blob: b46efea78f6d8200af299e2a29e592368b9c501c [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ApiGen.h"
#include "aemu/base/EnumFlags.h"
#include "EntryPoint.h"
#include <stdio.h>
#include <stdlib.h>
#include "strUtils.h"
#include <errno.h>
#include <sys/types.h>
/* Define this to 1 to enable support for the 'isLarge' variable flag
* that instructs the encoder to send large data buffers by a direct
* write through the pipe (i.e. without copying it into a temporary
* buffer. This has definite performance benefits when using a QEMU Pipe.
*
* Set to 0 otherwise.
*/
#define WITH_LARGE_SUPPORT 1
// Set to 1 to ensure buffers passed to/from EGL/GL are properly aligned.
// This prevents crashes with certain backends (e.g. OSMesa).
#define USE_ALIGNED_BUFFERS 1
// Set these to 1 if you want to instrument either guest's or host's code for
// time-per-call printing.
#define INSTRUMENT_TIMING_GUEST 0
#define INSTRUMENT_TIMING_HOST 0
// Set to 1 to print to logcat for every GL call encoded.
#define DLOG_ALL_ENCODES 0
// Set to 1 to check GL errors before and after every decoder call.
#define DECODER_CHECK_GL_ERRORS 0
EntryPoint * ApiGen::findEntryByName(const std::string & name)
{
EntryPoint * entry = NULL;
size_t n = this->size();
for (size_t i = 0; i < n; i++) {
if (at(i).name() == name) {
entry = &(at(i));
break;
}
}
return entry;
}
void ApiGen::printHeader(FILE *fp) const
{
fprintf(fp, "// Generated Code - DO NOT EDIT !!\n");
fprintf(fp, "// generated by 'emugen'\n");
}
int ApiGen::genProcTypes(const std::string &filename, SideType side)
{
FILE *fp = fopen(filename.c_str(), "wt");
if (fp == NULL) {
perror(filename.c_str());
return -1;
}
printHeader(fp);
const char* basename = m_basename.c_str();
fprintf(fp, "#ifndef __%s_%s_proc_t_h\n", basename, sideString(side));
fprintf(fp, "#define __%s_%s_proc_t_h\n", basename, sideString(side));
fprintf(fp, "\n\n");
fprintf(fp, "\n#include \"%s_types.h\"\n",basename);
fprintf(fp, "#ifdef _MSC_VER\n");
fprintf(fp, "#include <stdint.h>\n");
fprintf(fp, "#endif\n");
fprintf(fp, "#ifndef %s_APIENTRY\n",basename);
fprintf(fp, "#define %s_APIENTRY \n",basename);
fprintf(fp, "#endif\n");
for (size_t i = 0; i < size(); i++) {
EntryPoint *e = &at(i);
fprintf(fp, "typedef ");
e->retval().printType(fp);
fprintf(fp, " (%s_APIENTRY *%s_%s_proc_t) (", basename, e->name().c_str(), sideString(side));
if (side == CLIENT_SIDE) { fprintf(fp, "void * ctx"); }
if (e->customDecoder() && side == SERVER_SIDE) { fprintf(fp, "void *ctx"); }
VarsArray & evars = e->vars();
size_t n = evars.size();
for (size_t j = 0; j < n; j++) {
if (!evars[j].isVoid()) {
if (j != 0 || side == CLIENT_SIDE || (side == SERVER_SIDE && e->customDecoder())) fprintf(fp, ", ");
evars[j].printType(fp);
}
}
fprintf(fp, ");\n");
if (side == SERVER_SIDE && e->customDecoder() && !e->notApi()) {
fprintf(fp, "typedef ");
e->retval().printType(fp);
fprintf(fp, " (%s_APIENTRY *%s_dec_%s_proc_t) (", basename, e->name().c_str(), sideString(side));
VarsArray & evars = e->vars();
size_t n = evars.size();
for (size_t j = 0; j < n; j++) {
if (!evars[j].isVoid()) {
if (j != 0) fprintf(fp, ", ");
evars[j].printType(fp);
}
}
fprintf(fp, ");\n");
}
}
fprintf(fp, "\n\n#endif\n");
return 0;
}
int ApiGen::genFuncTable(const std::string &filename, SideType side)
{
FILE *fp = fopen(filename.c_str(), "wt");
if (fp == NULL) {
perror(filename.c_str());
return -1;
}
printHeader(fp);
fprintf(fp, "#ifndef __%s_%s_ftable_t_h\n", m_basename.c_str(), sideString(side));
fprintf(fp, "#define __%s_%s_ftable_t_h\n", m_basename.c_str(), sideString(side));
fprintf(fp, "\n\n");
fprintf(fp, "static const struct _%s_funcs_by_name {\n", m_basename.c_str());
fprintf(fp,
"\tconst char *name;\n" \
"\tvoid *proc;\n" \
"} %s_funcs_by_name[] = {\n", m_basename.c_str());
for (size_t i = 0; i < size(); i++) {
EntryPoint *e = &at(i);
if (e->notApi()) continue;
fprintf(fp, "\t{\"%s\", (void*)%s},\n", e->name().c_str(), e->name().c_str());
}
fprintf(fp, "};\n");
fprintf(fp, "static const int %s_num_funcs = sizeof(%s_funcs_by_name) / sizeof(struct _%s_funcs_by_name);\n",
m_basename.c_str(), m_basename.c_str(), m_basename.c_str());
fprintf(fp, "\n\n#endif\n");
return 0;
}
int ApiGen::genContext(const std::string & filename, SideType side)
{
FILE *fp = fopen(filename.c_str(), "wt");
if (fp == NULL) {
perror(filename.c_str());
return -1;
}
printHeader(fp);
fprintf(fp, "#ifndef __%s_%s_context_t_h\n", m_basename.c_str(), sideString(side));
fprintf(fp, "#define __%s_%s_context_t_h\n", m_basename.c_str(), sideString(side));
fprintf(fp, "\n#include \"%s_%s_proc.h\"\n",
m_basename.c_str(),
side == CLIENT_SIDE ? "client" : "server");
fprintf(fp, "\n#include \"%s_types.h\"\n", m_basename.c_str());
StringVec & contextHeaders = side == CLIENT_SIDE ? m_clientContextHeaders : m_serverContextHeaders;
for (size_t i = 0; i < contextHeaders.size(); i++) {
fprintf(fp, "#include %s\n", contextHeaders[i].c_str());
}
fprintf(fp, "\n");
fprintf(fp, "\nstruct %s_%s_context_t {\n\n",
m_basename.c_str(), sideString(side));
// API entry points
for (size_t i = 0; i < size(); i++) {
EntryPoint *e = &at(i);
if (side == SERVER_SIDE && e->customDecoder() && !e->notApi()) {
fprintf(fp, "\t%s_dec_%s_proc_t %s;\n", e->name().c_str(), sideString(side), e->name().c_str());
fprintf(fp, "\t%s_%s_proc_t %s_dec;\n", e->name().c_str(), sideString(side), e->name().c_str());
} else {
fprintf(fp, "\t%s_%s_proc_t %s;\n", e->name().c_str(), sideString(side), e->name().c_str());
}
}
// virtual destructor
fprintf(fp, "\tvirtual ~%s_%s_context_t() {}\n", m_basename.c_str(), sideString(side));
// accessor
if (side == CLIENT_SIDE || side == WRAPPER_SIDE) {
fprintf(fp, "\n\ttypedef %s_%s_context_t *CONTEXT_ACCESSOR_TYPE(void);\n",
m_basename.c_str(), sideString(side));
fprintf(fp, "\tstatic void setContextAccessor(CONTEXT_ACCESSOR_TYPE *f);\n");
}
// init function
fprintf(fp, "\tint initDispatchByName( void *(*getProc)(const char *name, void *userData), void *userData);\n");
//client site set error virtual func
if (side == CLIENT_SIDE) {
fprintf(fp, "\tvirtual void setError(unsigned int error){ (void)error; }\n");
fprintf(fp, "\tvirtual unsigned int getError(){ return 0; }\n");
}
fprintf(fp, "};\n");
fprintf(fp, "\n#endif\n");
fclose(fp);
return 0;
}
int ApiGen::genEntryPoints(const std::string & filename, SideType side)
{
if (side != CLIENT_SIDE && side != WRAPPER_SIDE) {
fprintf(stderr, "Entry points are only defined for Client and Wrapper components\n");
return -999;
}
FILE *fp = fopen(filename.c_str(), "wt");
if (fp == NULL) {
perror(filename.c_str());
return errno;
}
printHeader(fp);
fprintf(fp, "#include <stdio.h>\n");
fprintf(fp, "#include <stdlib.h>\n");
fprintf(fp, "#include \"%s_%s_context.h\"\n", m_basename.c_str(), sideString(side));
fprintf(fp, "\n");
fprintf(fp, "extern \"C\" {\n");
for (size_t i = 0; i < size(); i++) {
fprintf(fp, "\t"); at(i).print(fp, false); fprintf(fp, ";\n");
}
fprintf(fp, "};\n\n");
fprintf(fp, "#ifndef GET_CONTEXT\n");
fprintf(fp, "static %s_%s_context_t::CONTEXT_ACCESSOR_TYPE *getCurrentContext = NULL;\n",
m_basename.c_str(), sideString(side));
fprintf(fp,
"void %s_%s_context_t::setContextAccessor(CONTEXT_ACCESSOR_TYPE *f) { getCurrentContext = f; }\n",
m_basename.c_str(), sideString(side));
fprintf(fp, "#define GET_CONTEXT %s_%s_context_t * ctx = getCurrentContext()\n",
m_basename.c_str(), sideString(side));
fprintf(fp, "#endif\n\n");
for (size_t i = 0; i < size(); i++) {
EntryPoint *e = &at(i);
e->print(fp);
fprintf(fp, "{\n");
fprintf(fp, "\tGET_CONTEXT;\n");
bool shouldReturn = !e->retval().isVoid();
bool shouldCallWithContext = (side == CLIENT_SIDE);
//param check
if (shouldCallWithContext) {
for (size_t j=0; j<e->vars().size(); j++) {
if (e->vars()[j].paramCheckExpression() != "")
fprintf(fp, "\t%s\n", e->vars()[j].paramCheckExpression().c_str());
}
}
fprintf(fp, "\t%sctx->%s(%s",
shouldReturn ? "return " : "",
e->name().c_str(),
shouldCallWithContext ? "ctx" : "");
size_t nvars = e->vars().size();
for (size_t j = 0; j < nvars; j++) {
if (!e->vars()[j].isVoid()) {
fprintf(fp, "%s %s",
j != 0 || shouldCallWithContext ? "," : "",
e->vars()[j].name().c_str());
}
}
fprintf(fp, ");\n");
fprintf(fp, "}\n\n");
}
fclose(fp);
return 0;
}
int ApiGen::genOpcodes(const std::string &filename)
{
FILE *fp = fopen(filename.c_str(), "wt");
if (fp == NULL) {
perror(filename.c_str());
return errno;
}
printHeader(fp);
fprintf(fp, "#ifndef __GUARD_%s_opcodes_h_\n", m_basename.c_str());
fprintf(fp, "#define __GUARD_%s_opcodes_h_\n\n", m_basename.c_str());
for (size_t i = 0; i < size(); i++) {
fprintf(fp, "#define OP_%s \t\t\t\t\t%u\n", at(i).name().c_str(), (unsigned int)i + m_baseOpcode);
}
fprintf(fp, "#define OP_last \t\t\t\t\t%u\n", (unsigned int)size() + m_baseOpcode);
fprintf(fp,"\n\n#endif\n");
fclose(fp);
return 0;
}
int ApiGen::genAttributesTemplate(const std::string &filename )
{
FILE *fp = fopen(filename.c_str(), "wt");
if (fp == NULL) {
perror(filename.c_str());
return -1;
}
for (size_t i = 0; i < size(); i++) {
if (at(i).hasPointers()) {
fprintf(fp, "#");
at(i).print(fp);
fprintf(fp, "%s\n\n", at(i).name().c_str());
}
}
fclose(fp);
return 0;
}
int ApiGen::genEncoderHeader(const std::string &filename)
{
FILE *fp = fopen(filename.c_str(), "wt");
if (fp == NULL) {
perror(filename.c_str());
return -1;
}
printHeader(fp);
std::string classname = m_basename + "_encoder_context_t";
fprintf(fp, "\n#ifndef GUARD_%s\n", classname.c_str());
fprintf(fp, "#define GUARD_%s\n\n", classname.c_str());
fprintf(fp, "#include \"gfxstream/guest/ChecksumCalculator.h\"\n");
fprintf(fp, "#include \"gfxstream/guest/IOStream.h\"\n");
fprintf(fp, "#include \"%s_%s_context.h\"\n\n\n", m_basename.c_str(), sideString(CLIENT_SIDE));
for (size_t i = 0; i < m_encoderHeaders.size(); i++) {
fprintf(fp, "#include %s\n", m_encoderHeaders[i].c_str());
}
fprintf(fp, "\n");
// fprintf(fp, "namespace gfxstream {\n");
fprintf(fp, "struct %s : public %s_%s_context_t {\n\n",
classname.c_str(), m_basename.c_str(), sideString(CLIENT_SIDE));
fprintf(fp, "\tgfxstream::guest::IOStream *m_stream;\n");
fprintf(fp, "\tgfxstream::guest::ChecksumCalculator *m_checksumCalculator;\n\n");
fprintf(fp, "\t%s(gfxstream::guest::IOStream *stream, gfxstream::guest::ChecksumCalculator *checksumCalculator);\n", classname.c_str());
fprintf(fp, "\tvirtual uint64_t lockAndWriteDma(void*, uint32_t) { return 0; }\n");
fprintf(fp, "};\n\n");
// fprintf(fp, "} // namespace gfxstream\n");
fprintf(fp, "#endif // GUARD_%s\n", classname.c_str());
fclose(fp);
return 0;
}
// Format the byte length expression for a given variable into a user-provided buffer
// If the variable type is not a pointer, this is simply its size as a decimal constant
// If the variable is a pointer, this will be an expression provided by the .attrib file
// through the 'len' attribute.
//
// Returns 1 if the variable is a pointer, 0 otherwise
//
enum class EncodingSizeFlags {
None = 0,
DmaPtrOnly = 1,
ExcludeOut = 2,
UseExistingVar = 4,
};
static int getVarEncodingSizeExpression(
Var& var, EntryPoint* e, char* buff, size_t bufflen,
EncodingSizeFlags flags)
{
if (!var.isPointer()) {
snprintf(buff, bufflen, "%u", (unsigned int) var.type()->bytes());
return 0;
}
if ((flags & EncodingSizeFlags::DmaPtrOnly) != 0) {
snprintf(buff, bufflen, "8");
} else if ((flags & EncodingSizeFlags::ExcludeOut) != 0 &&
!(var.pointerDir() & Var::POINTER_IN)) {
snprintf(buff, bufflen, "0");
} else if ((flags & EncodingSizeFlags::UseExistingVar) != 0) {
snprintf(buff, bufflen, "__size_%s", var.name().c_str());
} else {
const char* lenExpr = var.lenExpression().c_str();
const char* varname = var.name().c_str();
if (e != NULL && lenExpr[0] == '\0') {
fprintf(stderr, "%s: data len is undefined for '%s'\n",
e->name().c_str(), varname);
}
if (var.nullAllowed()) {
snprintf(buff, bufflen, "((%s != NULL) ? %s : 0)", varname, lenExpr);
} else {
snprintf(buff, bufflen, "%s", lenExpr);
}
}
return 1;
}
static int writeVarEncodingSize(Var& var, bool excludeOutVars, FILE* fp)
{
int ret = 0;
if (!var.isPointer()) {
fprintf(fp, "%u", (unsigned int) var.type()->bytes());
} else {
ret = 1;
if (var.isDMA()) {
fprintf(fp, "8");
return ret;
}
if (excludeOutVars && !(var.pointerDir() & Var::POINTER_IN)) {
fprintf(fp, "0");
} else {
fprintf(fp, "__size_%s", var.name().c_str());
}
}
return ret;
}
static void writeVarEncodingExpression(Var& var, FILE* fp)
{
const char* varname = var.name().c_str();
if (var.isPointer()) {
// encode a pointer header
if (var.isDMA()) {
fprintf(fp, "\t*(uint64_t *)(ptr) = ctx->lockAndWriteDma(%s, __size_%s); ptr += 8;\n", varname, varname);
} else {
fprintf(fp, "\tmemcpy(ptr, &__size_%s, 4); ptr += 4;\n", varname);
Var::PointerDir dir = var.pointerDir();
if (dir == Var::POINTER_INOUT || dir == Var::POINTER_IN) {
if (var.nullAllowed()) {
fprintf(fp, "\tif (%s != NULL) ", varname);
} else {
fprintf(fp, "\t");
}
if (var.packExpression().size() != 0) {
fprintf(fp, "%s;", var.packExpression().c_str());
} else {
fprintf(fp, "memcpy(ptr, %s, __size_%s);",
varname, varname);
}
fprintf(fp, "ptr += __size_%s;\n", varname);
}
}
} else {
// encode a non pointer variable
if (!var.isVoid()) {
fprintf(fp, "\t\tmemcpy(ptr, &%s, %u); ptr += %u;\n",
varname,
(unsigned) var.type()->bytes(),
(unsigned) var.type()->bytes());
}
}
}
#if WITH_LARGE_SUPPORT
static void writeVarLargeEncodingExpression(Var& var, FILE* fp)
{
const char* varname = var.name().c_str();
fprintf(fp, "\tstream->writeFully(&__size_%s,4);\n", varname);
fprintf(fp, "\tif (useChecksum) checksumCalculator->addBuffer(&__size_%s,4);\n", varname);
if (var.nullAllowed()) {
fprintf(fp, "\tif (%s != NULL) {\n", varname);
}
if (var.writeExpression() != "") {
fprintf(fp, "%s", var.writeExpression().c_str());
} else {
if (var.guestPackExpression() != "") {
fprintf(fp, "\t\t%s;\n", var.guestPackExpression().c_str());
} else {
fprintf(fp, "\t\tstream->writeFully(%s, __size_%s);\n", varname, varname);
}
fprintf(fp, "\t\tif (useChecksum) checksumCalculator->addBuffer(%s, __size_%s);\n", varname, varname);
}
if (var.nullAllowed()) fprintf(fp, "\t}\n");
}
#endif /* WITH_LARGE_SUPPORT */
static void writeEncodingChecksumValidatorOnReturn(const char* funcName, FILE* fp) {
fprintf(fp, "\tif (useChecksum) {\n"
"\t\tunsigned char *checksumBufPtr = NULL;\n"
"\t\tunsigned char checksumBuf[gfxstream::guest::ChecksumCalculator::kMaxChecksumSize];\n"
"\t\tif (checksumSize > 0) checksumBufPtr = &checksumBuf[0];\n"
"\t\tstream->readback(checksumBufPtr, checksumSize);\n"
"\t\tif (!checksumCalculator->validate(checksumBufPtr, checksumSize)) {\n"
"\t\t\tALOGE(\"%s: GL communication error, please report this issue to b.android.com.\\n\");\n"
"\t\t\tabort();\n"
"\t\t}\n"
"\t}\n",
funcName
);
}
static void addGuestTimePrinting(const EntryPoint* e, bool hasTimeBeforeReadback,
FILE* fp) {
#if INSTRUMENT_TIMING_GUEST
fprintf(fp, "\tclock_gettime(CLOCK_REALTIME, &ts1);\n");
fprintf(fp, "\tlong timeDiff = ts1.tv_sec*1000000 + ts1.tv_nsec/1000 - (ts0.tv_sec*1000000 + ts0.tv_nsec/1000);\n");
if (hasTimeBeforeReadback) {
fprintf(fp, "\tlong timeDiff2 = ts1.tv_sec*1000000 + ts1.tv_nsec/1000 - (ts2.tv_sec*1000000 + ts2.tv_nsec/1000);\n");
fprintf(fp, "\tALOGW(\"%s: %%ld (%%ld) us\\n\", timeDiff, timeDiff2);\n", e->name().c_str());
} else {
fprintf(fp, "\tALOGW(\"%s: %%ld us\\n\", timeDiff);\n", e->name().c_str());
}
#endif
}
static void addEncoderDebugLog(const EntryPoint* e, FILE* fp) {
fprintf(fp, "\tENCODER_DEBUG_LOG(\"%s(", e->name().c_str());
const VarsArray& vars = e->vars();
for (size_t i = 0; i < vars.size(); i++) {
const Var& var = vars[i];
if (i != 0) {
fprintf(fp, ", ");
}
fprintf(fp, "%s:%s", var.name().c_str(), var.type()->printFormat().c_str());
}
fprintf(fp, ")\"");
for (size_t i = 0; i < vars.size(); i++) {
const Var& var = vars[i];
fprintf(fp, ", %s", var.name().c_str());
}
fprintf(fp, ");\n");
}
int ApiGen::genEncoderImpl(const std::string &filename)
{
FILE *fp = fopen(filename.c_str(), "wt");
if (fp == NULL) {
perror(filename.c_str());
return -1;
}
printHeader(fp);
fprintf(fp, "\n\n");
fprintf(fp, "#include <string.h>\n");
fprintf(fp, "#include \"%s_opcodes.h\"\n\n", m_basename.c_str());
fprintf(fp, "#include \"%s_enc.h\"\n\n\n", m_basename.c_str());
fprintf(fp, "#include <vector>\n\n");
fprintf(fp, "#include <stdio.h>\n\n");
fprintf(fp, "#include \"aemu/base/Tracing.h\"\n\n");
fprintf(fp, "#include \"EncoderDebug.h\"\n\n");
// fprintf(fp, "namespace gfxstream {\n\n");
fprintf(fp, "using gfxstream::guest::ChecksumCalculator;\n\n");
fprintf(fp, "using gfxstream::guest::IOStream;\n\n");
fprintf(fp, "namespace {\n\n");
// unsupport printout
fprintf(fp,
"void enc_unsupported()\n"
"{\n"
"\tALOGE(\"Function is unsupported\\n\");\n"
"}\n\n");
// entry points;
std::string classname = m_basename + "_encoder_context_t";
size_t n = size();
for (size_t i = 0; i < n; i++) {
EntryPoint *e = &at(i);
if (e->unsupported()) continue;
e->print(fp, true, "_enc", /* classname + "::" */"", "void *self");
fprintf(fp, "{\n");
addEncoderDebugLog(e, fp);
fprintf(fp, "\tAEMU_SCOPED_TRACE(\"%s encode\");\n", e->name().c_str());
#if INSTRUMENT_TIMING_GUEST
fprintf(fp, "\tstruct timespec ts0, ts1;\n");
fprintf(fp, "\tclock_gettime(CLOCK_REALTIME, &ts0);\n");
#endif
// fprintf(fp, "\n\tDBG(\">>>> %s\\n\");\n", e->name().c_str());
fprintf(fp, "\n\t%s *ctx = (%s *)self;\n",
classname.c_str(),
classname.c_str());
fprintf(fp, "\tIOStream *stream = ctx->m_stream;\n"
"\tgfxstream::guest::ChecksumCalculator *checksumCalculator = ctx->m_checksumCalculator;\n"
"\tbool useChecksum = checksumCalculator->getVersion() > 0;\n\n");
VarsArray & evars = e->vars();
size_t maxvars = evars.size();
size_t j;
char buff[256];
// Define the __size_XXX variables that contain the size of data
// associated with pointers.
for (j = 0; j < maxvars; j++) {
Var& var = evars[j];
if (!var.isPointer())
continue;
const char* varname = var.name().c_str();
fprintf(fp, "\tconst unsigned int __size_%s = ", varname);
getVarEncodingSizeExpression(var, e, buff, sizeof(buff),
EncodingSizeFlags::None);
fprintf(fp, "%s;\n", buff);
}
bool hasLargeFields = false;
#if WITH_LARGE_SUPPORT
// We need to take care of 'isLarge' variable in a special way
// Anything before an isLarge variable can be packed into a single
// buffer, which is then commited. Each isLarge variable is a pointer
// to data that can be written to directly through the pipe, which
// will be instant when using a QEMU pipe
size_t nvars = 0;
size_t npointers = 0;
// First, compute the total size, 8 bytes for the opcode + payload size (without checksum)
fprintf(fp, "\t unsigned char *ptr;\n");
fprintf(fp, "\t unsigned char *buf;\n");
fprintf(fp, "\t const size_t sizeWithoutChecksum = 8");
for (j = 0; j < maxvars; j++) {
fprintf(fp, " + ");
npointers += writeVarEncodingSize(evars[j], true, fp);
}
if (npointers > 0) {
fprintf(fp, " + %zu*4", npointers);
}
fprintf(fp, ";\n");
// Then, size of the checksum string
fprintf(fp, "\t const size_t checksumSize = checksumCalculator->checksumByteSize();\n");
// And, size of the whole thing
fprintf(fp, "\t const size_t totalSize = sizeWithoutChecksum + checksumSize;\n");
// We need to divide the packet into fragments. Each fragment contains
// either copied arguments to a temporary buffer, or direct writes for
// large variables.
//
// The first fragment must also contain the opcode+payload_size+checksum_size
//
nvars = 0;
while (nvars < maxvars || maxvars == 0) {
// Skip over non-large fields
for (j = nvars; j < maxvars; j++) {
if (evars[j].isLarge())
break;
}
// Write a fragment if needed.
if (nvars == 0 || j > nvars) {
const char* plus = "";
if (nvars == 0 && j == maxvars) {
// Simple shortcut for the common case where we don't have large variables;
fprintf(fp, "\tbuf = stream->alloc(totalSize);\n");
} else {
hasLargeFields = true;
// allocate buffer from the stream until the first large variable
fprintf(fp, "\tbuf = stream->alloc(");
plus = "";
if (nvars == 0) {
fprintf(fp,"8"); plus = " + ";
}
if (j > nvars) {
npointers = 0;
for (j = nvars; j < maxvars && !evars[j].isLarge(); j++) {
fprintf(fp, "%s", plus); plus = " + ";
npointers += writeVarEncodingSize(evars[j], false, fp);
}
if (npointers > 0) {
fprintf(fp, "%s%zu*4", plus, npointers); plus = " + ";
}
}
fprintf(fp,");\n");
}
fprintf(fp, "\tptr = buf;\n");
// encode packet header if needed.
if (nvars == 0) {
fprintf(fp, "\tint tmp = OP_%s;memcpy(ptr, &tmp, 4); ptr += 4;\n", e->name().c_str());
fprintf(fp, "\tmemcpy(ptr, &totalSize, 4); ptr += 4;\n\n");
}
if (maxvars == 0) {
fprintf(fp, "\n\tif (useChecksum) checksumCalculator->addBuffer(buf, ptr-buf);\n");
break;
}
// encode non-large fields in this fragment
for (j = nvars; j < maxvars && !evars[j].isLarge(); j++) {
writeVarEncodingExpression(evars[j],fp);
}
fprintf(fp, "\n\tif (useChecksum) checksumCalculator->addBuffer(buf, ptr-buf);\n");
// Ensure the fragment is commited if it is followed by a large variable
if (j < maxvars) {
fprintf(fp, "\tstream->flush();\n");
}
}
// If we have one or more large variables, write them directly.
// As size + data
for ( ; j < maxvars && evars[j].isLarge(); j++) {
writeVarLargeEncodingExpression(evars[j], fp);
}
nvars = j;
}
#else /* !WITH_LARGE_SUPPORT */
size_t nvars = evars.size();
size_t npointers = 0;
fprintf(fp, "\tunsigned char *ptr;\n");
fprintf(fp, "\tunsigned char *buf;\n");
fprintf(fp, "\tconst size_t sizeWithoutChecksum = 8");
for (size_t j = 0; j < nvars; j++) {
npointers += getVarEncodingSizeExpression(
evars[j], e, buff, sizeof(buff),
(evars[j].isDMA() ? EncodingSizeFlags::DmaPtrOnly
: EncodingSizeFlags::None) |
EncodingSizeFlags::UseExistingVar |
EncodingSizeFlags::ExcludeOut);
fprintf(fp, " + %s", buff);
}
fprintf(fp, " + %u * 4;\n", (unsigned int)npointers);
// Size of checksum
fprintf(fp, "\t const size_t checksumSize = checksumCalculator->checksumByteSize();\n");
// Size of the whole thing
fprintf(fp, "\t const size_t totalSize = sizeWithoutChecksum + checksumSize;\n");
// allocate buffer from the stream;
fprintf(fp, "\tptr = buf = stream->alloc(totalSize);\n\n");
// encode into the stream;
fprintf(fp, "\tint tmp = OP_%s; memcpy(ptr, &tmp, 4); ptr += 4;\n", e->name().c_str());
fprintf(fp, "\tmemcpy(ptr, &totalSize, 4); ptr += 4;\n\n");
// out variables
for (size_t j = 0; j < nvars; j++) {
writeVarEncodingExpression(evars[j], fp);
}
fprintf(fp, "\tif (useChecksum) checksumCalculator->addBuffer(buf, ptr - buf);\n");
#endif /* !WITH_LARGE_SUPPORT */
// checksum
if (hasLargeFields) {
fprintf(fp, "\tbuf = stream->alloc(checksumSize);\n");
fprintf(fp, "\tif (useChecksum) checksumCalculator->writeChecksum(buf, checksumSize);\n\n");
} else {
fprintf(fp, "\tif (useChecksum) checksumCalculator->writeChecksum(ptr, checksumSize); ptr += checksumSize;\n\n");
}
// in variables;
bool hasTimeBeforeReadback = false;
bool hasReadbackChecksum = false;
for (size_t j = 0; j < nvars; j++) {
if (evars[j].isPointer()) {
Var::PointerDir dir = evars[j].pointerDir();
if (dir == Var::POINTER_INOUT || dir == Var::POINTER_OUT) {
const char* varname = evars[j].name().c_str();
const char* indent = "\t";
#if INSTRUMENT_TIMING_GUEST
if (!hasTimeBeforeReadback) {
hasTimeBeforeReadback = true;
// Let's flush the stream before measuring the time.
fprintf(fp, "\tstream->flush();\n");
fprintf(fp, "\tstruct timespec ts2;\n");
fprintf(fp, "\tclock_gettime(CLOCK_REALTIME, &ts2);\n");
}
#endif
if (evars[j].nullAllowed()) {
fprintf(fp, "\tif (%s != NULL) {\n",varname);
indent = "\t\t";
}
if (evars[j].guestUnpackExpression() != "") {
fprintf(fp, "%s%s;\n", indent, evars[j].guestUnpackExpression().c_str());
} else {
if (evars[j].isDMA()) {
fprintf(fp, "%s// Skip readback for var %s as it's DMA\n", indent, varname);
} else {
fprintf(fp, "%sstream->readback(%s, __size_%s);\n",
indent, varname, varname);
}
}
if (evars[j].isDMA()) {
fprintf(fp, "%s// Skip checksum for var %s as it's DMA\n", indent, varname);
} else {
fprintf(fp, "%sif (useChecksum) checksumCalculator->addBuffer(%s, __size_%s);\n",
indent, varname, varname);
}
if (evars[j].nullAllowed()) {
fprintf(fp, "\t}\n");
}
hasReadbackChecksum = true;
}
}
}
//XXX fprintf(fp, "\n\tDBG(\"<<<< %s\\n\");\n", e->name().c_str());
// todo - return value for pointers
if (e->retval().isPointer()) {
fprintf(stderr, "WARNING: %s : return value of pointer is unsupported\n",
e->name().c_str());
if (e->flushOnEncode()) {
fprintf(fp, "\tstream->flush();\n");
}
addGuestTimePrinting(e, hasTimeBeforeReadback, fp);
fprintf(fp, "\t return NULL;\n");
} else if (e->retval().type()->name() != "void") {
#if INSTRUMENT_TIMING_GUEST
if (!hasTimeBeforeReadback) {
hasTimeBeforeReadback = true;
fprintf(fp, "\tstream->flush();\n");
fprintf(fp, "\tstruct timespec ts2;\n");
fprintf(fp, "\tclock_gettime(CLOCK_REALTIME, &ts2);\n");
}
#endif
fprintf(fp, "\n\t%s retval;\n", e->retval().type()->name().c_str());
fprintf(fp, "\tstream->readback(&retval, %u);\n",(unsigned) e->retval().type()->bytes());
fprintf(fp, "\tif (useChecksum) checksumCalculator->addBuffer(&retval, %u);\n",
(unsigned) e->retval().type()->bytes());
writeEncodingChecksumValidatorOnReturn(e->name().c_str(), fp);
addGuestTimePrinting(e, hasTimeBeforeReadback, fp);
fprintf(fp, "\treturn retval;\n");
} else {
if (e->flushOnEncode()) fprintf(fp, "\tstream->flush();\n");
if (hasReadbackChecksum) writeEncodingChecksumValidatorOnReturn(e->name().c_str(), fp);
addGuestTimePrinting(e, hasTimeBeforeReadback, fp);
}
fprintf(fp, "}\n\n");
}
fprintf(fp, "} // namespace\n\n");
// constructor
fprintf(fp, "%s::%s(IOStream *stream, ChecksumCalculator *checksumCalculator)\n{\n", classname.c_str(), classname.c_str());
fprintf(fp, "\tm_stream = stream;\n");
fprintf(fp, "\tm_checksumCalculator = checksumCalculator;\n\n");
for (size_t i = 0; i < n; i++) {
EntryPoint *e = &at(i);
if (e->unsupported()) {
fprintf(fp,
"\tthis->%s = (%s_%s_proc_t) &enc_unsupported;\n",
e->name().c_str(),
e->name().c_str(),
sideString(CLIENT_SIDE));
} else {
fprintf(fp,
"\tthis->%s = &%s_enc;\n",
e->name().c_str(),
e->name().c_str());
}
}
fprintf(fp, "}\n\n");
// fprintf(fp, "} // namespace gfxstream\n\n");
fclose(fp);
return 0;
}
int ApiGen::genDecoderHeader(const std::string &filename)
{
FILE *fp = fopen(filename.c_str(), "wt");
if (fp == NULL) {
perror(filename.c_str());
return -1;
}
printHeader(fp);
std::string classname = m_basename + "_decoder_context_t";
fprintf(fp, "\n#ifndef GUARD_%s\n", classname.c_str());
fprintf(fp, "#define GUARD_%s\n\n", classname.c_str());
fprintf(fp, "#include \"render-utils/IOStream.h\"\n");
fprintf(fp, "#include \"ChecksumCalculator.h\"\n");
fprintf(fp, "#include \"%s_%s_context.h\"\n\n\n", m_basename.c_str(), sideString(SERVER_SIDE));
#if INSTRUMENT_TIMING_HOST
fprintf(fp, "#include \"time.h\"\n");
#endif
for (size_t i = 0; i < m_decoderHeaders.size(); i++) {
fprintf(fp, "#include %s\n", m_decoderHeaders[i].c_str());
}
fprintf(fp, "\n");
fprintf(fp, "namespace gfxstream {\n\n");
fprintf(fp, "struct %s : public %s_%s_context_t {\n\n",
classname.c_str(), m_basename.c_str(), sideString(SERVER_SIDE));
fprintf(fp, "\tsize_t decode(void *buf, size_t bufsize, IOStream *stream, ChecksumCalculator* checksumCalc);\n");
fprintf(fp, "\n};\n\n");
fprintf(fp, "} // namespace gfxstream\n\n");
fprintf(fp, "#endif // GUARD_%s\n", classname.c_str());
fclose(fp);
return 0;
}
int ApiGen::genContextImpl(const std::string &filename, SideType side)
{
FILE *fp = fopen(filename.c_str(), "wt");
if (fp == NULL) {
perror(filename.c_str());
return -1;
}
printHeader(fp);
std::string classname = m_basename + "_" + sideString(side) + "_context_t";
size_t n = size();
fprintf(fp, "\n\n#include <string.h>\n");
fprintf(fp, "#include \"%s_%s_context.h\"\n\n\n", m_basename.c_str(), sideString(side));
fprintf(fp, "#include <stdio.h>\n\n");
fprintf(fp, "int %s::initDispatchByName(void *(*getProc)(const char *, void *userData), void *userData)\n{\n", classname.c_str());
for (size_t i = 0; i < n; i++) {
EntryPoint *e = &at(i);
if (side == SERVER_SIDE && e->customDecoder() && !e->notApi()) {
fprintf(fp, "\t%s = (%s_dec_%s_proc_t) getProc(\"%s\", userData);\n",
e->name().c_str(),
e->name().c_str(),
sideString(side),
e->name().c_str());
} else {
fprintf(fp, "\t%s = (%s_%s_proc_t) getProc(\"%s\", userData);\n",
e->name().c_str(),
e->name().c_str(),
sideString(side),
e->name().c_str());
}
}
fprintf(fp, "\treturn 0;\n");
fprintf(fp, "}\n\n");
fclose(fp);
return 0;
}
int ApiGen::genDecoderImpl(const std::string &filename)
{
FILE *fp = fopen(filename.c_str(), "wt");
if (fp == NULL) {
perror(filename.c_str());
return -1;
}
printHeader(fp);
std::string classname = m_basename + "_decoder_context_t";
size_t n = size();
bool changesChecksum = false;
for (size_t i = 0; i < size(); ++i) {
const EntryPoint& ep = at(i);
if (ep.name().find("SelectChecksum") != std::string::npos) {
changesChecksum = true;
break;
}
}
fprintf(fp, "\n\n#include <string.h>\n");
fprintf(fp, "#include \"%s_opcodes.h\"\n\n", m_basename.c_str());
fprintf(fp, "#include \"%s_dec.h\"\n\n\n", m_basename.c_str());
fprintf(fp, "#include \"ProtocolUtils.h\"\n\n");
fprintf(fp, "#include \"ChecksumCalculatorThreadInfo.h\"\n\n");
fprintf(fp, "#include \"host-common/logging.h\"\n\n");
fprintf(fp, "#include <stdio.h>\n\n");
fprintf(fp, "namespace gfxstream {\n\n");
fprintf(fp, "typedef unsigned int tsize_t; // Target \"size_t\", which is 32-bit for now. It may or may not be the same as host's size_t when emugen is compiled.\n\n");
fprintf(fp,
#if DECODER_CHECK_GL_ERRORS
"#define CHECK_GL_ERRORS\n"
#endif
"#ifdef CHECK_GL_ERRORS\n"
"# define SET_LASTCALL(name) sprintf(lastCall, #name)\n"
"#else\n"
"# define SET_LASTCALL(name)\n"
"#endif\n");
// helper templates
// decoder switch;
fprintf(fp, "size_t %s::decode(void *buf, size_t len, IOStream *stream, ChecksumCalculator* checksumCalc) {\n", classname.c_str());
fprintf(fp,
"\tif (len < 8) return 0;\n\
#ifdef CHECK_GL_ERRORS\n\
\tchar lastCall[256] = {0};\n\
#endif\n\
\tunsigned char *ptr = (unsigned char *)buf;\n\
\tconst unsigned char* const end = (const unsigned char*)buf + len;\n");
if (!changesChecksum) {
fprintf(fp,
R"( const size_t checksumSize = checksumCalc->checksumByteSize();
const bool useChecksum = checksumSize > 0;
)");
}
fprintf(fp,
"\twhile (end - ptr >= 8) {\n\
\t\tuint32_t opcode = *(uint32_t *)ptr;\n\
\t\tuint32_t packetLen = *(uint32_t *)(ptr + 4);\n\
\t\tif (end - ptr < packetLen) return ptr - (unsigned char*)buf;\n");
if (changesChecksum) {
fprintf(fp,
R"( // Do this on every iteration, as some commands may change the checksum
// calculation parameters.
const size_t checksumSize = checksumCalc->checksumByteSize();
const bool useChecksum = checksumSize > 0;
)");
}
fprintf(fp, "\t\tswitch(opcode) {\n");
for (size_t f = 0; f < n; f++) {
enum Pass_t {
PASS_FIRST = 0,
PASS_VariableDeclarations = PASS_FIRST,
PASS_Protocol,
PASS_TmpBuffAlloc,
PASS_MemAlloc,
PASS_DebugPrint,
PASS_FunctionCall,
PASS_FlushOutput,
PASS_Epilog,
PASS_LAST };
EntryPoint *e = &(*this)[f];
// construct a printout string;
std::string printString;
for (size_t i = 0; i < e->vars().size(); i++) {
Var *v = &e->vars()[i];
printString += v->name() + ":";
if (!v->isVoid()) printString += (v->isPointer() ? "%p(%u)" : v->type()->printFormat()) + " ";
}
// TODO - add for return value;
fprintf(fp, "\t\tcase OP_%s: {\n", e->name().c_str());
fprintf(fp, "\t\t\tandroid::base::beginTrace(\"%s decode\");\n", e->name().c_str());
#if INSTRUMENT_TIMING_HOST
fprintf(fp, "\t\t\tstruct timespec ts0, ts1, ts2;\n");
fprintf(fp, "\t\t\tclock_gettime(CLOCK_REALTIME, &ts0);\n");
#endif
bool totalTmpBuffExist = false;
std::string totalTmpBuffOffset = "0";
std::string *tmpBufOffset = new std::string[e->vars().size()];
// construct retval type string
std::string retvalType;
if (!e->retval().isVoid()) {
retvalType = e->retval().type()->name();
}
for (int pass = PASS_FIRST; pass < PASS_LAST; pass++) {
#if INSTRUMENT_TIMING_HOST
if (pass == PASS_FunctionCall) {
fprintf(fp, "\t\t\tclock_gettime(CLOCK_REALTIME, &ts2);\n");
}
#endif
if (pass == PASS_FunctionCall &&
!e->retval().isVoid() &&
!e->retval().isPointer()) {
fprintf(fp, "\t\t\t*(%s *)(&tmpBuf[%s]) = ", retvalType.c_str(),
totalTmpBuffOffset.c_str());
}
if (pass == PASS_FunctionCall) {
if (e->customDecoder() && !e->notApi()) {
fprintf(fp, "\t\t\tthis->%s_dec(", e->hostApiName().c_str());
} else {
fprintf(fp, "\t\t\tthis->%s(", e->hostApiName().c_str());
}
if (e->customDecoder()) {
fprintf(fp, "this"); // add a context to the call
}
} else if (pass == PASS_DebugPrint) {
if (strstr(m_basename.c_str(), "gl")) {
fprintf(fp, "\t\t\t#ifdef CHECK_GL_ERRORS\n");
fprintf(fp, "\t\t\tGLint err = this->glGetError();\n");
fprintf(fp, "\t\t\tif (err) fprintf(stderr, \"%s Error (pre-call): 0x%%X before %s\\n\", err);\n",
m_basename.c_str(), e->name().c_str());
fprintf(fp, "\t\t\t#endif\n");
}
fprintf(fp,
"\t\t\tDECODER_DEBUG_LOG(\"%s(%%p): %s(%s)\", stream",
m_basename.c_str(),
e->name().c_str(),
printString.c_str());
if (e->vars().size() > 0 && !e->vars()[0].isVoid()) {
fprintf(fp, ", ");
}
}
std::string varoffset = "8"; // skip the header
VarsArray & evars = e->vars();
// allocate memory for out pointers;
for (size_t j = 0; j < evars.size(); j++) {
Var *v = & evars[j];
if (v->isVoid()) {
continue;
}
const char* var_name = v->name().c_str();
const char* var_type_name = v->type()->name().c_str();
const unsigned var_type_bytes = v->type()->bytes();
if ((pass == PASS_FunctionCall) &&
(j != 0 || e->customDecoder())) {
fprintf(fp, ", ");
}
if (pass == PASS_DebugPrint && j != 0) {
fprintf(fp, ", ");
}
if (v->isPointer() && v->isDMA()) {
if (pass == PASS_VariableDeclarations) {
fprintf(fp,
"\t\t\tuint64_t var_%s_guest_paddr = Unpack<uint64_t,uint64_t>(ptr + %s);\n"
"\t\t\t%s var_%s = stream->getDmaForReading(var_%s_guest_paddr);\n",
var_name,
varoffset.c_str(),
var_type_name,
var_name,
var_name);
}
if (pass == PASS_FunctionCall ||
pass == PASS_DebugPrint) {
fprintf(fp, "var_%s", var_name);
}
varoffset += " + 8";
}
if (!v->isPointer()) {
if (pass == PASS_VariableDeclarations) {
fprintf(fp,
"\t\t\t%s var_%s = Unpack<%s,uint%u_t>(ptr + %s);\n",
var_type_name,
var_name,
var_type_name,
var_type_bytes * 8U,
varoffset.c_str());
}
if (pass == PASS_FunctionCall ||
pass == PASS_DebugPrint) {
fprintf(fp, "var_%s", var_name);
}
varoffset += " + " + toString(var_type_bytes);
continue;
}
if (pass == PASS_VariableDeclarations) {
fprintf(fp,
"\t\t\tuint32_t size_%s __attribute__((unused)) = Unpack<uint32_t,uint32_t>(ptr + %s);\n",
var_name,
varoffset.c_str());
}
if (!v->isDMA()) {
if (v->pointerDir() & Var::POINTER_IN) {
if (pass == PASS_VariableDeclarations) {
#if USE_ALIGNED_BUFFERS
fprintf(fp,
"\t\t\tInputBuffer inptr_%s(ptr + %s + 4, size_%s);\n",
var_name,
varoffset.c_str(),
var_name);
if (v->unpackExpression().size() > 0) {
fprintf(fp,
"\t\t\tvoid* inptr_%s_unpacked;\n"
"\t\t\t%s;\n",
var_name,
v->unpackExpression().c_str());
}
}
if (pass == PASS_FunctionCall &&
v->pointerDir() == Var::POINTER_IN) {
if (v->nullAllowed()) {
fprintf(fp,
"size_%s == 0 ? nullptr : (%s)(inptr_%s.get())",
var_name,
var_type_name,
var_name);
} else {
if (v->unpackExpression().size() > 0) {
fprintf(fp,
"(%s)(inptr_%s_unpacked)",
var_type_name,
var_name);
} else {
fprintf(fp,
"(%s)(inptr_%s.get())",
var_type_name,
var_name);
}
}
} else if (pass == PASS_DebugPrint &&
v->pointerDir() == Var::POINTER_IN) {
fprintf(fp,
"(%s)(inptr_%s.get()), size_%s",
var_type_name,
var_name,
var_name);
}
#else // !USE_ALIGNED_BUFFERS
fprintf(fp,
"unsigned char *inptr_%s = (ptr + %s + 4);\n",
var_name,
varoffset.c_str());
}
if (pass == PASS_FunctionCall &&
v->pointerDir() == Var::POINTER_IN) {
if (v->nullAllowed()) {
fprintf(fp,
"size_%s == 0 ? NULL : (%s)(inptr_%s)",
var_name,
var_type_name,
var_name);
} else {
fprintf(fp,
"(%s)(inptr_%s)",
var_type_name,
var_name);
}
} else if (pass == PASS_DebugPrint &&
v->pointerDir() == Var::POINTER_IN) {
fprintf(fp,
"(%s)(inptr_%s), size_%s",
var_type_name,
var_name,
var_name);
}
#endif // !USE_ALIGNED_BUFFERS
varoffset += " + 4 + size_";
varoffset += var_name;
}
if (v->pointerDir() & Var::POINTER_OUT) { // out pointer;
if (pass == PASS_TmpBuffAlloc) {
if (!totalTmpBuffExist) {
fprintf(fp,
"\t\t\tsize_t totalTmpSize = size_%s;\n",
var_name);
} else {
fprintf(fp,
"\t\t\ttotalTmpSize += size_%s;\n",
var_name);
}
tmpBufOffset[j] = totalTmpBuffOffset;
totalTmpBuffOffset += " + size_";
totalTmpBuffOffset += var_name;
totalTmpBuffExist = true;
} else if (pass == PASS_MemAlloc) {
#if USE_ALIGNED_BUFFERS
fprintf(fp,
"\t\t\tOutputBuffer outptr_%s(&tmpBuf[%s], size_%s);\n",
var_name,
tmpBufOffset[j].c_str(),
var_name);
// If both input and output variable, initialize with the input.
if (v->pointerDir() == Var::POINTER_INOUT) {
fprintf(fp,
"\t\t\tmemcpy(outptr_%s.get(), inptr_%s.get(), size_%s);\n",
var_name,
var_name,
var_name);
}
if (v->hostPackExpression() != "") {
fprintf(fp, "\t\t\tvoid* forPacking_%s = nullptr;\n", var_name);
}
if (v->hostPackTmpAllocExpression() != "") {
fprintf(fp, "\t\t\t%s;\n", v->hostPackTmpAllocExpression().c_str());
}
} else if (pass == PASS_FunctionCall) {
if (v->hostPackExpression() != "") {
fprintf(fp,
"(%s)(forPacking_%s)",
var_type_name,
var_name);
} else {
if (v->nullAllowed()) {
fprintf(fp,
"size_%s == 0 ? nullptr : (%s)(outptr_%s.get())",
var_name,
var_type_name,
var_name);
} else {
fprintf(fp,
"(%s)(outptr_%s.get())",
var_type_name,
var_name);
}
}
} else if (pass == PASS_DebugPrint) {
fprintf(fp,
"(%s)(outptr_%s.get()), size_%s",
var_type_name,
var_name,
var_name);
}
if (pass == PASS_FlushOutput) {
if (v->hostPackExpression() != "") {
fprintf(fp,
"\t\t\tif (size_%s) {\n"
"\t\t\t%s; }\n",
var_name,
v->hostPackExpression().c_str());
}
fprintf(fp,
"\t\t\toutptr_%s.flush();\n",
var_name);
}
#else // !USE_ALIGNED_BUFFERS
fprintf(fp,
"\t\t\tunsigned char *outptr_%s = &tmpBuf[%s];\n",
var_name,
tmpBufOffset[j].c_str());
fprintf(fp,
"\t\t\tmemset(outptr_%s, 0, %s);\n",
var_name,
toString(v->type()->bytes()).c_str());
} else if (pass == PASS_FunctionCall) {
if (v->nullAllowed()) {
fprintf(fp,
"size_%s == 0 ? NULL : (%s)(outptr_%s)",
var_name,
var_type_name,
var_name);
} else {
fprintf(fp,
"(%s)(outptr_%s)",
var_type_name,
var_name);
}
} else if (pass == PASS_DebugPrint) {
fprintf(fp,
"(%s)(outptr_%s), size_%s",
var_type_name,
var_name,
varoffset.c_str());
}
#endif // !USE_ALIGNED_BUFFERS
if (v->pointerDir() == Var::POINTER_OUT) {
varoffset += " + 4";
}
}
}
}
if (pass == PASS_Protocol) {
fprintf(fp,
"\t\t\tif (useChecksum) {\n"
"\t\t\t\tChecksumCalculatorThreadInfo::validOrDie(checksumCalc, ptr, %s, "
"ptr + %s, checksumSize,"
"\n\t\t\t\t\t\"%s::decode,"
" OP_%s: GL checksumCalculator failure\\n\");\n"
"\t\t\t}\n",
varoffset.c_str(),
varoffset.c_str(),
classname.c_str(),
e->name().c_str()
);
varoffset += " + 4";
}
if (pass == PASS_FunctionCall ||
pass == PASS_DebugPrint) {
fprintf(fp, ");\n");
if (pass == PASS_FunctionCall) {
// unlock all dma buffers that have been passed
for (size_t j = 0; j < evars.size(); j++) {
Var *v = & evars[j];
if (v->isVoid()) {
continue;
}
const char* var_name = v->name().c_str();
if (v->isDMA()) {
fprintf(fp,
"\t\t\tstream->unlockDma(var_%s_guest_paddr);\n",
var_name);
}
}
}
}
if (pass == PASS_TmpBuffAlloc) {
if (!e->retval().isVoid() && !e->retval().isPointer()) {
if (!totalTmpBuffExist)
fprintf(fp,
"\t\t\tsize_t totalTmpSize = sizeof(%s);\n",
retvalType.c_str());
else
fprintf(fp,
"\t\t\ttotalTmpSize += sizeof(%s);\n",
retvalType.c_str());
totalTmpBuffExist = true;
}
if (totalTmpBuffExist) {
fprintf(fp,
"\t\t\ttotalTmpSize += checksumSize;\n"
"\t\t\tunsigned char *tmpBuf = stream->alloc(totalTmpSize);\n");
}
}
if (pass == PASS_Epilog) {
// send back out pointers data as well as retval
if (totalTmpBuffExist) {
fprintf(fp,
"\t\t\tif (useChecksum) {\n"
"\t\t\t\tChecksumCalculatorThreadInfo::writeChecksum(checksumCalc, "
"&tmpBuf[0], totalTmpSize - checksumSize, "
"&tmpBuf[totalTmpSize - checksumSize], checksumSize);\n"
"\t\t\t}\n"
"\t\t\tstream->flush();\n");
}
}
} // pass;
#if INSTRUMENT_TIMING_HOST
fprintf(fp, "\t\t\tclock_gettime(CLOCK_REALTIME, &ts1);\n");
fprintf(fp, "\t\t\tlong timeDiff = ts1.tv_sec*1000000 + ts1.tv_nsec/1000 - (ts0.tv_sec*1000000 + ts0.tv_nsec/1000);\n");
fprintf(fp, "\t\t\tlong timeDiff2 = ts1.tv_sec*1000000 + ts1.tv_nsec/1000 - (ts2.tv_sec*1000000 + ts2.tv_nsec/1000);\n");
fprintf(fp, "\t\t\tprintf(\"(timing) %%4ld.%%06ld %s: %%ld (%%ld) us\\n\", "
"ts1.tv_sec, ts1.tv_nsec/1000, timeDiff, timeDiff2);\n", e->name().c_str());
#endif
fprintf(fp, "\t\t\tSET_LASTCALL(\"%s\");\n", e->name().c_str());
fprintf(fp, "\t\t\tandroid::base::endTrace();\n");
fprintf(fp, "\t\t\tbreak;\n");
fprintf(fp, "\t\t}\n");
delete [] tmpBufOffset;
}
fprintf(fp, "\t\tdefault:\n");
fprintf(fp, "\t\t\treturn ptr - (unsigned char*)buf;\n");
fprintf(fp, "\t\t} //switch\n");
if (strstr(m_basename.c_str(), "gl")) {
fprintf(fp, "\t\t#ifdef CHECK_GL_ERRORS\n");
fprintf(fp, "\t\tGLint err = this->glGetError();\n");
fprintf(fp, "\t\tif (err) fprintf(stderr, \"%s Error (post-call): 0x%%X in %%s\\n\", err, lastCall);\n", m_basename.c_str());
fprintf(fp, "\t\t#endif\n");
}
fprintf(fp, "\t\tptr += packetLen;\n");
fprintf(fp, "\t} // while\n");
fprintf(fp, "\treturn ptr - (unsigned char*)buf;\n");
fprintf(fp, "}\n");
fprintf(fp, "} // namespace gfxstream\n\n");
fclose(fp);
return 0;
}
int ApiGen::readSpec(const std::string & filename)
{
FILE *specfp = fopen(filename.c_str(), "rt");
if (specfp == NULL) {
return -1;
}
char line[1000];
unsigned int lc = 0;
while (fgets(line, sizeof(line), specfp) != NULL) {
lc++;
EntryPoint ref;
if (ref.parse(lc, std::string(line))) {
push_back(ref);
updateMaxEntryPointsParams(ref.vars().size());
}
}
fclose(specfp);
return 0;
}
int ApiGen::readAttributes(const std::string & attribFilename)
{
enum { ST_NAME, ST_ATT } state;
FILE *fp = fopen(attribFilename.c_str(), "rt");
if (fp == NULL) {
perror(attribFilename.c_str());
return -1;
}
char buf[1000];
state = ST_NAME;
EntryPoint *currentEntry = NULL;
size_t lc = 0;
bool globalAttributes = false;
while (fgets(buf, sizeof(buf), fp) != NULL) {
lc++;
std::string line(buf);
if (line.size() == 0) continue; // could that happen?
if (line.at(0) == '#') continue; // comment
size_t first = line.find_first_not_of(" \t\n");
if (state == ST_ATT && (first == std::string::npos || first == 0)) state = ST_NAME;
line = trim(line);
if (line.size() == 0 || line.at(0) == '#') continue;
switch(state) {
case ST_NAME:
if (line == "GLOBAL") {
globalAttributes = true;
} else {
globalAttributes = false;
currentEntry = findEntryByName(line);
if (currentEntry == NULL) {
fprintf(stderr, "WARNING: %u: attribute of non existant entry point %s\n", (unsigned int)lc, line.c_str());
}
}
state = ST_ATT;
break;
case ST_ATT:
if (globalAttributes) {
setGlobalAttribute(line, lc);
} else if (currentEntry != NULL) {
currentEntry->setAttribute(line, lc);
}
break;
}
}
return 0;
}
int ApiGen::setGlobalAttribute(const std::string & line, size_t lc)
{
size_t pos = 0;
size_t last;
std::string token = getNextToken(line, pos, &last, WHITESPACE);
pos = last;
if (token == "base_opcode") {
std::string str = getNextToken(line, pos, &last, WHITESPACE);
if (str.size() == 0) {
fprintf(stderr, "line %u: missing value for base_opcode\n", (unsigned) lc);
} else {
setBaseOpcode(atoi(str.c_str()));
}
} else if (token == "encoder_headers") {
std::string str = getNextToken(line, pos, &last, WHITESPACE);
pos = last;
while (str.size() != 0) {
encoderHeaders().push_back(str);
str = getNextToken(line, pos, &last, WHITESPACE);
pos = last;
}
} else if (token == "client_context_headers") {
std::string str = getNextToken(line, pos, &last, WHITESPACE);
pos = last;
while (str.size() != 0) {
clientContextHeaders().push_back(str);
str = getNextToken(line, pos, &last, WHITESPACE);
pos = last;
}
} else if (token == "server_context_headers") {
std::string str = getNextToken(line, pos, &last, WHITESPACE);
pos = last;
while (str.size() != 0) {
serverContextHeaders().push_back(str);
str = getNextToken(line, pos, &last, WHITESPACE);
pos = last;
}
} else if (token == "decoder_headers") {
std::string str = getNextToken(line, pos, &last, WHITESPACE);
pos = last;
while (str.size() != 0) {
decoderHeaders().push_back(str);
str = getNextToken(line, pos, &last, WHITESPACE);
pos = last;
}
}
else {
fprintf(stderr, "WARNING: %u : unknown global attribute %s\n", (unsigned int)lc, line.c_str());
}
return 0;
}