| * not called again. \ |
| */ \ |
| if (!HAS_TRIVIAL_DESTRUCTOR(TYPE)) \ |
| ralloc_set_destructor(p, NULL); \ |
| ralloc_free(p); \ |
| } |
| |
| #define DECLARE_RALLOC_CXX_OPERATORS(type) \ |
| DECLARE_ALLOC_CXX_OPERATORS_TEMPLATE(type, ralloc_size) |
| |
| #define DECLARE_RZALLOC_CXX_OPERATORS(type) \ |
| DECLARE_ALLOC_CXX_OPERATORS_TEMPLATE(type, rzalloc_size) |
| |
| #define DECLARE_LINEAR_ALLOC_CXX_OPERATORS(type) \ |
| DECLARE_ALLOC_CXX_OPERATORS_TEMPLATE(type, linear_alloc_child) |
| |
| #define DECLARE_LINEAR_ZALLOC_CXX_OPERATORS(type) \ |
| DECLARE_ALLOC_CXX_OPERATORS_TEMPLATE(type, linear_zalloc_child) |
| |
| |
| /** |
| * Do a fast allocation from the linear buffer, also known as the child node |
| * from the allocator's point of view. It can't be freed directly. You have |
| * to free the parent or the ralloc parent. |
| * |
| * \param parent parent node of the linear allocator |
| * \param size size to allocate (max 32 bits) |
| */ |
| void *linear_alloc_child(void *parent, unsigned size); |
| |
| /** |
| * Allocate a parent node that will hold linear buffers. The returned |
| * allocation is actually the first child node, but it's also the handle |
| * of the parent node. Use it for all child node allocations. |
| * |
| * \param ralloc_ctx ralloc context, must not be NULL |
| * \param size size to allocate (max 32 bits) |
| */ |
| void *linear_alloc_parent(void *ralloc_ctx, unsigned size); |
| |
| /** |
| * Same as linear_alloc_child, but also clears memory. |
| */ |
| void *linear_zalloc_child(void *parent, unsigned size); |
| |
| /** |
| * Same as linear_alloc_parent, but also clears memory. |
| */ |
| void *linear_zalloc_parent(void *ralloc_ctx, unsigned size); |
| |
| /** |
| * Free the linear parent node. This will free all child nodes too. |
| * Freeing the ralloc parent will also free this. |
| */ |
| void linear_free_parent(void *ptr); |
| |
| /** |
| * Same as ralloc_steal, but steals the linear parent node. |
| */ |
| void ralloc_steal_linear_parent(void *new_ralloc_ctx, void *ptr); |
| |
| /** |
| * Return the ralloc parent of the linear parent node. |
| */ |
| void *ralloc_parent_of_linear_parent(void *ptr); |
| |
| /** |
| * Same as realloc except that the linear allocator doesn't free child nodes, |
| * so it's reduced to memory duplication. It's used in places where |
| * reallocation is required. Don't use it often. It's much slower than |
| * realloc. |
| */ |
| void *linear_realloc(void *parent, void *old, unsigned new_size); |
| |
| /** |
| * Do a fast allocation of an array from the linear buffer and initialize it to zero. |
| * |
| * Similar to \c calloc, but does not initialize the memory to zero. |
| * |
| * More than a convenience function, this also checks for integer overflow when |
| * multiplying \p size and \p count. This is necessary for security. |
| */ |
| void *linear_alloc_child_array(void *parent, size_t size, unsigned count); |
| |
| /** |
| * Do a fast allocation of an array from the linear buffer. |
| * |
| * Similar to \c calloc. |
| * |
| * More than a convenience function, this also checks for integer overflow when |
| * multiplying \p size and \p count. This is necessary for security. |
| */ |
| void *linear_zalloc_child_array(void *parent, size_t size, unsigned count); |
| |
| /* The functions below have the same semantics as their ralloc counterparts, |
| * except that they always allocate a linear child node. |
| */ |
| char *linear_strdup(void *parent, const char *str); |
| char *linear_asprintf(void *parent, const char *fmt, ...); |
| char *linear_vasprintf(void *parent, const char *fmt, va_list args); |
| bool linear_asprintf_append(void *parent, char **str, const char *fmt, ...); |
| bool linear_vasprintf_append(void *parent, char **str, const char *fmt, |
| va_list args); |
| bool linear_asprintf_rewrite_tail(void *parent, char **str, size_t *start, |
| const char *fmt, ...); |
| bool linear_vasprintf_rewrite_tail(void *parent, char **str, size_t *start, |
| const char *fmt, va_list args); |
| bool linear_strcat(void *parent, char **dest, const char *str); |
| |
| /** |
| * \def linear_alloc(parent, type) |
| * Do a fast allocation from the linear buffer. |
| * |
| * This is equivalent to: |
| * \code |
| * ((type *) linear_alloc_child(parent, sizeof(type)) |
| * \endcode |
| */ |
| #define linear_alloc(parent, type) ((type *) linear_alloc_child(parent, sizeof(type))) |
| |
| /** |
| * \def linear_zalloc(parent, type) |
| * Do a fast allocation from the linear buffer and initialize it to zero. |
| * |
| * This is equivalent to: |
| * \code |
| * ((type *) linear_zalloc_child(parent, sizeof(type)) |
| * \endcode |
| */ |
| #define linear_zalloc(parent, type) ((type *) linear_zalloc_child(parent, sizeof(type))) |
| |
| /** |
| * \def linear_alloc_array(parent, type, count) |
| * Do a fast allocation of an array from the linear buffer. |
| * |
| * Similar to \c calloc, but does not initialize the memory to zero. |
| * |
| * More than a convenience function, this also checks for integer overflow when |
| * multiplying \c sizeof(type) and \p count. This is necessary for security. |
| * |
| * This is equivalent to: |
| * \code |
| * ((type *) linear_alloc_child_array(parent, sizeof(type), count) |
| * \endcode |
| */ |
| #define linear_alloc_array(parent, type, count) \ |
| ((type *) linear_alloc_child_array(parent, sizeof(type), count)) |
| |
| /** |
| * \def linear_zalloc_array(parent, type, count) |
| * Do a fast allocation of an array from the linear buffer and initialize it to zero |
| * |
| * Similar to \c calloc. |
| * |
| * More than a convenience function, this also checks for integer overflow when |
| * multiplying \c sizeof(type) and \p count. This is necessary for security. |
| * |
| * This is equivalent to: |
| * \code |
| * ((type *) linear_zalloc_child_array(parent, sizeof(type), count) |
| * \endcode |
| */ |
| #define linear_zalloc_array(parent, type, count) \ |
| ((type *) linear_zalloc_child_array(parent, sizeof(type), count)) |
| |
| #ifdef __cplusplus |
| } /* end of extern "C" */ |
| #endif |
| |
| #endif |