blob: 33b1562eb69a350ad86da544dfe5e3a055c519da [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "gfxstream/guest/GLClientState.h"
#include "GLESTextureUtils.h"
#include "ErrorLog.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "glUtils.h"
#include <cutils/log.h>
#ifndef MAX
#define MAX(a, b) ((a) < (b) ? (b) : (a))
#endif
// Don't include these in the .h file, or we get weird compile errors.
#include <GLES2/gl2ext.h>
#include <GLES3/gl3.h>
#include <GLES3/gl31.h>
using gfxstream::guest::AutoReadLock;
using gfxstream::guest::AutoWriteLock;
namespace gfxstream {
namespace guest {
void GLClientState::init() {
m_initialized = false;
state_GL_STENCIL_TEST = false;
state_GL_STENCIL_FUNC = GL_ALWAYS;
state_GL_STENCIL_VALUE_MASK = ~(0);
state_GL_STENCIL_REF = 0;
state_GL_STENCIL_FAIL = GL_KEEP;
state_GL_STENCIL_PASS_DEPTH_FAIL = GL_KEEP;
state_GL_STENCIL_PASS_DEPTH_PASS = GL_KEEP;
state_GL_STENCIL_BACK_FUNC = GL_ALWAYS;
state_GL_STENCIL_BACK_VALUE_MASK = ~(0);
state_GL_STENCIL_BACK_REF = 0;
state_GL_STENCIL_BACK_FAIL = GL_KEEP;
state_GL_STENCIL_BACK_PASS_DEPTH_FAIL = GL_KEEP;
state_GL_STENCIL_BACK_PASS_DEPTH_PASS = GL_KEEP;
state_GL_STENCIL_WRITEMASK = ~(0);
state_GL_STENCIL_BACK_WRITEMASK = ~(0);
state_GL_STENCIL_CLEAR_VALUE = 0;
m_arrayBuffer = 0;
m_arrayBuffer_lastEncode = 0;
m_attribEnableCache = 0;
m_vaoAttribBindingCacheInvalid = 0xffff;
m_vaoAttribBindingHasClientArrayCache = 0;
m_vaoAttribBindingHasVboCache = 0;
m_noClientArraysCache = 0;
addVertexArrayObject(0);
setVertexArrayObject(0);
// init gl constans;
m_currVaoState[VERTEX_LOCATION].glConst = GL_VERTEX_ARRAY;
m_currVaoState[NORMAL_LOCATION].glConst = GL_NORMAL_ARRAY;
m_currVaoState[COLOR_LOCATION].glConst = GL_COLOR_ARRAY;
m_currVaoState[POINTSIZE_LOCATION].glConst = GL_POINT_SIZE_ARRAY_OES;
m_currVaoState[TEXCOORD0_LOCATION].glConst = GL_TEXTURE_COORD_ARRAY;
m_currVaoState[TEXCOORD1_LOCATION].glConst = GL_TEXTURE_COORD_ARRAY;
m_currVaoState[TEXCOORD2_LOCATION].glConst = GL_TEXTURE_COORD_ARRAY;
m_currVaoState[TEXCOORD3_LOCATION].glConst = GL_TEXTURE_COORD_ARRAY;
m_currVaoState[TEXCOORD4_LOCATION].glConst = GL_TEXTURE_COORD_ARRAY;
m_currVaoState[TEXCOORD5_LOCATION].glConst = GL_TEXTURE_COORD_ARRAY;
m_currVaoState[TEXCOORD6_LOCATION].glConst = GL_TEXTURE_COORD_ARRAY;
m_currVaoState[TEXCOORD7_LOCATION].glConst = GL_TEXTURE_COORD_ARRAY;
m_currVaoState[MATRIXINDEX_LOCATION].glConst = GL_MATRIX_INDEX_ARRAY_OES;
m_currVaoState[WEIGHT_LOCATION].glConst = GL_WEIGHT_ARRAY_OES;
m_copyReadBuffer = 0;
m_copyWriteBuffer = 0;
m_pixelPackBuffer = 0;
m_pixelUnpackBuffer = 0;
m_transformFeedbackBuffer = 0;
m_uniformBuffer = 0;
m_atomicCounterBuffer = 0;
m_dispatchIndirectBuffer = 0;
m_drawIndirectBuffer = 0;
m_shaderStorageBuffer = 0;
m_textureBuffer = 0;
m_transformFeedbackActive = false;
m_transformFeedbackUnpaused = false;
m_transformFeedbackVaryingsCountForLinking = 0;
m_activeTexture = 0;
m_currentProgram = 0;
m_currentShaderProgram = 0;
m_pixelStore.unpack_alignment = 4;
m_pixelStore.pack_alignment = 4;
m_pixelStore.unpack_row_length = 0;
m_pixelStore.unpack_image_height = 0;
m_pixelStore.unpack_skip_pixels = 0;
m_pixelStore.unpack_skip_rows = 0;
m_pixelStore.unpack_skip_images = 0;
m_pixelStore.pack_row_length = 0;
m_pixelStore.pack_skip_pixels = 0;
m_pixelStore.pack_skip_rows = 0;
memset(m_tex.unit, 0, sizeof(m_tex.unit));
m_tex.activeUnit = &m_tex.unit[0];
m_tex.textureRecs = NULL;
mRboState.boundRenderbuffer = nullptr;
mFboState.boundDrawFramebuffer = 0;
mFboState.boundReadFramebuffer = 0;
mFboState.drawFboCheckStatus = GL_NONE;
mFboState.readFboCheckStatus = GL_NONE;
m_extensions_set = false;
// The default transform feedback buffer object
// The default sampler object
GLuint defaultId = 0;
setExistence(ObjectType::TransformFeedback, true, 1, &defaultId);
mBoundTransformFeedbackValidity.id = 0;
mBoundTransformFeedbackValidity.valid = true;
// query must take id that was created via glGenQueries
mBoundQueryValidity_AnySamplesPassed.valid = false;
mBoundQueryValidity_AnySamplesPassedConservative.valid = false;
mBoundQueryValidity_TransformFeedbackPrimitivesWritten.valid = false;
}
GLClientState::GLClientState()
{
init();
}
GLClientState::GLClientState(int majorVersion, int minorVersion) :
m_glesMajorVersion(majorVersion),
m_glesMinorVersion(minorVersion) {
init();
}
GLClientState::~GLClientState()
{
}
void GLClientState::enable(int location, int state)
{
m_currVaoState[location].enableDirty |= (state != m_currVaoState[location].enabled);
m_currVaoState[location].enabled = state;
if (state) {
m_attribEnableCache |= (1 << location);
m_noClientArraysCache = 0;
} else {
m_attribEnableCache &= ~(1 << location);
}
}
void GLClientState::setVertexAttribState(int location, int size, GLenum type, GLboolean normalized, GLsizei stride, const void *data, bool isInt)
{
m_currVaoState[location].size = size;
m_currVaoState[location].type = type;
m_currVaoState[location].stride = stride;
m_currVaoState[location].data = (void*)data;
m_currVaoState[location].bufferObject = m_arrayBuffer;
m_currVaoState[location].elementSize = size ? (glSizeof(type) * size) : 0;
switch (type) {
case GL_INT_2_10_10_10_REV:
case GL_UNSIGNED_INT_2_10_10_10_REV:
m_currVaoState[location].elementSize =
m_currVaoState[location].elementSize / 4;
break;
default:
break;
}
m_currVaoState[location].normalized = normalized;
m_currVaoState[location].isInt = isInt;
}
void GLClientState::setVertexBindingDivisor(int bindingindex, GLuint divisor) {
m_currVaoState.bufferBinding(bindingindex).divisor = divisor;
}
const GLClientState::BufferBinding& GLClientState::getCurrAttributeBindingInfo(int attribindex) {
return m_currVaoState.bufferBindings_const()[m_currVaoState[attribindex].bindingindex];
}
void GLClientState::setVertexAttribBinding(int attribindex, int bindingindex) {
m_currVaoState[attribindex].bindingindex = bindingindex;
m_currVaoState.bufferBinding(bindingindex).vertexAttribLoc = attribindex;
m_vaoAttribBindingCacheInvalid |= (1 << attribindex);
m_noClientArraysCache = 0;
}
void GLClientState::setVertexAttribFormat(int location, int size, GLenum type, GLboolean normalized, GLuint reloffset, bool isInt) {
m_currVaoState[location].size = size;
m_currVaoState[location].type = type;
m_currVaoState[location].normalized = normalized;
m_currVaoState[location].reloffset = reloffset;
m_currVaoState[location].elementSize = size ? (glSizeof(type) * size) : 0;
switch (type) {
case GL_INT_2_10_10_10_REV:
case GL_UNSIGNED_INT_2_10_10_10_REV:
m_currVaoState[location].elementSize =
m_currVaoState[location].elementSize / 4;
break;
default:
break;
}
m_currVaoState[location].isInt = isInt;
}
void GLClientState::addVertexArrayObjects(GLsizei n, GLuint* arrays) {
for (GLsizei i = 0; i < n; i++) {
addVertexArrayObject(arrays[i]);
}
}
void GLClientState::removeVertexArrayObjects(GLsizei n, const GLuint* arrays) {
for (GLsizei i = 0; i < n; i++) {
if (arrays[i] && m_currVaoState.vaoId() == arrays[i]) {
setVertexArrayObject(0);
}
removeVertexArrayObject(arrays[i]);
}
}
void GLClientState::addVertexArrayObject(GLuint name) {
if (m_vaoMap.find(name) !=
m_vaoMap.end()) {
ALOGE("%s: ERROR: %u already part of current VAO state!",
__FUNCTION__, name);
return;
}
m_vaoMap.insert(
VAOStateMap::value_type(
name,
VAOState(0, CODEC_MAX_VERTEX_ATTRIBUTES, CODEC_MAX_VERTEX_ATTRIBUTES)));
VertexAttribStateVector& attribState =
m_vaoMap.find(name)->second.attribState;
for (int i = 0; i < CODEC_MAX_VERTEX_ATTRIBUTES; i++) {
attribState[i].enabled = 0;
attribState[i].enableDirty = false;
attribState[i].data = 0;
attribState[i].reloffset = 0;
attribState[i].bindingindex = i;
attribState[i].divisor = 0;
attribState[i].size = 4; // 4 is the default size
attribState[i].type = GL_FLOAT; // GL_FLOAT is the default type
}
VertexAttribBindingVector& bindingState =
m_vaoMap.find(name)->second.bindingState;
for (int i = 0; i < bindingState.size(); i++) {
bindingState[i].effectiveStride = 16;
}
}
void GLClientState::removeVertexArrayObject(GLuint name) {
if (name == 0) {
ALOGE("%s: ERROR: cannot delete VAO 0!",
__FUNCTION__);
return;
}
if (m_vaoMap.find(name) ==
m_vaoMap.end()) {
ALOGE("%s: ERROR: %u not found in VAO state!",
__FUNCTION__, name);
return;
}
m_vaoMap.erase(name);
}
void GLClientState::setVertexArrayObject(GLuint name) {
if (m_vaoMap.find(name) ==
m_vaoMap.end()) {
ALOGE("%s: ERROR: %u not found in VAO state!",
__FUNCTION__, name);
return;
}
if (name && m_currVaoState.vaoId() == name) {
ALOGV("%s: set vao to self, no-op (%u)",
__FUNCTION__, name);
return;
}
m_currVaoState =
VAOStateRef(m_vaoMap.find(name));
}
bool GLClientState::isVertexArrayObject(GLuint vao) const {
return m_vaoMap.find(vao) != m_vaoMap.end();
}
void GLClientState::getVBOUsage(bool* hasClientArrays, bool* hasVBOs) {
uint8_t todo_count = 0;
uint8_t todo[CODEC_MAX_VERTEX_ATTRIBUTES];
if (m_noClientArraysCache) {
*hasClientArrays = false;
*hasVBOs = true;
return;
}
for (int i = 0; i < CODEC_MAX_VERTEX_ATTRIBUTES; i++) {
if ((1 << i) & (m_attribEnableCache)) {
if (!((1 << i) & m_vaoAttribBindingCacheInvalid)) {
if ((1 << i) & m_vaoAttribBindingHasClientArrayCache) {
*hasClientArrays = true;
}
if ((1 << i) & m_vaoAttribBindingHasVboCache) {
*hasVBOs = true;
}
if (*hasClientArrays && *hasVBOs) return;
} else {
todo[todo_count] = i;
++todo_count;
}
}
}
if (todo_count == 0 &&
!(*hasClientArrays) &&
*hasVBOs) {
m_noClientArraysCache = 1;
}
for (int k = 0; k < todo_count; ++k) {
int i = todo[k];
const GLClientState::BufferBinding& curr_binding =
m_currVaoState.bufferBindings_const()[
m_currVaoState[i].bindingindex];
GLuint bufferObject = curr_binding.buffer;
if (bufferObject == 0 && curr_binding.offset && hasClientArrays) {
*hasClientArrays = true;
m_vaoAttribBindingHasClientArrayCache |= (1 << i);
} else {
m_vaoAttribBindingHasClientArrayCache &= ~(1 << i);
}
if (bufferObject != 0 && hasVBOs) {
*hasVBOs = true;
m_vaoAttribBindingHasVboCache |= (1 << i);
} else {
m_vaoAttribBindingHasVboCache &= ~(1 << i);
}
m_vaoAttribBindingCacheInvalid &= ~(1 << i);
if (*hasClientArrays && *hasVBOs) return;
}
if (!(*hasClientArrays) &&
*hasVBOs) {
m_noClientArraysCache = 1;
}
}
const GLClientState::VertexAttribState& GLClientState::getState(int location) {
return m_currVaoState[location];
}
const GLClientState::VertexAttribState& GLClientState::getStateAndEnableDirty(int location, bool *enableChanged)
{
if (enableChanged) {
*enableChanged = m_currVaoState[location].enableDirty;
}
m_currVaoState[location].enableDirty = false;
return m_currVaoState[location];
}
void GLClientState::updateEnableDirtyArrayForDraw() {
bool enableChanged;
VAOState& vaoState = m_currVaoState.vaoState();
int k = 0;
for (int i = 0; i < CODEC_MAX_VERTEX_ATTRIBUTES; ++i) {
const VertexAttribState &state = getStateAndEnableDirty(i, &enableChanged);
if (enableChanged || state.enabled) {
vaoState.attributesNeedingUpdateForDraw[k] = i;
++k;
}
}
vaoState.numAttributesNeedingUpdateForDraw = k;
}
GLClientState::VAOState& GLClientState::currentVaoState() {
return m_currVaoState.vaoState();
}
int GLClientState::getLocation(GLenum loc)
{
int retval;
switch(loc) {
case GL_VERTEX_ARRAY:
retval = int(VERTEX_LOCATION);
break;
case GL_NORMAL_ARRAY:
retval = int(NORMAL_LOCATION);
break;
case GL_COLOR_ARRAY:
retval = int(COLOR_LOCATION);
break;
case GL_POINT_SIZE_ARRAY_OES:
retval = int(POINTSIZE_LOCATION);
break;
case GL_TEXTURE_COORD_ARRAY:
retval = int (TEXCOORD0_LOCATION + m_activeTexture);
break;
case GL_MATRIX_INDEX_ARRAY_OES:
retval = int (MATRIXINDEX_LOCATION);
break;
case GL_WEIGHT_ARRAY_OES:
retval = int (WEIGHT_LOCATION);
break;
default:
retval = loc;
}
return retval;
}
static void sClearIndexedBufferBinding(GLuint id, std::vector<GLClientState::BufferBinding>& bindings) {
for (size_t i = 0; i < bindings.size(); i++) {
if (bindings[i].buffer == id) {
bindings[i].offset = 0;
bindings[i].stride = 0;
bindings[i].effectiveStride = 16;
bindings[i].size = 0;
bindings[i].buffer = 0;
}
}
}
void GLClientState::addBuffer(GLuint id) {
mBufferIds.add(id);
mBufferIds.set(id, true);
mHostMappedBufferDirty.add(id);
}
void GLClientState::removeBuffer(GLuint id) {
mHostMappedBufferDirty.remove(id);
mBufferIds.remove(id);
}
bool GLClientState::bufferIdExists(GLuint id) const {
return mBufferIds.get(id);
}
void GLClientState::setBufferHostMapDirty(GLuint id, bool dirty) {
mHostMappedBufferDirty.set(id, dirty);
}
bool GLClientState::isBufferHostMapDirty(GLuint id) const {
return mHostMappedBufferDirty.get(id);
}
void GLClientState::setExistence(ObjectType type, bool exists, GLsizei count, const GLuint* ids) {
if (type == ObjectType::Sampler) {
SamplerInfo::ScopedView view(mSamplerInfo);
if (exists) {
for (GLsizei i = 0; i < count; ++i) {
view.addFresh(ids[i]);
}
} else {
for (GLsizei i = 0; i < count; ++i) {
view.unref(ids[i]);
}
}
} else {
ExistenceMap* existenceMap = &mBufferIds;
switch (type) {
case ObjectType::Buffer:
existenceMap = &mBufferIds;
break;
case ObjectType::TransformFeedback:
existenceMap = &mTransformFeedbackIds;
break;
case ObjectType::Query:
existenceMap = &mQueryIds;
for (GLsizei i = 0; i < count; ++i) {
// reset the last query target
mLastQueryTargets.add(ids[i], 0);
}
break;
case ObjectType::Sampler:
default:
ALOGE("%s: Unreachable code\n", __func__);
abort();
}
if (exists) {
for (GLsizei i = 0; i < count; ++i) {
existenceMap->add(ids[i]);
existenceMap->set(ids[i], true);
}
} else {
for (GLsizei i = 0; i < count; ++i) {
existenceMap->remove(ids[i]);
}
}
}
}
bool GLClientState::queryExistence(ObjectType type, GLuint id) const {
switch (type) {
case ObjectType::Buffer:
return mBufferIds.get(id);
case ObjectType::TransformFeedback:
return mTransformFeedbackIds.get(id);
case ObjectType::Sampler:
return samplerExists(id);
case ObjectType::Query:
return mQueryIds.get(id);
default:
ALOGD("%s: unknown object type: 0x%x\n", __func__, type);
abort();
}
}
bool GLClientState::samplerExists(GLuint id) const {
if (!id) return true;
SamplerInfo::ScopedView view(mSamplerInfo);
return view.samplerExists(id);
}
bool GLClientState::tryBind(GLenum target, GLuint id) {
if (0 == id) { // unbind operation
switch (target) {
case GL_TRANSFORM_FEEDBACK:
mBoundTransformFeedbackValidity.id = 0;
mBoundTransformFeedbackValidity.valid = true;
break;
case GL_ANY_SAMPLES_PASSED:
mBoundQueryValidity_AnySamplesPassed.id = 0;
mBoundQueryValidity_AnySamplesPassed.valid = false;
break;
case GL_ANY_SAMPLES_PASSED_CONSERVATIVE:
mBoundQueryValidity_AnySamplesPassedConservative.id = 0;
mBoundQueryValidity_AnySamplesPassedConservative.valid = false;
break;
case GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN:
mBoundQueryValidity_TransformFeedbackPrimitivesWritten.id = 0;
mBoundQueryValidity_TransformFeedbackPrimitivesWritten.valid = false;
break;
default:
ALOGE("%s: target 0x%x not yet supported in new state tracking model\n", __func__, target);
abort();
}
return true;
}
switch (target) {
case GL_TRANSFORM_FEEDBACK:
if (!queryExistence(ObjectType::TransformFeedback, id)) return false;
break;
case GL_ANY_SAMPLES_PASSED:
case GL_ANY_SAMPLES_PASSED_CONSERVATIVE:
case GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN:
if (!queryExistence(ObjectType::Query, id)) {
return false;
}
break;
default:
ALOGE("%s: target 0x%x not yet supported in new state tracking model\n", __func__, target);
abort();
}
// valid bind
switch (target) {
case GL_TRANSFORM_FEEDBACK:
mBoundTransformFeedbackValidity.id = id;
mBoundTransformFeedbackValidity.valid = true;
break;
case GL_ANY_SAMPLES_PASSED:
mBoundQueryValidity_AnySamplesPassed.id = id;
mBoundQueryValidity_AnySamplesPassed.valid = true;
break;
case GL_ANY_SAMPLES_PASSED_CONSERVATIVE:
mBoundQueryValidity_AnySamplesPassedConservative.id = id;
mBoundQueryValidity_AnySamplesPassedConservative.valid = true;
break;
case GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN:
mBoundQueryValidity_TransformFeedbackPrimitivesWritten.id = id;
mBoundQueryValidity_TransformFeedbackPrimitivesWritten.valid = true;
break;
default:
ALOGE("%s: target 0x%x not yet supported in new state tracking model\n", __func__, target);
abort();
}
return true;
}
bool GLClientState::isBoundTargetValid(GLenum target) {
switch (target) {
case GL_TRANSFORM_FEEDBACK:
return mBoundTransformFeedbackValidity.valid;
case GL_ANY_SAMPLES_PASSED:
return mBoundQueryValidity_AnySamplesPassed.valid;
case GL_ANY_SAMPLES_PASSED_CONSERVATIVE:
return mBoundQueryValidity_AnySamplesPassedConservative.valid;
case GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN:
return mBoundQueryValidity_TransformFeedbackPrimitivesWritten.valid;
default:
ALOGE("%s: target 0x%x not yet supported in new state tracking model\n", __func__, target);
abort();
}
}
bool GLClientState::isQueryBound(GLenum target) {
switch (target) {
case GL_ANY_SAMPLES_PASSED:
return mBoundQueryValidity_AnySamplesPassed.valid;
case GL_ANY_SAMPLES_PASSED_CONSERVATIVE:
return mBoundQueryValidity_AnySamplesPassedConservative.valid;
case GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN:
return mBoundQueryValidity_TransformFeedbackPrimitivesWritten.valid;
default:
return false;
}
}
bool GLClientState::isQueryObjectActive(GLuint id) {
if (mBoundQueryValidity_AnySamplesPassed.valid &&
(id == mBoundQueryValidity_AnySamplesPassed.id))
return true;
if (mBoundQueryValidity_AnySamplesPassedConservative.valid &&
(id == mBoundQueryValidity_AnySamplesPassedConservative.id))
return true;
if (mBoundQueryValidity_TransformFeedbackPrimitivesWritten.valid &&
(id == mBoundQueryValidity_TransformFeedbackPrimitivesWritten.id))
return true;
return false;
}
void GLClientState::setLastQueryTarget(GLenum target, GLuint id) {
mLastQueryTargets.add(id, target);
}
GLenum GLClientState::getLastQueryTarget(GLuint id) {
auto targetPtr = mLastQueryTargets.get_const(id);
if (!targetPtr) return 0;
return *targetPtr;
}
void GLClientState::setBoundPixelPackBufferDirtyForHostMap() {
if (m_pixelPackBuffer)
setBufferHostMapDirty(m_pixelPackBuffer, true /* dirty */);
}
void GLClientState::setBoundTransformFeedbackBuffersDirtyForHostMap() {
if (m_transformFeedbackBuffer)
setBufferHostMapDirty(
m_transformFeedbackBuffer,
true /* dirty */);
for (size_t i = 0; i < m_indexedTransformFeedbackBuffers.size(); ++i)
if (m_indexedTransformFeedbackBuffers[i].buffer)
setBufferHostMapDirty(
m_indexedTransformFeedbackBuffers[i].buffer,
true /* dirty */);
}
void GLClientState::setBoundShaderStorageBuffersDirtyForHostMap() {
if (m_glesMajorVersion == 3 && m_glesMinorVersion == 0) return;
if (m_shaderStorageBuffer)
setBufferHostMapDirty(
m_shaderStorageBuffer,
true /* dirty */);
for (size_t i = 0; i < m_indexedShaderStorageBuffers.size(); ++i)
if (m_indexedShaderStorageBuffers[i].buffer)
setBufferHostMapDirty(
m_indexedShaderStorageBuffers[i].buffer,
true /* dirty */);
}
void GLClientState::setBoundAtomicCounterBuffersDirtyForHostMap() {
if (m_glesMajorVersion == 3 && m_glesMinorVersion == 0) return;
if (m_atomicCounterBuffer)
setBufferHostMapDirty(
m_atomicCounterBuffer,
true /* dirty */);
for (size_t i = 0; i < m_indexedAtomicCounterBuffers.size(); ++i)
if (m_indexedAtomicCounterBuffers[i].buffer)
setBufferHostMapDirty(
m_indexedAtomicCounterBuffers[i].buffer,
true /* dirty */);
}
void GLClientState::unBindBuffer(GLuint id) {
if (m_arrayBuffer == id) {
m_arrayBuffer = 0;
m_arrayBuffer_lastEncode = 0;
}
if (m_currVaoState.iboId() == id) {
m_currVaoState.iboId() = 0;
m_currVaoState.iboIdLastEncode() = 0;
}
if (m_copyReadBuffer == id)
m_copyReadBuffer = 0;
if (m_copyWriteBuffer == id)
m_copyWriteBuffer = 0;
if (m_pixelPackBuffer == id)
m_pixelPackBuffer = 0;
if (m_pixelUnpackBuffer == id)
m_pixelUnpackBuffer = 0;
if (m_transformFeedbackBuffer == id)
m_transformFeedbackBuffer = 0;
if (m_uniformBuffer == id)
m_uniformBuffer = 0;
if (m_atomicCounterBuffer == id)
m_atomicCounterBuffer = 0;
if (m_dispatchIndirectBuffer == id)
m_dispatchIndirectBuffer = 0;
if (m_drawIndirectBuffer == id)
m_drawIndirectBuffer = 0;
if (m_shaderStorageBuffer == id)
m_shaderStorageBuffer = 0;
if (m_textureBuffer == id)
m_textureBuffer = 0;
sClearIndexedBufferBinding(id, m_indexedTransformFeedbackBuffers);
sClearIndexedBufferBinding(id, m_indexedUniformBuffers);
sClearIndexedBufferBinding(id, m_indexedAtomicCounterBuffers);
sClearIndexedBufferBinding(id, m_indexedShaderStorageBuffers);
sClearIndexedBufferBinding(id, m_currVaoState.bufferBindings());
m_vaoAttribBindingCacheInvalid = 0xffff;
m_noClientArraysCache = 0;
}
int GLClientState::bindBuffer(GLenum target, GLuint id)
{
int err = 0;
switch(target) {
case GL_ARRAY_BUFFER:
m_arrayBuffer = id;
break;
case GL_ELEMENT_ARRAY_BUFFER:
m_currVaoState.iboId() = id;
break;
case GL_COPY_READ_BUFFER:
m_copyReadBuffer = id;
break;
case GL_COPY_WRITE_BUFFER:
m_copyWriteBuffer = id;
break;
case GL_PIXEL_PACK_BUFFER:
m_pixelPackBuffer = id;
break;
case GL_PIXEL_UNPACK_BUFFER:
m_pixelUnpackBuffer = id;
break;
case GL_TRANSFORM_FEEDBACK_BUFFER:
m_transformFeedbackBuffer = id;
break;
case GL_UNIFORM_BUFFER:
m_uniformBuffer = id;
break;
case GL_ATOMIC_COUNTER_BUFFER:
m_atomicCounterBuffer = id;
break;
case GL_DISPATCH_INDIRECT_BUFFER:
m_dispatchIndirectBuffer = id;
break;
case GL_DRAW_INDIRECT_BUFFER:
m_drawIndirectBuffer = id;
break;
case GL_SHADER_STORAGE_BUFFER:
m_shaderStorageBuffer = id;
break;
case GL_TEXTURE_BUFFER_OES:
m_textureBuffer = id;
break;
default:
err = -1;
}
return err;
}
void GLClientState::bindIndexedBuffer(GLenum target, GLuint index, GLuint buffer, GLintptr offset, GLsizeiptr size, GLintptr stride, GLintptr effectiveStride) {
switch (target) {
case GL_TRANSFORM_FEEDBACK_BUFFER:
m_indexedTransformFeedbackBuffers[index].buffer = buffer;
m_indexedTransformFeedbackBuffers[index].offset = offset;
m_indexedTransformFeedbackBuffers[index].size = size;
m_indexedTransformFeedbackBuffers[index].stride = stride;
break;
case GL_UNIFORM_BUFFER:
m_indexedUniformBuffers[index].buffer = buffer;
m_indexedUniformBuffers[index].offset = offset;
m_indexedUniformBuffers[index].size = size;
m_indexedUniformBuffers[index].stride = stride;
break;
case GL_ATOMIC_COUNTER_BUFFER:
m_indexedAtomicCounterBuffers[index].buffer = buffer;
m_indexedAtomicCounterBuffers[index].offset = offset;
m_indexedAtomicCounterBuffers[index].size = size;
m_indexedAtomicCounterBuffers[index].stride = stride;
break;
case GL_SHADER_STORAGE_BUFFER:
m_indexedShaderStorageBuffers[index].buffer = buffer;
m_indexedShaderStorageBuffers[index].offset = offset;
m_indexedShaderStorageBuffers[index].size = size;
m_indexedShaderStorageBuffers[index].stride = stride;
break;
default:
m_currVaoState.bufferBinding(index).buffer = buffer;
m_currVaoState.bufferBinding(index).offset = offset;
m_currVaoState.bufferBinding(index).size = size;
m_currVaoState.bufferBinding(index).stride = stride;
m_currVaoState.bufferBinding(index).effectiveStride = effectiveStride;
m_vaoAttribBindingCacheInvalid |= (1 << m_currVaoState.bufferBinding(index).vertexAttribLoc);
return;
}
}
int GLClientState::getMaxIndexedBufferBindings(GLenum target) const {
switch (target) {
case GL_TRANSFORM_FEEDBACK_BUFFER:
return m_indexedTransformFeedbackBuffers.size();
case GL_UNIFORM_BUFFER:
return m_indexedUniformBuffers.size();
case GL_ATOMIC_COUNTER_BUFFER:
return m_indexedAtomicCounterBuffers.size();
case GL_SHADER_STORAGE_BUFFER:
return m_indexedShaderStorageBuffers.size();
default:
return m_currVaoState.bufferBindings_const().size();
}
}
bool GLClientState::isNonIndexedBindNoOp(GLenum target, GLuint buffer) {
if (buffer != getLastEncodedBufferBind(target)) return false;
int idOrError = getBuffer(target);
if (idOrError < 0) {
return false;
} else {
return buffer == (GLuint)idOrError;
}
}
bool GLClientState::isIndexedBindNoOp(GLenum target, GLuint index, GLuint buffer, GLintptr offset, GLsizeiptr size, GLintptr stride, GLintptr effectiveStride) {
if (target == GL_TRANSFORM_FEEDBACK_BUFFER) return false;
if (buffer != getLastEncodedBufferBind(target)) return false;
switch (target) {
case GL_TRANSFORM_FEEDBACK_BUFFER:
return m_indexedTransformFeedbackBuffers[index].buffer == buffer &&
m_indexedTransformFeedbackBuffers[index].offset == offset &&
m_indexedTransformFeedbackBuffers[index].size == size &&
m_indexedTransformFeedbackBuffers[index].stride == stride;
case GL_UNIFORM_BUFFER:
return m_indexedUniformBuffers[index].buffer == buffer &&
m_indexedUniformBuffers[index].offset == offset &&
m_indexedUniformBuffers[index].size == size &&
m_indexedUniformBuffers[index].stride == stride;
case GL_ATOMIC_COUNTER_BUFFER:
return m_indexedAtomicCounterBuffers[index].buffer == buffer &&
m_indexedAtomicCounterBuffers[index].offset == offset &&
m_indexedAtomicCounterBuffers[index].size == size &&
m_indexedAtomicCounterBuffers[index].stride == stride;
case GL_SHADER_STORAGE_BUFFER:
return m_indexedShaderStorageBuffers[index].buffer == buffer &&
m_indexedShaderStorageBuffers[index].offset == offset &&
m_indexedShaderStorageBuffers[index].size == size &&
m_indexedShaderStorageBuffers[index].stride == stride;
default:
return m_currVaoState.bufferBinding(index).buffer == buffer &&
m_currVaoState.bufferBinding(index).offset == offset &&
m_currVaoState.bufferBinding(index).size == size &&
m_currVaoState.bufferBinding(index).stride == stride &&
m_currVaoState.bufferBinding(index).effectiveStride == effectiveStride;
}
}
int GLClientState::getMaxTextureSize() const {
return m_hostDriverCaps.max_texture_size;
}
int GLClientState::getMaxTextureSize3D() const {
return m_hostDriverCaps.max_texture_size_3d;
}
int GLClientState::getMaxTextureSizeCubeMap() const {
return m_hostDriverCaps.max_texture_size_cube_map;
}
int GLClientState::getLog2MaxTextureSize() const {
return m_log2MaxTextureSize;
}
void GLClientState::postDraw() {
setBoundTransformFeedbackBuffersDirtyForHostMap();
setBoundShaderStorageBuffersDirtyForHostMap();
setBoundAtomicCounterBuffersDirtyForHostMap();
}
void GLClientState::postReadPixels() {
setBoundPixelPackBufferDirtyForHostMap();
}
void GLClientState::postDispatchCompute() {
setBoundShaderStorageBuffersDirtyForHostMap();
setBoundAtomicCounterBuffersDirtyForHostMap();
}
bool GLClientState::shouldSkipHostMapBuffer(GLenum target) {
GLuint id = getBuffer(target);
return !isBufferHostMapDirty(id);
}
void GLClientState::onHostMappedBuffer(GLenum target) {
GLuint id = getBuffer(target);
setBufferHostMapDirty(id, false /* not dirty */);
}
int GLClientState::getBuffer(GLenum target) {
int ret=0;
switch (target) {
case GL_ARRAY_BUFFER:
ret = m_arrayBuffer;
break;
case GL_ELEMENT_ARRAY_BUFFER:
ret = m_currVaoState.iboId();
break;
case GL_COPY_READ_BUFFER:
ret = m_copyReadBuffer;
break;
case GL_COPY_WRITE_BUFFER:
ret = m_copyWriteBuffer;
break;
case GL_PIXEL_PACK_BUFFER:
ret = m_pixelPackBuffer;
break;
case GL_PIXEL_UNPACK_BUFFER:
ret = m_pixelUnpackBuffer;
break;
case GL_TRANSFORM_FEEDBACK_BUFFER:
ret = m_transformFeedbackBuffer;
break;
case GL_UNIFORM_BUFFER:
ret = m_uniformBuffer;
break;
case GL_ATOMIC_COUNTER_BUFFER:
ret = m_atomicCounterBuffer;
break;
case GL_DISPATCH_INDIRECT_BUFFER:
ret = m_dispatchIndirectBuffer;
break;
case GL_DRAW_INDIRECT_BUFFER:
ret = m_drawIndirectBuffer;
break;
case GL_SHADER_STORAGE_BUFFER:
ret = m_shaderStorageBuffer;
break;
case GL_TEXTURE_BUFFER_OES:
ret = m_textureBuffer;
break;
default:
ret = -1;
}
return ret;
}
GLuint GLClientState::getLastEncodedBufferBind(GLenum target) {
GLuint ret;
switch (target)
{
case GL_ARRAY_BUFFER:
ret = m_arrayBuffer_lastEncode;
break;
case GL_ELEMENT_ARRAY_BUFFER:
ret = m_currVaoState.iboIdLastEncode();
break;
default:
{
int idOrError = getBuffer(target);
ret = (idOrError < 0) ? 0 : (GLuint)idOrError;
}
}
return ret;
}
void GLClientState::setLastEncodedBufferBind(GLenum target, GLuint id)
{
switch (target)
{
case GL_ARRAY_BUFFER:
m_arrayBuffer_lastEncode = id;
break;
case GL_ELEMENT_ARRAY_BUFFER:
m_currVaoState.iboIdLastEncode() = id;
break;
default:
break;
}
}
bool GLClientState::isTexture(GLuint tex_name) const {
return getTextureRec(tex_name) != nullptr;
}
bool GLClientState::isTextureWithStorage(GLuint tex_name) const {
TextureRec* rec = getTextureRecPtr(tex_name);
if (!rec) return false;
return rec->hasStorage;
}
bool GLClientState::isTextureCubeMap(GLuint tex_name) const {
TextureRec* texrec = getTextureRecPtr(tex_name);
if (!texrec) return false;
switch (texrec->target) {
case GL_TEXTURE_CUBE_MAP:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
return true;
default:
return false;
}
}
bool GLClientState::isRenderbuffer(GLuint name) const {
if (!name) return false;
RenderbufferInfo::ScopedView view(mRboState.rboData);
return view.hasRbo(name);
}
bool GLClientState::isRenderbufferThatWasBound(GLuint name) const {
if (!name) return true;
RenderbufferInfo::ScopedView view(mRboState.rboData);
if (!view.hasRbo(name)) return false;
const RboProps* props = view.get_const(name);
return props->previouslyBound;
}
void GLClientState::getClientStatePointer(GLenum pname, GLvoid** params)
{
GLenum which_state = -1;
switch (pname) {
case GL_VERTEX_ARRAY_POINTER: {
which_state = GLClientState::VERTEX_LOCATION;
break;
}
case GL_NORMAL_ARRAY_POINTER: {
which_state = GLClientState::NORMAL_LOCATION;
break;
}
case GL_COLOR_ARRAY_POINTER: {
which_state = GLClientState::COLOR_LOCATION;
break;
}
case GL_TEXTURE_COORD_ARRAY_POINTER: {
which_state = getActiveTexture() + GLClientState::TEXCOORD0_LOCATION;
break;
}
case GL_POINT_SIZE_ARRAY_POINTER_OES: {
which_state = GLClientState::POINTSIZE_LOCATION;
break;
}
case GL_MATRIX_INDEX_ARRAY_POINTER_OES: {
which_state = GLClientState::MATRIXINDEX_LOCATION;
break;
}
case GL_WEIGHT_ARRAY_POINTER_OES: {
which_state = GLClientState::WEIGHT_LOCATION;
break;
}
}
if (which_state != -1)
*params = m_currVaoState[which_state].data;
}
int GLClientState::setPixelStore(GLenum param, GLint value)
{
int retval = 0;
switch(param) {
case GL_UNPACK_ALIGNMENT:
m_pixelStore.unpack_alignment = value;
break;
case GL_PACK_ALIGNMENT:
m_pixelStore.pack_alignment = value;
break;
case GL_UNPACK_ROW_LENGTH:
m_pixelStore.unpack_row_length = value;
break;
case GL_UNPACK_IMAGE_HEIGHT:
m_pixelStore.unpack_image_height = value;
break;
case GL_UNPACK_SKIP_PIXELS:
m_pixelStore.unpack_skip_pixels = value;
break;
case GL_UNPACK_SKIP_ROWS:
m_pixelStore.unpack_skip_rows = value;
break;
case GL_UNPACK_SKIP_IMAGES:
m_pixelStore.unpack_skip_images = value;
break;
case GL_PACK_ROW_LENGTH:
m_pixelStore.pack_row_length = value;
break;
case GL_PACK_SKIP_PIXELS:
m_pixelStore.pack_skip_pixels = value;
break;
case GL_PACK_SKIP_ROWS:
m_pixelStore.pack_skip_rows = value;
break;
default:
retval = GL_INVALID_ENUM;
}
return retval;
}
size_t GLClientState::pixelDataSize(GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, int pack) const
{
if (width <= 0 || height <= 0 || depth <= 0) return 0;
ALOGV("%s: pack? %d", __FUNCTION__, pack);
if (pack) {
ALOGV("%s: pack stats", __FUNCTION__);
ALOGV("%s: pack align %d", __FUNCTION__, m_pixelStore.pack_alignment);
ALOGV("%s: pack rowlen %d", __FUNCTION__, m_pixelStore.pack_row_length);
ALOGV("%s: pack skippixels %d", __FUNCTION__, m_pixelStore.pack_skip_pixels);
ALOGV("%s: pack skiprows %d", __FUNCTION__, m_pixelStore.pack_skip_rows);
} else {
ALOGV("%s: unpack stats", __FUNCTION__);
ALOGV("%s: unpack align %d", __FUNCTION__, m_pixelStore.unpack_alignment);
ALOGV("%s: unpack rowlen %d", __FUNCTION__, m_pixelStore.unpack_row_length);
ALOGV("%s: unpack imgheight %d", __FUNCTION__, m_pixelStore.unpack_image_height);
ALOGV("%s: unpack skippixels %d", __FUNCTION__, m_pixelStore.unpack_skip_pixels);
ALOGV("%s: unpack skiprows %d", __FUNCTION__, m_pixelStore.unpack_skip_rows);
ALOGV("%s: unpack skipimages %d", __FUNCTION__, m_pixelStore.unpack_skip_images);
}
return GLESTextureUtils::computeTotalImageSize(
width, height, depth,
format, type,
pack ? m_pixelStore.pack_alignment : m_pixelStore.unpack_alignment,
pack ? m_pixelStore.pack_row_length : m_pixelStore.unpack_row_length,
pack ? 0 : m_pixelStore.unpack_image_height,
pack ? m_pixelStore.pack_skip_pixels : m_pixelStore.unpack_skip_pixels,
pack ? m_pixelStore.pack_skip_rows : m_pixelStore.unpack_skip_rows,
pack ? 0 : m_pixelStore.unpack_skip_images);
}
size_t GLClientState::pboNeededDataSize(GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, int pack, int ignoreTrailing) const
{
if (width <= 0 || height <= 0 || depth <= 0) return 0;
ALOGV("%s: pack? %d", __FUNCTION__, pack);
if (pack) {
ALOGV("%s: pack stats", __FUNCTION__);
ALOGV("%s: pack align %d", __FUNCTION__, m_pixelStore.pack_alignment);
ALOGV("%s: pack rowlen %d", __FUNCTION__, m_pixelStore.pack_row_length);
ALOGV("%s: pack skippixels %d", __FUNCTION__, m_pixelStore.pack_skip_pixels);
ALOGV("%s: pack skiprows %d", __FUNCTION__, m_pixelStore.pack_skip_rows);
} else {
ALOGV("%s: unpack stats", __FUNCTION__);
ALOGV("%s: unpack align %d", __FUNCTION__, m_pixelStore.unpack_alignment);
ALOGV("%s: unpack rowlen %d", __FUNCTION__, m_pixelStore.unpack_row_length);
ALOGV("%s: unpack imgheight %d", __FUNCTION__, m_pixelStore.unpack_image_height);
ALOGV("%s: unpack skippixels %d", __FUNCTION__, m_pixelStore.unpack_skip_pixels);
ALOGV("%s: unpack skiprows %d", __FUNCTION__, m_pixelStore.unpack_skip_rows);
ALOGV("%s: unpack skipimages %d", __FUNCTION__, m_pixelStore.unpack_skip_images);
}
return GLESTextureUtils::computeNeededBufferSize(
width, height, depth,
format, type,
pack ? m_pixelStore.pack_alignment : m_pixelStore.unpack_alignment,
pack ? m_pixelStore.pack_row_length : m_pixelStore.unpack_row_length,
pack ? 0 : m_pixelStore.unpack_image_height,
pack ? m_pixelStore.pack_skip_pixels : m_pixelStore.unpack_skip_pixels,
pack ? m_pixelStore.pack_skip_rows : m_pixelStore.unpack_skip_rows,
pack ? 0 : m_pixelStore.unpack_skip_images,
ignoreTrailing);
}
size_t GLClientState::clearBufferNumElts(GLenum buffer) const
{
switch (buffer) {
case GL_COLOR:
return 4;
case GL_DEPTH:
case GL_STENCIL:
return 1;
}
return 1;
}
void GLClientState::getPackingOffsets2D(GLsizei width, GLsizei height, GLenum format, GLenum type, int* bpp, int* startOffset, int* pixelRowSize, int* totalRowSize, int* skipRows) const
{
if (width <= 0 || height <= 0) {
*startOffset = 0;
*pixelRowSize = 0;
*totalRowSize = 0;
return;
}
GLESTextureUtils::computePackingOffsets2D(
width, height,
format, type,
m_pixelStore.pack_alignment,
m_pixelStore.pack_row_length,
m_pixelStore.pack_skip_pixels,
m_pixelStore.pack_skip_rows,
bpp,
startOffset,
pixelRowSize,
totalRowSize);
*skipRows = m_pixelStore.pack_skip_rows;
}
void GLClientState::getUnpackingOffsets2D(GLsizei width, GLsizei height, GLenum format, GLenum type, int* bpp, int* startOffset, int* pixelRowSize, int* totalRowSize, int* skipRows) const
{
if (width <= 0 || height <= 0) {
*startOffset = 0;
*pixelRowSize = 0;
*totalRowSize = 0;
return;
}
GLESTextureUtils::computePackingOffsets2D(
width, height,
format, type,
m_pixelStore.unpack_alignment,
m_pixelStore.unpack_row_length,
m_pixelStore.unpack_skip_pixels,
m_pixelStore.unpack_skip_rows,
bpp,
startOffset,
pixelRowSize,
totalRowSize);
*skipRows = m_pixelStore.unpack_skip_rows;
}
void GLClientState::getUnpackingOffsets3D(GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, int* bpp, int* startOffset, int* pixelRowSize, int* totalRowSize, int* pixelImageSize, int* totalImageSize, int* skipRows, int* skipImages) const
{
if (width <= 0 || height <= 0) {
*startOffset = 0;
*pixelRowSize = 0;
*totalRowSize = 0;
return;
}
GLESTextureUtils::computePackingOffsets3D(
width, height, depth,
format, type,
m_pixelStore.unpack_alignment,
m_pixelStore.unpack_row_length,
m_pixelStore.unpack_image_height,
m_pixelStore.unpack_skip_pixels,
m_pixelStore.unpack_skip_rows,
m_pixelStore.unpack_skip_images,
bpp,
startOffset,
pixelRowSize,
totalRowSize,
pixelImageSize,
totalImageSize);
*skipRows = m_pixelStore.unpack_skip_rows;
*skipImages = m_pixelStore.unpack_skip_images;
}
void GLClientState::setNumActiveUniformsInUniformBlock(GLuint program, GLuint uniformBlockIndex, GLint numActiveUniforms) {
UniformBlockInfoKey key;
key.program = program;
key.uniformBlockIndex = uniformBlockIndex;
UniformBlockUniformInfo info;
info.numActiveUniforms = (size_t)numActiveUniforms;
m_uniformBlockInfoMap[key] = info;
}
size_t GLClientState::numActiveUniformsInUniformBlock(GLuint program, GLuint uniformBlockIndex) const {
UniformBlockInfoKey key;
key.program = program;
key.uniformBlockIndex = uniformBlockIndex;
UniformBlockInfoMap::const_iterator it =
m_uniformBlockInfoMap.find(key);
if (it == m_uniformBlockInfoMap.end()) return 0;
return it->second.numActiveUniforms;
}
void GLClientState::associateProgramWithPipeline(GLuint program, GLuint pipeline) {
m_programPipelines[program] = pipeline;
}
GLClientState::ProgramPipelineIterator GLClientState::programPipelineBegin() {
return m_programPipelines.begin();
}
GLClientState::ProgramPipelineIterator GLClientState::programPipelineEnd() {
return m_programPipelines.end();
}
GLenum GLClientState::setActiveTextureUnit(GLenum texture)
{
GLuint unit = texture - GL_TEXTURE0;
if (unit >= MAX_TEXTURE_UNITS) {
return GL_INVALID_ENUM;
}
m_tex.activeUnit = &m_tex.unit[unit];
return GL_NO_ERROR;
}
GLenum GLClientState::getActiveTextureUnit() const
{
return GL_TEXTURE0 + (m_tex.activeUnit - &m_tex.unit[0]);
}
void GLClientState::enableTextureTarget(GLenum target)
{
switch (target) {
case GL_TEXTURE_2D:
m_tex.activeUnit->enables |= (1u << TEXTURE_2D);
break;
case GL_TEXTURE_EXTERNAL_OES:
m_tex.activeUnit->enables |= (1u << TEXTURE_EXTERNAL);
break;
}
}
void GLClientState::disableTextureTarget(GLenum target)
{
switch (target) {
case GL_TEXTURE_2D:
m_tex.activeUnit->enables &= ~(1u << TEXTURE_2D);
break;
case GL_TEXTURE_EXTERNAL_OES:
m_tex.activeUnit->enables &= ~(1u << TEXTURE_EXTERNAL);
break;
}
}
bool GLClientState::bindSampler(GLuint unit, GLuint sampler) {
SamplerInfo::ScopedView view(mSamplerInfo);
view.ref(sampler);
if (m_tex.unit[unit].boundSampler) {
view.unref(sampler);
}
m_tex.unit[unit].boundSampler = sampler;
return true;
}
bool GLClientState::isSamplerBindNoOp(GLuint unit, GLuint sampler) {
return m_tex.unit[unit].boundSampler == sampler;
}
void GLClientState::onDeleteSamplers(GLsizei n, const GLuint* samplers) {
for (uint32_t i = 0; i < n; ++i) {
for (uint32_t j = 0; j < MAX_TEXTURE_UNITS; ++j) {
uint32_t currentSampler = m_tex.unit[j].boundSampler;
if (currentSampler == samplers[i]) {
m_tex.unit[j].boundSampler = 0;
}
}
}
}
GLenum GLClientState::getPriorityEnabledTarget(GLenum allDisabled) const
{
unsigned int enables = m_tex.activeUnit->enables;
if (enables & (1u << TEXTURE_EXTERNAL)) {
return GL_TEXTURE_EXTERNAL_OES;
} else if (enables & (1u << TEXTURE_2D)) {
return GL_TEXTURE_2D;
} else {
return allDisabled;
}
}
int GLClientState::compareTexId(const void* pid, const void* prec)
{
const GLuint* id = (const GLuint*)pid;
const TextureRec* rec = (const TextureRec*)prec;
return (GLint)(*id) - (GLint)rec->id;
}
GLenum GLClientState::bindTexture(GLenum target, GLuint texture,
GLboolean* firstUse)
{
GLboolean first = GL_FALSE;
TextureRec* texrec = getTextureRecPtr(texture);
if (!texrec) {
texrec = addTextureRec(texture, target);
first = GL_TRUE;
}
if (texture && target != texrec->target &&
(target != GL_TEXTURE_EXTERNAL_OES &&
texrec->target != GL_TEXTURE_EXTERNAL_OES)) {
return GL_INVALID_OPERATION;
}
switch (target) {
case GL_TEXTURE_2D:
m_tex.activeUnit->texture[TEXTURE_2D] = texture;
break;
case GL_TEXTURE_EXTERNAL_OES:
m_tex.activeUnit->texture[TEXTURE_EXTERNAL] = texture;
break;
case GL_TEXTURE_CUBE_MAP:
m_tex.activeUnit->texture[TEXTURE_CUBE_MAP] = texture;
break;
case GL_TEXTURE_2D_ARRAY:
m_tex.activeUnit->texture[TEXTURE_2D_ARRAY] = texture;
break;
case GL_TEXTURE_3D:
m_tex.activeUnit->texture[TEXTURE_3D] = texture;
break;
case GL_TEXTURE_2D_MULTISAMPLE:
m_tex.activeUnit->texture[TEXTURE_2D_MULTISAMPLE] = texture;
break;
case GL_TEXTURE_BUFFER_OES:
m_tex.activeUnit->texture[TEXTURE_BUFFER] = texture;
break;
}
if (firstUse) {
*firstUse = first;
}
return GL_NO_ERROR;
}
void GLClientState::setBoundEGLImage(GLenum target, GLeglImageOES image, int width, int height) {
(void)image;
if (target == GL_RENDERBUFFER) {
if (!boundRenderbuffer()) return;
setBoundRenderbufferEGLImageBacked();
setBoundRenderbufferFormat(GL_RGBA);
setBoundRenderbufferSamples(0);
setBoundRenderbufferDimensions(width, height);
} else {
GLuint texture = getBoundTexture(target);
TextureRec* texrec = getTextureRecPtr(texture);
if (!texrec) return;
texrec->boundEGLImage = true;
setBoundTextureInternalFormat(target, GL_RGBA);
setBoundTextureFormat(target, GL_RGBA);
setBoundTextureType(target, GL_UNSIGNED_BYTE);
setBoundTextureSamples(target, 0);
setBoundTextureDims(target, target, 0, width, height, 1);
}
}
TextureRec* GLClientState::addTextureRec(GLuint id, GLenum target)
{
TextureRec* tex = new TextureRec;
tex->id = id;
tex->target = target;
tex->format = -1;
tex->multisamples = 0;
tex->immutable = false;
tex->boundEGLImage = false;
tex->hasStorage = false;
tex->dims = new TextureDims[6];
tex->hasCubeNegX = false;
tex->hasCubePosX = false;
tex->hasCubeNegY = false;
tex->hasCubePosY = false;
tex->hasCubeNegZ = false;
tex->hasCubePosZ = false;
AutoWriteLock guard(m_tex.textureRecs->lock);
m_tex.textureRecs->map[id] = std::shared_ptr<TextureRec>(tex);
return tex;
}
std::shared_ptr<TextureRec> GLClientState::getTextureRec(GLuint id) const {
AutoReadLock guard(m_tex.textureRecs->lock);
SharedTextureDataMap::const_iterator it =
m_tex.textureRecs->map.find(id);
if (it == m_tex.textureRecs->map.end()) {
return NULL;
}
return it->second;
}
TextureRec* GLClientState::getTextureRecPtrLocked(GLuint id) const {
SharedTextureDataMap::const_iterator it =
m_tex.textureRecs->map.find(id);
if (it == m_tex.textureRecs->map.end()) {
return NULL;
}
return it->second.get();
}
TextureRec* GLClientState::getTextureRecPtr(GLuint id) const {
AutoReadLock guard(m_tex.textureRecs->lock);
return getTextureRecPtrLocked(id);
}
void GLClientState::setBoundTextureInternalFormat(GLenum target, GLint internalformat) {
GLuint texture = getBoundTexture(target);
TextureRec* texrec = getTextureRecPtr(texture);
if (!texrec) return;
texrec->internalformat = internalformat;
}
void GLClientState::setBoundTextureFormat(GLenum target, GLenum format) {
GLuint texture = getBoundTexture(target);
TextureRec* texrec = getTextureRecPtr(texture);
if (!texrec) return;
texrec->format = format;
}
void GLClientState::setBoundTextureType(GLenum target, GLenum type) {
GLuint texture = getBoundTexture(target);
TextureRec* texrec = getTextureRecPtr(texture);
if (!texrec) return;
texrec->type = type;
}
static size_t textureDimArrayOfCubeTarget(GLenum cubetarget) {
switch (cubetarget) {
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
return 0;
case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
return 1;
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
return 2;
case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
return 3;
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
return 4;
case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
return 5;
}
return 0;
}
void GLClientState::setBoundTextureDims(GLenum target, GLenum cubetarget, GLsizei level, GLsizei width, GLsizei height, GLsizei depth) {
GLuint texture = getBoundTexture(target);
TextureRec* texrec = getTextureRecPtr(texture);
if (!texrec) {
return;
}
texrec->hasStorage = true;
size_t indexToSet = 0;
if (target == GL_TEXTURE_CUBE_MAP) {
if (-1 == cubetarget) {
setBoundTextureDims(target, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, level, width, height, depth);
setBoundTextureDims(target, GL_TEXTURE_CUBE_MAP_POSITIVE_X, level, width, height, depth);
setBoundTextureDims(target, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, level, width, height, depth);
setBoundTextureDims(target, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, level, width, height, depth);
setBoundTextureDims(target, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, level, width, height, depth);
setBoundTextureDims(target, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, level, width, height, depth);
return;
}
indexToSet = textureDimArrayOfCubeTarget(cubetarget);
}
if (level == -1) {
GLsizei curr_width = width;
GLsizei curr_height = height;
GLsizei curr_depth = depth;
GLsizei curr_level = 0;
while (true) {
texrec->dims[indexToSet].widths[curr_level] = curr_width;
texrec->dims[indexToSet].heights[curr_level] = curr_height;
texrec->dims[indexToSet].depths[curr_level] = curr_depth;
if (curr_width >> 1 == 0 &&
curr_height >> 1 == 0 &&
((target == GL_TEXTURE_3D && curr_depth == 0) ||
true)) {
break;
}
curr_width = (curr_width >> 1) ? (curr_width >> 1) : 1;
curr_height = (curr_height >> 1) ? (curr_height >> 1) : 1;
if (target == GL_TEXTURE_3D) {
curr_depth = (curr_depth >> 1) ? (curr_depth >> 1) : 1;
}
curr_level++;
}
} else {
texrec->dims[indexToSet].widths[level] = width;
texrec->dims[indexToSet].heights[level] = height;
texrec->dims[indexToSet].depths[level] = depth;
}
setFboCompletenessDirtyForTexture(texture);
}
void GLClientState::setBoundTextureSamples(GLenum target, GLsizei samples) {
GLuint texture = getBoundTexture(target);
TextureRec* texrec = getTextureRecPtr(texture);
if (!texrec) return;
texrec->multisamples = samples;
}
void GLClientState::addTextureCubeMapImage(GLenum stateTarget, GLenum cubeTarget) {
if (stateTarget != GL_TEXTURE_CUBE_MAP) return;
GLuint texture = getBoundTexture(stateTarget);
TextureRec* texrec = getTextureRecPtr(texture);
if (!texrec) return;
switch (cubeTarget) {
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
texrec->hasCubeNegX = true;
return;
case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
texrec->hasCubePosX = true;
return;
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
texrec->hasCubeNegY = true;
return;
case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
texrec->hasCubePosY = true;
return;
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
texrec->hasCubeNegZ = true;
return;
case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
texrec->hasCubePosZ = true;
return;
}
}
void GLClientState::setBoundTextureImmutableFormat(GLenum target) {
GLuint texture = getBoundTexture(target);
TextureRec* texrec = getTextureRecPtr(texture);
if (!texrec) return;
texrec->immutable = true;
if (target == GL_TEXTURE_CUBE_MAP) {
texrec->hasCubeNegX = true;
texrec->hasCubePosX = true;
texrec->hasCubeNegY = true;
texrec->hasCubePosY = true;
texrec->hasCubeNegZ = true;
texrec->hasCubePosZ = true;
}
}
bool GLClientState::isBoundTextureImmutableFormat(GLenum target) const {
GLuint texture = getBoundTexture(target);
TextureRec* texrec = getTextureRecPtr(texture);
if (!texrec) return false;
return texrec->immutable;
}
bool GLClientState::isBoundTextureComplete(GLenum target) const {
GLuint texture = getBoundTexture(target);
TextureRec* texrec = getTextureRecPtr(texture);
if (!texrec) return false;
if (texrec->immutable) return true;
if (!texrec->hasStorage) return true;
if (target == GL_TEXTURE_CUBE_MAP) {
if (!(texrec->hasCubeNegX &&
texrec->hasCubePosX &&
texrec->hasCubeNegY &&
texrec->hasCubePosY &&
texrec->hasCubeNegZ &&
texrec->hasCubePosZ)) return false;
size_t currBaseLevel = texrec->dims[0].widths.begin()->first;
size_t currWidth = texrec->dims[0].widths.begin()->second;
size_t currHeight = texrec->dims[0].heights.begin()->second;
for (size_t i = 1; i < 6; ++i) {
size_t nextLevel = texrec->dims[i].widths.begin()->first;
size_t nextWidth = texrec->dims[i].widths.begin()->second;
size_t nextHeight = texrec->dims[i].heights.begin()->second;
if (currBaseLevel != nextLevel) return false;
if (currWidth != nextWidth) return false;
if (currHeight != nextHeight) return false;
}
return true;
}
return true;
}
GLuint GLClientState::getBoundTexture(GLenum target) const
{
switch (target) {
case GL_TEXTURE_2D:
return m_tex.activeUnit->texture[TEXTURE_2D];
case GL_TEXTURE_EXTERNAL_OES:
return m_tex.activeUnit->texture[TEXTURE_EXTERNAL];
case GL_TEXTURE_CUBE_MAP:
return m_tex.activeUnit->texture[TEXTURE_CUBE_MAP];
case GL_TEXTURE_2D_ARRAY:
return m_tex.activeUnit->texture[TEXTURE_2D_ARRAY];
case GL_TEXTURE_3D:
return m_tex.activeUnit->texture[TEXTURE_3D];
case GL_TEXTURE_2D_MULTISAMPLE:
return m_tex.activeUnit->texture[TEXTURE_2D_MULTISAMPLE];
case GL_TEXTURE_BUFFER_OES:
return m_tex.activeUnit->texture[TEXTURE_BUFFER];
default:
return 0;
}
}
GLuint GLClientState::getBoundFramebuffer(GLenum target) const
{
switch (target) {
case GL_FRAMEBUFFER:
case GL_DRAW_FRAMEBUFFER:
return mFboState.boundDrawFramebuffer;
case GL_READ_FRAMEBUFFER:
return mFboState.boundReadFramebuffer;
default:
return 0;
}
}
GLenum GLClientState::checkFramebufferCompleteness(GLenum target) {
// Default framebuffer is complete
// TODO: Check the case where the default framebuffer is 0x0
if (0 == boundFramebuffer(target)) {
return GL_FRAMEBUFFER_COMPLETE;
}
bool hasAttachment = false;
FboProps& props = boundFboProps(target);
if (!props.completenessDirty) {
return props.cachedCompleteness;
}
int currentSamples = -1;
for (int i = 0; i < getMaxColorAttachments(); i++) {
if (!props.colorAttachmenti_hasTex[i] &&
!props.colorAttachmenti_hasRbo[i]) continue;
GLenum attachmentRes = checkFramebufferAttachmentCompleteness(target, glUtilsColorAttachmentName(i), &currentSamples);
if (attachmentRes != GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT) {
hasAttachment = true;
}
if (attachmentRes) {
ALOGD("%s: color attachment %d not complete: 0x%x\n", __func__, i, attachmentRes);
return attachmentRes;
}
}
bool hasDepth = (props.depthAttachment_hasTexObj || props.depthAttachment_hasRbo || props.depthstencilAttachment_hasTexObj || props.depthstencilAttachment_hasRbo);
bool hasStencil = (props.stencilAttachment_hasTexObj || props.stencilAttachment_hasRbo || props.depthstencilAttachment_hasTexObj || props.depthstencilAttachment_hasRbo);
if (hasDepth) {
GLenum depthAttachmentRes = checkFramebufferAttachmentCompleteness(target, GL_DEPTH_ATTACHMENT, &currentSamples);
if (depthAttachmentRes != GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT) {
hasAttachment = true;
}
if (depthAttachmentRes) {
ALOGD("%s: depth attachment not complete: 0x%x\n", __func__, depthAttachmentRes);
return depthAttachmentRes;
}
}
if (hasStencil) {
GLenum stencilAttachmentRes = checkFramebufferAttachmentCompleteness(target, GL_STENCIL_ATTACHMENT, &currentSamples);
if (stencilAttachmentRes != GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT) {
hasAttachment = true;
}
if (stencilAttachmentRes) {
ALOGD("%s: stencil attachment not complete: 0x%x\n", __func__, stencilAttachmentRes);
return stencilAttachmentRes;
}
}
if (hasDepth && hasStencil) {
// In gles3, depth/stencil must use the same image.
if (m_glesMajorVersion > 2) {
if ((props.depthAttachment_hasTexObj && props.stencilAttachment_hasRbo) ||
(props.stencilAttachment_hasTexObj && props.depthAttachment_hasRbo)) {
ALOGD("%s: GL_FRAMEBUFFER_UNSUPPORTED: using different types of depth/stencil attachment images in GLES 3+\n", __func__);
return GL_FRAMEBUFFER_UNSUPPORTED;
}
if (props.depthAttachment_hasTexObj) {
if (props.depthAttachment_texture != props.stencilAttachment_texture) {
ALOGD("%s: GL_FRAMEBUFFER_UNSUPPORTED: using different texture images for depth and stencil attachments in GLES 3+\n", __func__);
return GL_FRAMEBUFFER_UNSUPPORTED;
}
}
if (props.depthAttachment_hasRbo) {
if (props.depthAttachment_rbo != props.stencilAttachment_rbo) {
ALOGD("%s: GL_FRAMEBUFFER_UNSUPPORTED: using different renderbuffers for depth and stencil attachments in GLES 3+\n", __func__);
return GL_FRAMEBUFFER_UNSUPPORTED;
}
}
}
}
if (!hasAttachment) {
// Framebuffers may be missing an attachment if they have nonzero
// default width and height
if (props.defaultWidth == 0 || props.defaultHeight == 0) {
return GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT;
}
}
props.completenessDirty = false;
props.cachedCompleteness = GL_FRAMEBUFFER_COMPLETE;
return GL_FRAMEBUFFER_COMPLETE;
}
GLenum GLClientState::checkFramebufferAttachmentCompleteness(GLenum target, GLenum attachment, int* currentSamples) const {
FboFormatInfo fbo_format_info;
getBoundFramebufferFormat(target, attachment, &fbo_format_info);
// Check format and renderability
bool renderable = false;
switch (fbo_format_info.type) {
case FBO_ATTACHMENT_RENDERBUFFER:
switch (attachment) {
case GL_DEPTH_ATTACHMENT:
renderable = fbo_format_info.rb_external || depthRenderableFormat(fbo_format_info.rb_format);
break;
case GL_STENCIL_ATTACHMENT:
renderable = fbo_format_info.rb_external || stencilRenderableFormat(fbo_format_info.rb_format);
break;
default:
renderable = fbo_format_info.rb_external || colorRenderableFormat(
fbo_format_info.rb_format,
GL_UNSIGNED_BYTE,
m_glesMajorVersion, m_glesMinorVersion,
m_has_color_buffer_float_extension,
m_has_color_buffer_half_float_extension);
break;
}
break;
case FBO_ATTACHMENT_TEXTURE:
switch (attachment) {
case GL_DEPTH_ATTACHMENT:
renderable = fbo_format_info.tex_external || depthRenderableFormat(fbo_format_info.tex_internalformat);
break;
case GL_STENCIL_ATTACHMENT:
renderable = fbo_format_info.tex_external || stencilRenderableFormat(fbo_format_info.tex_internalformat);
break;
default:
renderable = fbo_format_info.tex_external || colorRenderableFormat(
fbo_format_info.tex_internalformat,
fbo_format_info.tex_type,
m_glesMajorVersion, m_glesMinorVersion,
m_has_color_buffer_float_extension,
m_has_color_buffer_half_float_extension);
break;
}
break;
case FBO_ATTACHMENT_NONE:
default:
return GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT;
}
if (!renderable) {
switch (fbo_format_info.type) {
case FBO_ATTACHMENT_RENDERBUFFER:
ALOGD("%s: rbo not color renderable. target=0x%x attachment=0x%x rb_format=0x%x "
"gles=%d.%d floatext=%d hfloatext=%d\n",
__func__, target, attachment, fbo_format_info.rb_format,
m_glesMajorVersion, m_glesMinorVersion,
m_has_color_buffer_float_extension,
m_has_color_buffer_half_float_extension);
break;
case FBO_ATTACHMENT_TEXTURE:
ALOGD("%s: tex not color renderable. target=0x%x attachment=0x%x "
"tex_intformat=0x%x tex_format=0x%x tex_type=0x%x gles=%d.%d "
"floatext=%d hfloatext=%d\n",
__func__, target, attachment, fbo_format_info.tex_internalformat,
fbo_format_info.tex_format, fbo_format_info.tex_type, m_glesMajorVersion,
m_glesMinorVersion, m_has_color_buffer_float_extension,
m_has_color_buffer_half_float_extension);
break;
default:
break;
}
return GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT;
}
// Check dimensions
std::shared_ptr<TextureRec> texrec;
std::shared_ptr<RboProps> rbo;
switch (fbo_format_info.type) {
case FBO_ATTACHMENT_RENDERBUFFER:
rbo = getFboAttachmentRbo(target, attachment);
if (!fbo_format_info.rb_external) {
if (!rbo || 0 == rbo->width || 0 == rbo->height) {
ALOGD("%s: rbo has zero dimension\n", __func__);
return GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT;
}
}
break;
case FBO_ATTACHMENT_TEXTURE:
texrec = getFboAttachmentTexture(target, attachment);
if (!fbo_format_info.tex_external) {
if (0 == texrec->dims->widths[fbo_format_info.tex_level] ||
0 == texrec->dims->heights[fbo_format_info.tex_level]) {
ALOGD("%s: texture has zero dimension\n", __func__);
return GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT;
}
GLsizei depth = texrec->dims->depths[fbo_format_info.tex_level];
if (fbo_format_info.tex_layer >= depth) {
ALOGD("%s: texture layer/zoffset too high, wanted %d but only have %d layers\n", __func__,
fbo_format_info.tex_layer, depth);
return GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT;
}
}
break;
case FBO_ATTACHMENT_NONE:
default:
return GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT;
}
// Check samples
int currSamplesVal = *currentSamples;
bool firstTime = -1 == currSamplesVal;
int samplesThisAttachment = 0;
switch (fbo_format_info.type) {
case FBO_ATTACHMENT_RENDERBUFFER:
samplesThisAttachment = fbo_format_info.rb_multisamples;
break;
case FBO_ATTACHMENT_TEXTURE:
samplesThisAttachment = fbo_format_info.tex_multisamples;
break;
case FBO_ATTACHMENT_NONE:
break;
default:
return GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT;
}
if (firstTime) {
*currentSamples = samplesThisAttachment;
} else {
if (samplesThisAttachment != currSamplesVal) {
return GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE;
}
}
return 0;
}
// BEGIN driver workarounds-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-
// (>' ')><(' '<)(>' ')><(' '<)(>' ')><(' '<)(>' ')><(' '<)(>' ')><(' '<)(>' ')>
static bool unreliableInternalFormat(GLenum internalformat) {
switch (internalformat) {
case GL_LUMINANCE:
return true;
default:
return false;
}
}
void GLClientState::writeCopyTexImageState
(GLenum target, GLint level, GLenum internalformat) {
if (unreliableInternalFormat(internalformat)) {
CubeMapDef entry;
entry.id = getBoundTexture(GL_TEXTURE_2D);
entry.target = target;
entry.level = level;
entry.internalformat = internalformat;
m_cubeMapDefs.insert(entry);
}
}
static GLenum identifyPositiveCubeMapComponent(GLenum target) {
switch (target) {
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
return GL_TEXTURE_CUBE_MAP_POSITIVE_X;
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
return GL_TEXTURE_CUBE_MAP_POSITIVE_Y;
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
return GL_TEXTURE_CUBE_MAP_POSITIVE_Z;
default:
return 0;
}
}
GLenum GLClientState::copyTexImageNeededTarget
(GLenum target, GLint level, GLenum internalformat) {
if (unreliableInternalFormat(internalformat)) {
GLenum positiveComponent =
identifyPositiveCubeMapComponent(target);
if (positiveComponent) {
CubeMapDef query;
query.id = getBoundTexture(GL_TEXTURE_2D);
query.target = positiveComponent;
query.level = level;
query.internalformat = internalformat;
if (m_cubeMapDefs.find(query) ==
m_cubeMapDefs.end()) {
return positiveComponent;
}
}
}
return 0;
}
GLenum GLClientState::copyTexImageLuminanceCubeMapAMDWorkaround
(GLenum target, GLint level, GLenum internalformat) {
writeCopyTexImageState(target, level, internalformat);
return copyTexImageNeededTarget(target, level, internalformat);
}
// (>' ')><(' '<)(>' ')><(' '<)(>' ')><(' '<)(>' ')><(' '<)(>' ')><(' '<)(>' ')>
// END driver workarounds-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-
void GLClientState::deleteTextures(GLsizei n, const GLuint* textures)
{
for (const GLuint* texture = textures; texture != textures + n; texture++) {
setFboCompletenessDirtyForTexture(*texture);
}
// Updating the textures array could be made more efficient when deleting
// several textures:
// - compacting the array could be done in a single pass once the deleted
// textures are marked, or
// - could swap deleted textures to the end and re-sort.
TextureRec* texrec;
for (const GLuint* texture = textures; texture != textures + n; texture++) {
AutoWriteLock guard(m_tex.textureRecs->lock);
texrec = getTextureRecPtrLocked(*texture);
if (texrec && texrec->dims) {
delete [] texrec->dims;
}
if (texrec) {
m_tex.textureRecs->map.erase(*texture);
for (TextureUnit* unit = m_tex.unit;
unit != m_tex.unit + MAX_TEXTURE_UNITS;
unit++)
{
if (unit->texture[TEXTURE_2D] == *texture) {
unit->texture[TEXTURE_2D] = 0;
} else if (unit->texture[TEXTURE_EXTERNAL] == *texture) {
unit->texture[TEXTURE_EXTERNAL] = 0;
}
}
}
}
}
// RBO//////////////////////////////////////////////////////////////////////////
void GLClientState::addFreshRenderbuffer(GLuint name) {
if (!name) return;
RenderbufferInfo::ScopedView view(mRboState.rboData);
view.addFresh(name);
}
void GLClientState::addRenderbuffers(GLsizei n, GLuint* renderbuffers) {
for (size_t i = 0; i < n; i++) {
addFreshRenderbuffer(renderbuffers[i]);
}
}
void GLClientState::removeRenderbuffers(GLsizei n, const GLuint* renderbuffers) {
bool unbindCurrent = false;
{
RenderbufferInfo::ScopedView view(mRboState.rboData);
for (size_t i = 0; i < n; i++) {
if (renderbuffers[i] != 0) { // Never remove the zero rb.
auto rboPtr = view.get_shared_ptr(renderbuffers[i]);
if (!rboPtr) {
continue;
}
unbindCurrent |=
(mRboState.boundRenderbuffer == rboPtr);
setFboCompletenessDirtyForRbo(rboPtr);
view.remove(renderbuffers[i]);
}
}
}
if (unbindCurrent) {
bindRenderbuffer(GL_RENDERBUFFER, 0);
}
}
bool GLClientState::usedRenderbufferName(GLuint name) const {
if (!name) return false;
RenderbufferInfo::ScopedView view(mRboState.rboData);
return view.get_const(name) != 0;
}
void GLClientState::bindRenderbuffer(GLenum target, GLuint name) {
(void)target; // Must be GL_RENDERBUFFER
RenderbufferInfo::ScopedView view(mRboState.rboData);
mRboState.boundRenderbuffer = view.bind(name);
}
GLuint GLClientState::boundRenderbuffer() const {
return mRboState.boundRenderbuffer->id;
}
void GLClientState::setBoundRenderbufferFormat(GLenum format) {
mRboState.boundRenderbuffer->format = format;
}
void GLClientState::setBoundRenderbufferSamples(GLsizei samples) {
mRboState.boundRenderbuffer->multisamples = samples;
}
void GLClientState::setBoundRenderbufferDimensions(GLsizei width, GLsizei height) {
mRboState.boundRenderbuffer->width = width;
mRboState.boundRenderbuffer->height = height;
}
void GLClientState::setBoundRenderbufferEGLImageBacked() {
mRboState.boundRenderbuffer->boundEGLImage = true;
}
// FBO//////////////////////////////////////////////////////////////////////////
GLint GLClientState::queryTexInternalFormat(GLuint tex_name) const {
TextureRec* texrec = getTextureRecPtr(tex_name);
if (!texrec) return -1;
return texrec->internalformat;
}
GLsizei GLClientState::queryTexWidth(GLsizei level, GLuint tex_name) const {
TextureRec* texrec = getTextureRecPtr(tex_name);
if (!texrec) {
return 0;
}
return texrec->dims->widths[level];
}
GLsizei GLClientState::queryTexHeight(GLsizei level, GLuint tex_name) const {
TextureRec* texrec = getTextureRecPtr(tex_name);
if (!texrec) return 0;
return texrec->dims->heights[level];
}
GLsizei GLClientState::queryTexDepth(GLsizei level, GLuint tex_name) const {
TextureRec* texrec = getTextureRecPtr(tex_name);
if (!texrec) return 0;
return texrec->dims->depths[level];
}
bool GLClientState::queryTexEGLImageBacked(GLuint tex_name) const {
TextureRec* texrec = getTextureRecPtr(tex_name);
if (!texrec) return false;
return texrec->boundEGLImage;
}
GLenum GLClientState::queryTexFormat(GLuint tex_name) const {
TextureRec* texrec = getTextureRecPtr(tex_name);
if (!texrec) return -1;
return texrec->format;
}
GLenum GLClientState::queryTexType(GLuint tex_name) const {
TextureRec* texrec = getTextureRecPtr(tex_name);
if (!texrec) return -1;
return texrec->type;
}
GLsizei GLClientState::queryTexSamples(GLuint tex_name) const {
TextureRec* texrec = getTextureRecPtr(tex_name);
if (!texrec) return 0;
return texrec->multisamples;
}
GLenum GLClientState::queryTexLastBoundTarget(GLuint tex_name) const {
TextureRec* texrec = getTextureRecPtr(tex_name);
if (!texrec) return GL_NONE;
return texrec->target;
}
void GLClientState::getBoundFramebufferFormat(
GLenum target,
GLenum attachment, FboFormatInfo* res_info) const {
const FboProps& props = boundFboProps_const(target);
res_info->type = FBO_ATTACHMENT_NONE;
res_info->rb_format = GL_NONE;
res_info->rb_multisamples = 0;
res_info->rb_external = false;
res_info->tex_internalformat = -1;
res_info->tex_format = GL_NONE;
res_info->tex_type = GL_NONE;
res_info->tex_multisamples = 0;
res_info->tex_external = false;
int colorAttachmentIndex =
glUtilsColorAttachmentIndex(attachment);
if (colorAttachmentIndex != -1) {
if (props.colorAttachmenti_hasRbo[colorAttachmentIndex]) {
res_info->type = FBO_ATTACHMENT_RENDERBUFFER;
res_info->rb_format = props.colorAttachmenti_rbos[colorAttachmentIndex]->format;
res_info->rb_multisamples =
props.colorAttachmenti_rbos[colorAttachmentIndex]->multisamples;
res_info->rb_external =
props.colorAttachmenti_rbos[colorAttachmentIndex]->boundEGLImage;
} else if (props.colorAttachmenti_hasTex[colorAttachmentIndex]) {
res_info->type = FBO_ATTACHMENT_TEXTURE;
res_info->tex_external =
props.colorAttachmenti_textures[colorAttachmentIndex]->boundEGLImage;
res_info->tex_internalformat =
props.colorAttachmenti_textures[colorAttachmentIndex]->internalformat;
res_info->tex_format =
props.colorAttachmenti_textures[colorAttachmentIndex]->format;
res_info->tex_type =
props.colorAttachmenti_textures[colorAttachmentIndex]->type;
res_info->tex_multisamples =
props.colorAttachmenti_textures[colorAttachmentIndex]->multisamples;
res_info->tex_level = props.colorAttachmenti_texture_levels[colorAttachmentIndex];
res_info->tex_layer = props.colorAttachmenti_texture_layers[colorAttachmentIndex];
} else {
res_info->type = FBO_ATTACHMENT_NONE;
}
}
switch (attachment) {
case GL_DEPTH_ATTACHMENT:
if (props.depthAttachment_hasRbo) {
res_info->type = FBO_ATTACHMENT_RENDERBUFFER;
res_info->rb_format = props.depthAttachment_rbo->format;
res_info->rb_multisamples = props.depthAttachment_rbo->multisamples;
res_info->rb_external = props.depthAttachment_rbo->boundEGLImage;
} else if (props.depthAttachment_hasTexObj) {
res_info->type = FBO_ATTACHMENT_TEXTURE;
res_info->tex_external = props.depthAttachment_texture->boundEGLImage;
res_info->tex_internalformat = props.depthAttachment_texture->internalformat;
res_info->tex_format = props.depthAttachment_texture->format;
res_info->tex_type = props.depthAttachment_texture->type;
res_info->tex_multisamples = props.depthAttachment_texture->multisamples;
res_info->tex_level = props.depthAttachment_texture_level;
res_info->tex_layer = props.depthAttachment_texture_layer;
} else {
res_info->type = FBO_ATTACHMENT_NONE;
}
break;
case GL_STENCIL_ATTACHMENT:
if (props.stencilAttachment_hasRbo) {
res_info->type = FBO_ATTACHMENT_RENDERBUFFER;
res_info->rb_format = props.stencilAttachment_rbo->format;
res_info->rb_multisamples = props.stencilAttachment_rbo->multisamples;
res_info->rb_external = props.stencilAttachment_rbo->boundEGLImage;
} else if (props.stencilAttachment_hasTexObj) {
res_info->type = FBO_ATTACHMENT_TEXTURE;
res_info->tex_external = props.stencilAttachment_texture->boundEGLImage;
res_info->tex_internalformat = props.stencilAttachment_texture->internalformat;
res_info->tex_format = props.stencilAttachment_texture->format;
res_info->tex_type = props.stencilAttachment_texture->type;
res_info->tex_multisamples = props.stencilAttachment_texture->multisamples;
res_info->tex_level = props.depthAttachment_texture_level;
res_info->tex_layer = props.depthAttachment_texture_layer;
} else {
res_info->type = FBO_ATTACHMENT_NONE;
}
break;
case GL_DEPTH_STENCIL_ATTACHMENT:
if (props.depthstencilAttachment_hasRbo) {
res_info->type = FBO_ATTACHMENT_RENDERBUFFER;
res_info->rb_format = props.depthstencilAttachment_rbo->format;
res_info->rb_multisamples = props.depthstencilAttachment_rbo->multisamples;
res_info->rb_external = props.depthstencilAttachment_rbo->boundEGLImage;
} else if (props.depthstencilAttachment_hasTexObj) {
res_info->type = FBO_ATTACHMENT_TEXTURE;
res_info->tex_external = props.depthstencilAttachment_texture->boundEGLImage;
res_info->tex_internalformat = props.depthstencilAttachment_texture->internalformat;
res_info->tex_format = props.depthstencilAttachment_texture->format;
res_info->tex_type = props.depthstencilAttachment_texture->type;
res_info->tex_multisamples = props.depthstencilAttachment_texture->multisamples;
res_info->tex_level = props.depthAttachment_texture_level;
res_info->tex_layer = props.depthAttachment_texture_layer;
} else {
res_info->type = FBO_ATTACHMENT_NONE;
}
break;
}
}
FboAttachmentType GLClientState::getBoundFramebufferAttachmentType(GLenum target, GLenum attachment) const {
FboFormatInfo info;
getBoundFramebufferFormat(target, attachment, &info);
return info.type;
}
int GLClientState::getMaxColorAttachments() const {
return m_hostDriverCaps.max_color_attachments;
}
int GLClientState::getMaxDrawBuffers() const {
return m_hostDriverCaps.max_draw_buffers;
}
#define UNIFORM_VALIDATION_ERR_COND(cond, code) if (cond) { *err = code; return; }
#define UNIFORM_VALIDATION_INFO_VAR_NAME info
#define UNIFORM_VALIDATION_TYPE_VIOLATION_FOR_FLOATS \
(!(UNIFORM_VALIDATION_INFO_VAR_NAME->isBool) && (UNIFORM_VALIDATION_INFO_VAR_NAME->isInt || UNIFORM_VALIDATION_INFO_VAR_NAME->isSampler))
#define UNIFORM_VALIDATION_TYPE_VIOLATION_FOR_INTS \
(!(UNIFORM_VALIDATION_INFO_VAR_NAME->isBool) && (!UNIFORM_VALIDATION_TYPE_VIOLATION_FOR_FLOATS || UNIFORM_VALIDATION_INFO_VAR_NAME->isUnsigned))
#define UNIFORM_VALIDATION_TYPE_VIOLATION_FOR_UNSIGNED_INTS \
(!(UNIFORM_VALIDATION_INFO_VAR_NAME->isBool) && (!UNIFORM_VALIDATION_TYPE_VIOLATION_FOR_FLOATS || !(UNIFORM_VALIDATION_INFO_VAR_NAME->isUnsigned)))
#define UNIFORM_VALIDATION_INLINING
void GLClientState::validateUniform(bool isFloat, bool isUnsigned, GLint columns, GLint rows, GLint location, GLsizei count, GLenum* err) {
UNIFORM_VALIDATION_ERR_COND(!m_currentProgram && !m_currentShaderProgram, GL_INVALID_OPERATION);
if (-1 == location) return;
auto info = currentUniformValidationInfo.get_const(location);
UNIFORM_VALIDATION_ERR_COND(!info || !info->valid, GL_INVALID_OPERATION);
UNIFORM_VALIDATION_ERR_COND(columns != info->columns || rows != info->rows, GL_INVALID_OPERATION);
UNIFORM_VALIDATION_ERR_COND(count > 1 && !info->isArray, GL_INVALID_OPERATION);
if (isFloat) {
UNIFORM_VALIDATION_ERR_COND(UNIFORM_VALIDATION_TYPE_VIOLATION_FOR_FLOATS, GL_INVALID_OPERATION);
} else {
if (isUnsigned) {
UNIFORM_VALIDATION_ERR_COND(UNIFORM_VALIDATION_TYPE_VIOLATION_FOR_UNSIGNED_INTS, GL_INVALID_OPERATION);
} else {
UNIFORM_VALIDATION_ERR_COND(UNIFORM_VALIDATION_TYPE_VIOLATION_FOR_INTS, GL_INVALID_OPERATION);
}
}
}
bool GLClientState::isAttribIndexUsedByProgram(int index) {
auto info = currentAttribValidationInfo.get_const(index);
if (!info) return false;
if (!info->validInProgram) return false;
return true;
}
void GLClientState::addFreshFramebuffer(GLuint name) {
FboProps props;
props.name = name;
props.previouslyBound = false;
props.completenessDirty = true;
props.colorAttachmenti_textures.resize(m_hostDriverCaps.max_color_attachments, 0);
props.colorAttachmenti_texture_levels.resize(m_hostDriverCaps.max_color_attachments, 0);
props.colorAttachmenti_texture_layers.resize(m_hostDriverCaps.max_color_attachments, 0);
props.depthAttachment_texture_level = 0;
props.depthAttachment_texture_layer = 0;
props.stencilAttachment_texture_level = 0;
props.stencilAttachment_texture_layer = 0;
props.depthAttachment_texture = 0;
props.stencilAttachment_texture = 0;
props.depthstencilAttachment_texture = 0;
props.colorAttachmenti_hasTex.resize(m_hostDriverCaps.max_color_attachments, false);
props.depthAttachment_hasTexObj = false;
props.stencilAttachment_hasTexObj = false;
props.depthstencilAttachment_hasTexObj = false;
props.colorAttachmenti_rbos.resize(m_hostDriverCaps.max_color_attachments, 0);
props.depthAttachment_rbo = 0;
props.stencilAttachment_rbo = 0;
props.depthstencilAttachment_rbo = 0;
props.colorAttachmenti_hasRbo.resize(m_hostDriverCaps.max_color_attachments, false);
props.depthAttachment_hasRbo = false;
props.stencilAttachment_hasRbo = false;
props.depthstencilAttachment_hasRbo = false;
props.defaultWidth = 0;
props.defaultHeight = 0;
mFboState.fboData[name] = props;
}
void GLClientState::addFramebuffers(GLsizei n, GLuint* framebuffers) {
for (size_t i = 0; i < n; i++) {
addFreshFramebuffer(framebuffers[i]);
}
}
void GLClientState::removeFramebuffers(GLsizei n, const GLuint* framebuffers) {
RenderbufferInfo::ScopedView view(mRboState.rboData);
for (size_t i = 0; i < n; i++) {
if (framebuffers[i] != 0) { // Never remove the zero fb.
if (framebuffers[i] == mFboState.boundDrawFramebuffer) {
bindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
}
if (framebuffers[i] == mFboState.boundReadFramebuffer) {
bindFramebuffer(GL_READ_FRAMEBUFFER, 0);
}
mFboState.fboData.erase(framebuffers[i]);
}
}
}
bool GLClientState::usedFramebufferName(GLuint name) const {
return mFboState.fboData.find(name) != mFboState.fboData.end();
}
FboProps& GLClientState::boundFboProps(GLenum target) {
switch (target) {
case GL_DRAW_FRAMEBUFFER:
return mFboState.fboData[mFboState.boundDrawFramebuffer];
case GL_READ_FRAMEBUFFER:
return mFboState.fboData[mFboState.boundReadFramebuffer];
case GL_FRAMEBUFFER:
return mFboState.fboData[mFboState.boundDrawFramebuffer];
}
return mFboState.fboData[mFboState.boundDrawFramebuffer];
}
const FboProps& GLClientState::boundFboProps_const(GLenum target) const {
switch (target) {
case GL_DRAW_FRAMEBUFFER:
return mFboState.fboData.find(mFboState.boundDrawFramebuffer)->second;
case GL_READ_FRAMEBUFFER:
return mFboState.fboData.find(mFboState.boundReadFramebuffer)->second;
case GL_FRAMEBUFFER:
return mFboState.fboData.find(mFboState.boundDrawFramebuffer)->second;
}
return mFboState.fboData.find(mFboState.boundDrawFramebuffer)->second;
}
void GLClientState::bindFramebuffer(GLenum target, GLuint name) {
// If unused, add it.
if (!usedFramebufferName(name)) {
addFreshFramebuffer(name);
}
switch (target) {
case GL_DRAW_FRAMEBUFFER:
mFboState.boundDrawFramebuffer = name;
break;
case GL_READ_FRAMEBUFFER:
mFboState.boundReadFramebuffer = name;
break;
default: // case GL_FRAMEBUFFER:
mFboState.boundDrawFramebuffer = name;
mFboState.boundReadFramebuffer = name;
break;
}
boundFboProps(target).previouslyBound = true;
}
void GLClientState::setCheckFramebufferStatus(GLenum target, GLenum status) {
switch (target) {
case GL_DRAW_FRAMEBUFFER:
mFboState.drawFboCheckStatus = status;
break;
case GL_READ_FRAMEBUFFER:
mFboState.readFboCheckStatus = status;
break;
case GL_FRAMEBUFFER:
mFboState.drawFboCheckStatus = status;
break;
}
}
void GLClientState::setFramebufferParameter(GLenum target, GLenum pname, GLint param) {
switch (pname) {
case GL_FRAMEBUFFER_DEFAULT_WIDTH:
boundFboProps(target).defaultWidth = param;
boundFboProps(target).completenessDirty = true;
break;
case GL_FRAMEBUFFER_DEFAULT_HEIGHT:
boundFboProps(target).defaultHeight = param;
boundFboProps(target).completenessDirty = true;
break;
}
}
GLenum GLClientState::getCheckFramebufferStatus(GLenum target) const {
switch (target) {
case GL_DRAW_FRAMEBUFFER:
return mFboState.drawFboCheckStatus;
case GL_READ_FRAMEBUFFER:
return mFboState.readFboCheckStatus;
case GL_FRAMEBUFFER:
return mFboState.drawFboCheckStatus;
}
return mFboState.drawFboCheckStatus;
}
GLuint GLClientState::boundFramebuffer(GLenum target) const {
return boundFboProps_const(target).name;
}
// Texture objects for FBOs/////////////////////////////////////////////////////
void GLClientState::attachTextureObject(
GLenum target,
GLenum attachment, GLuint texture, GLint level, GLint layer) {
bool attach = texture != 0;
std::shared_ptr<TextureRec> texrec = getTextureRec(texture);
int colorAttachmentIndex =
glUtilsColorAttachmentIndex(attachment);
boundFboProps(target).completenessDirty = true;
if (colorAttachmentIndex != -1) {
boundFboProps(target).colorAttachmenti_textures[colorAttachmentIndex] = texrec;
boundFboProps(target).colorAttachmenti_texture_levels[colorAttachmentIndex] = level;
boundFboProps(target).colorAttachmenti_texture_layers[colorAttachmentIndex] = layer;
boundFboProps(target).colorAttachmenti_hasTex[colorAttachmentIndex] = attach;
}
switch (attachment) {
case GL_DEPTH_ATTACHMENT:
boundFboProps(target).depthAttachment_texture = texrec;
boundFboProps(target).depthAttachment_texture_level = level;
boundFboProps(target).depthAttachment_texture_layer = layer;
boundFboProps(target).depthAttachment_hasTexObj = attach;
break;
case GL_STENCIL_ATTACHMENT:
boundFboProps(target).stencilAttachment_texture = texrec;
boundFboProps(target).stencilAttachment_texture_level = level;
boundFboProps(target).stencilAttachment_texture_layer = layer;
boundFboProps(target).stencilAttachment_hasTexObj = attach;
break;
case GL_DEPTH_STENCIL_ATTACHMENT:
boundFboProps(target).depthstencilAttachment_texture = texrec;
boundFboProps(target).depthstencilAttachment_hasTexObj = attach;
boundFboProps(target).stencilAttachment_texture = texrec;
boundFboProps(target).stencilAttachment_hasTexObj = attach;
boundFboProps(target).depthAttachment_texture = texrec;
boundFboProps(target).depthAttachment_hasTexObj = attach;
boundFboProps(target).depthAttachment_texture_level = level;
boundFboProps(target).depthAttachment_texture_layer = layer;
boundFboProps(target).stencilAttachment_texture_level = level;
boundFboProps(target).stencilAttachment_texture_layer = layer;
break;
}
}
std::shared_ptr<TextureRec> GLClientState::getFboAttachmentTexture(GLenum target, GLenum attachment) const {
std::shared_ptr<TextureRec> res = {}; // conservative
int colorAttachmentIndex =
glUtilsColorAttachmentIndex(attachment);
if (colorAttachmentIndex != -1) {
res = boundFboProps_const(target).colorAttachmenti_textures[colorAttachmentIndex];
}
switch (attachment) {
case GL_DEPTH_ATTACHMENT:
res = boundFboProps_const(target).depthAttachment_texture;
break;
case GL_STENCIL_ATTACHMENT:
res = boundFboProps_const(target).stencilAttachment_texture;
break;
case GL_DEPTH_STENCIL_ATTACHMENT:
res = boundFboProps_const(target).depthstencilAttachment_texture;
break;
}
return res;
}
// RBOs for FBOs////////////////////////////////////////////////////////////////
void GLClientState::detachRbo(GLuint renderbuffer) {
for (int i = 0; i < m_hostDriverCaps.max_color_attachments; i++) {
detachRboFromFbo(GL_DRAW_FRAMEBUFFER, glUtilsColorAttachmentName(i), renderbuffer);
detachRboFromFbo(GL_READ_FRAMEBUFFER, glUtilsColorAttachmentName(i), renderbuffer);
}
detachRboFromFbo(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, renderbuffer);
detachRboFromFbo(GL_READ_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, renderbuffer);
detachRboFromFbo(GL_DRAW_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, renderbuffer);
detachRboFromFbo(GL_READ_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, renderbuffer);
detachRboFromFbo(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, renderbuffer);
detachRboFromFbo(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, renderbuffer);
}
void GLClientState::detachRboFromFbo(GLenum target, GLenum attachment, GLuint renderbuffer) {
int colorAttachmentIndex =
glUtilsColorAttachmentIndex(attachment);
boundFboProps(target).completenessDirty = true;
RenderbufferInfo::ScopedView view(mRboState.rboData);
auto renderBufferSharedPtr = view.get_shared_ptr(renderbuffer);
if (colorAttachmentIndex != -1) {
if (boundFboProps(target).colorAttachmenti_hasRbo[colorAttachmentIndex] &&
boundFboProps(target).colorAttachmenti_rbos[colorAttachmentIndex]
== renderBufferSharedPtr) {
boundFboProps(target).colorAttachmenti_rbos[colorAttachmentIndex] = nullptr;
boundFboProps(target).colorAttachmenti_hasRbo[colorAttachmentIndex] = false;
}
}
switch (attachment) {
case GL_DEPTH_ATTACHMENT:
if (boundFboProps(target).depthAttachment_rbo == renderBufferSharedPtr &&
boundFboProps(target).depthAttachment_hasRbo) {
boundFboProps(target).depthAttachment_rbo = nullptr;
boundFboProps(target).depthAttachment_hasRbo = false;
}
break;
case GL_STENCIL_ATTACHMENT:
if (boundFboProps(target).stencilAttachment_rbo == renderBufferSharedPtr &&
boundFboProps(target).stencilAttachment_hasRbo) {
boundFboProps(target).stencilAttachment_rbo = nullptr;
boundFboProps(target).stencilAttachment_hasRbo = false;
}
break;
case GL_DEPTH_STENCIL_ATTACHMENT:
if (boundFboProps(target).depthAttachment_rbo == renderBufferSharedPtr &&
boundFboProps(target).depthAttachment_hasRbo) {
boundFboProps(target).depthAttachment_rbo = nullptr;
boundFboProps(target).depthAttachment_hasRbo = false;
}
if (boundFboProps(target).stencilAttachment_rbo == renderBufferSharedPtr &&
boundFboProps(target).stencilAttachment_hasRbo) {
boundFboProps(target).stencilAttachment_rbo = nullptr;
boundFboProps(target).stencilAttachment_hasRbo = false;
}
if (boundFboProps(target).depthstencilAttachment_rbo == renderBufferSharedPtr &&
boundFboProps(target).depthstencilAttachment_hasRbo) {
boundFboProps(target).depthstencilAttachment_rbo = nullptr;
boundFboProps(target).depthstencilAttachment_hasRbo = false;
}
break;
}
}
void GLClientState::attachRbo(GLenum target, GLenum attachment, GLuint renderbuffer) {
bool attach = 0 != renderbuffer;
int colorAttachmentIndex =
glUtilsColorAttachmentIndex(attachment);
boundFboProps(target).completenessDirty = true;
RenderbufferInfo::ScopedView view(mRboState.rboData);
auto rboSharedPtr = view.get_or_add_shared_ptr(renderbuffer);
if (colorAttachmentIndex != -1) {
boundFboProps(target).colorAttachmenti_rbos[colorAttachmentIndex] = rboSharedPtr;
boundFboProps(target).colorAttachmenti_hasRbo[colorAttachmentIndex] = attach;
}
switch (attachment) {
case GL_DEPTH_ATTACHMENT:
boundFboProps(target).depthAttachment_rbo = rboSharedPtr;
boundFboProps(target).depthAttachment_hasRbo = attach;
break;
case GL_STENCIL_ATTACHMENT:
boundFboProps(target).stencilAttachment_rbo = rboSharedPtr;
boundFboProps(target).stencilAttachment_hasRbo = attach;
break;
case GL_DEPTH_STENCIL_ATTACHMENT:
boundFboProps(target).depthAttachment_rbo = rboSharedPtr;
boundFboProps(target).depthAttachment_hasRbo = attach;
boundFboProps(target).stencilAttachment_rbo = rboSharedPtr;
boundFboProps(target).stencilAttachment_hasRbo = attach;
boundFboProps(target).depthstencilAttachment_rbo = rboSharedPtr;
boundFboProps(target).depthstencilAttachment_hasRbo = attach;
break;
}
}
std::shared_ptr<RboProps> GLClientState::getFboAttachmentRbo(GLenum target, GLenum attachment) const {
int colorAttachmentIndex =
glUtilsColorAttachmentIndex(attachment);
if (colorAttachmentIndex != -1) {
return boundFboProps_const(target).colorAttachmenti_rbos[colorAttachmentIndex];
}
switch (attachment) {
case GL_DEPTH_ATTACHMENT:
return boundFboProps_const(target).depthAttachment_rbo;
case GL_STENCIL_ATTACHMENT:
return boundFboProps_const(target).stencilAttachment_rbo;
case GL_DEPTH_STENCIL_ATTACHMENT:
return boundFboProps_const(target).depthstencilAttachment_rbo;
}
// Bad attachment enum. Should be unreachable.
return nullptr;
}
void GLClientState::setFboCompletenessDirtyForTexture(GLuint texture) {
std::shared_ptr<TextureRec> texrec = getTextureRec(texture);
std::map<GLuint, FboProps>::iterator it = mFboState.fboData.begin();
while (it != mFboState.fboData.end()) {
FboProps& props = it->second;
for (int i = 0; i < m_hostDriverCaps.max_color_attachments; ++i) {
if (props.colorAttachmenti_hasTex[i]) {
if (texrec == props.colorAttachmenti_textures[i]) {
props.completenessDirty = true;
return;
}
}
}
if (props.depthAttachment_hasTexObj) {
if (texrec == props.depthAttachment_texture) {
props.completenessDirty = true;
return;
}
}
if (props.stencilAttachment_hasTexObj) {
if (texrec == props.stencilAttachment_texture) {
props.completenessDirty = true;
return;
}
}
if (props.depthstencilAttachment_hasTexObj) {
if (texrec == props.depthstencilAttachment_texture) {
props.completenessDirty = true;
return;
}
}
++it;
}
}
void GLClientState::setFboCompletenessDirtyForRbo(std::shared_ptr<RboProps> rbo) {
std::map<GLuint, FboProps>::iterator it = mFboState.fboData.begin();
while (it != mFboState.fboData.end()) {
FboProps& props = it->second;
for (int i = 0; i < m_hostDriverCaps.max_color_attachments; ++i) {
if (props.colorAttachmenti_hasRbo[i]) {
if (rbo == props.colorAttachmenti_rbos[i]) {
props.completenessDirty = true;
return;
}
}
}
if (props.depthAttachment_hasRbo) {
if (rbo == props.depthAttachment_rbo) {
props.completenessDirty = true;
return;
}
}
if (props.stencilAttachment_hasRbo) {
if (rbo == props.stencilAttachment_rbo) {
props.completenessDirty = true;
return;
}
}
if (props.depthstencilAttachment_hasRbo) {
if (rbo == props.depthstencilAttachment_rbo) {
props.completenessDirty = true;
return;
}
}
++it;
}
}
bool GLClientState::attachmentHasObject(GLenum target, GLenum attachment) const {
bool res = true; // liberal
int colorAttachmentIndex =
glUtilsColorAttachmentIndex(attachment);
if (colorAttachmentIndex != -1) {
res = boundFboProps_const(target).colorAttachmenti_hasTex[colorAttachmentIndex] ||
boundFboProps_const(target).colorAttachmenti_hasRbo[colorAttachmentIndex];
}
switch (attachment) {
case GL_DEPTH_ATTACHMENT:
res = (boundFboProps_const(target).depthAttachment_hasTexObj) ||
(boundFboProps_const(target).depthAttachment_hasRbo);
break;
case GL_STENCIL_ATTACHMENT:
res = (boundFboProps_const(target).stencilAttachment_hasTexObj) ||
(boundFboProps_const(target).stencilAttachment_hasRbo);
break;
case GL_DEPTH_STENCIL_ATTACHMENT:
res = (boundFboProps_const(target).depthstencilAttachment_hasTexObj) ||
(boundFboProps_const(target).depthstencilAttachment_hasRbo);
break;
}
return res;
}
bool GLClientState::depthStencilHasSameObject(GLenum target) const {
const FboProps& props = boundFboProps_const(target);
if (props.depthAttachment_hasTexObj != props.stencilAttachment_hasTexObj
|| props.depthAttachment_hasRbo != props.stencilAttachment_hasRbo) {
return false;
}
if (props.depthAttachment_hasTexObj) {
return props.depthAttachment_texture == props.stencilAttachment_texture;
}
if (props.depthAttachment_hasRbo) {
return props.depthAttachment_rbo == props.stencilAttachment_rbo;
}
// No attachment in either
return true;
}
void GLClientState::setTransformFeedbackActive(bool active) {
m_transformFeedbackActive = active;
}
void GLClientState::setTransformFeedbackUnpaused(bool unpaused) {
m_transformFeedbackUnpaused = unpaused;
}
void GLClientState::setTransformFeedbackVaryingsCountForLinking(uint32_t count) {
m_transformFeedbackVaryingsCountForLinking = count;
}
bool GLClientState::getTransformFeedbackActive() const {
return m_transformFeedbackActive;
}
bool GLClientState::getTransformFeedbackUnpaused() const {
return m_transformFeedbackUnpaused;
}
bool GLClientState::getTransformFeedbackActiveUnpaused() const {
return m_transformFeedbackActive && m_transformFeedbackUnpaused;
}
uint32_t GLClientState::getTransformFeedbackVaryingsCountForLinking() const {
return m_transformFeedbackVaryingsCountForLinking;
}
void GLClientState::stencilFuncSeparate(GLenum face, GLenum func, GLint ref, GLuint mask) {
if (face == GL_FRONT || face == GL_FRONT_AND_BACK) {
state_GL_STENCIL_FUNC = func;
state_GL_STENCIL_REF = ref;
state_GL_STENCIL_VALUE_MASK = mask;
}
if (face == GL_BACK || face == GL_FRONT_AND_BACK) {
state_GL_STENCIL_BACK_FUNC = func;
state_GL_STENCIL_BACK_REF = ref;
state_GL_STENCIL_BACK_VALUE_MASK = mask;
}
}
void GLClientState::stencilMaskSeparate(GLenum face, GLuint mask) {
if (face == GL_FRONT || face == GL_FRONT_AND_BACK) {
state_GL_STENCIL_WRITEMASK = mask;
}
if (face == GL_BACK || face == GL_FRONT_AND_BACK) {
state_GL_STENCIL_BACK_WRITEMASK = mask;
}
}
void GLClientState::stencilOpSeparate(GLenum face, GLenum fail, GLenum zfail, GLenum zpass) {
if (face == GL_FRONT || face == GL_FRONT_AND_BACK) {
state_GL_STENCIL_FAIL = fail;
state_GL_STENCIL_PASS_DEPTH_FAIL = zfail;
state_GL_STENCIL_PASS_DEPTH_PASS = zpass;
}
if (face == GL_BACK || face == GL_FRONT_AND_BACK) {
state_GL_STENCIL_BACK_FAIL = fail;
state_GL_STENCIL_BACK_PASS_DEPTH_FAIL = zfail;
state_GL_STENCIL_BACK_PASS_DEPTH_PASS = zpass;
}
}
void GLClientState::setTextureData(SharedTextureDataMap* sharedTexData) {
m_tex.textureRecs = sharedTexData;
}
void GLClientState::setRenderbufferInfo(RenderbufferInfo* rbInfo) {
mRboState.rboData = rbInfo;
if (rbInfo) {
RenderbufferInfo::ScopedView view(mRboState.rboData);
auto rbo = view.get_or_add_shared_ptr(0);
mRboState.boundRenderbuffer = rbo;
}
}
void GLClientState::setSamplerInfo(SamplerInfo* samplerInfo) {
mSamplerInfo = samplerInfo;
}
bool GLClientState::compressedTexImageSizeCompatible(GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth, GLsizei imageSize) {
bool error = false;
GLsizei compressedSize = GLESTextureUtils::getCompressedImageSize(internalformat, width, height, depth, &error);
if (error) return false;
return imageSize == compressedSize;
}
void GLClientState::fromMakeCurrent() {
if (mFboState.fboData.find(0) == mFboState.fboData.end()) {
addFreshFramebuffer(0);
FboProps& default_fb_props = mFboState.fboData[0];
default_fb_props.colorAttachmenti_hasRbo[0] = true;
default_fb_props.depthAttachment_hasRbo = true;
default_fb_props.stencilAttachment_hasRbo = true;
default_fb_props.depthstencilAttachment_hasRbo = true;
RenderbufferInfo::ScopedView view(mRboState.rboData);
// Use RBO 0 as placeholder
auto rbo0 = view.get_or_add_shared_ptr(0);
default_fb_props.colorAttachmenti_rbos[0] = rbo0;
default_fb_props.depthAttachment_rbo = rbo0;
default_fb_props.stencilAttachment_rbo = rbo0;
default_fb_props.depthstencilAttachment_rbo = rbo0;
}
if (!samplerExists(0)) {
GLuint id = 0;
setExistence(ObjectType::Sampler, true, 1, &id);
}
}
void GLClientState::initFromCaps(
const HostDriverCaps& caps) {
m_hostDriverCaps = caps;
// Override some of them
m_hostDriverCaps.max_vertex_attribs = CODEC_MAX_VERTEX_ATTRIBUTES;
m_hostDriverCaps.max_vertex_attrib_bindings = m_hostDriverCaps.max_vertex_attribs;
// Derive some other settings
m_log2MaxTextureSize = 0;
uint32_t current = 1;
while (current < m_hostDriverCaps.max_texture_size) {
current = current << 1;
++m_log2MaxTextureSize;
}
if (m_glesMajorVersion >= 3) {
if (m_hostDriverCaps.max_transform_feedback_separate_attribs)
m_indexedTransformFeedbackBuffers.resize(m_hostDriverCaps.max_transform_feedback_separate_attribs);
if (m_hostDriverCaps.max_uniform_buffer_bindings)
m_indexedUniformBuffers.resize(m_hostDriverCaps.max_uniform_buffer_bindings);
if (m_hostDriverCaps.max_atomic_counter_buffer_bindings)
m_indexedAtomicCounterBuffers.resize(m_hostDriverCaps.max_atomic_counter_buffer_bindings);
if (m_hostDriverCaps.max_shader_storage_buffer_bindings)
m_indexedShaderStorageBuffers.resize(m_hostDriverCaps.max_shader_storage_buffer_bindings);
BufferBinding buf0Binding;
buf0Binding.buffer = 0;
buf0Binding.offset = 0;
buf0Binding.size = 0;
buf0Binding.stride = 0;
buf0Binding.effectiveStride = 0;
for (size_t i = 0; i < m_indexedTransformFeedbackBuffers.size(); ++i)
m_indexedTransformFeedbackBuffers[i] = buf0Binding;
for (size_t i = 0; i < m_indexedUniformBuffers.size(); ++i)
m_indexedUniformBuffers[i] = buf0Binding;
for (size_t i = 0; i < m_indexedAtomicCounterBuffers.size(); ++i)
m_indexedAtomicCounterBuffers[i] = buf0Binding;
for (size_t i = 0; i < m_indexedShaderStorageBuffers.size(); ++i)
m_indexedShaderStorageBuffers[i] = buf0Binding;
}
addFreshFramebuffer(0);
m_initialized = true;
}
bool GLClientState::needsInitFromCaps() const {
return !m_initialized;
}
void GLClientState::setExtensions(const std::string& extensions) {
if (!m_extensions_set) m_extensions = extensions;
m_has_color_buffer_float_extension =
hasExtension("GL_EXT_color_buffer_float");
m_has_color_buffer_half_float_extension =
hasExtension("GL_EXT_color_buffer_half_float");
m_extensions_set = true;
}
bool GLClientState::hasExtension(const char* ext) const {
return m_extensions.find(ext) != std::string::npos;
}
using gfxstream::guest::AutoLock;
using gfxstream::guest::Lock;
// A process-wide fence registry (because we can use fence sync objects across multiple contexts)
struct FenceRegistry {
Lock lock;
PredicateMap<uint64_t, false> existence;
void onFenceCreated(GLsync sync) {
AutoLock<Lock> scopedLock(lock);
uint64_t asUint64 = (uint64_t)(uintptr_t)(sync);
existence.add(asUint64);
existence.set(asUint64, true);
}
void onFenceDestroyed(GLsync sync) {
AutoLock<Lock> scopedLock(lock);
uint64_t asUint64 = (uint64_t)(uintptr_t)(sync);
existence.remove(asUint64);
}
bool exists(GLsync sync) {
AutoLock<Lock> scopedLock(lock);
uint64_t asUint64 = (uint64_t)(uintptr_t)(sync);
return existence.get(asUint64);
}
};
static FenceRegistry sFenceRegistry;
void GLClientState::onFenceCreated(GLsync sync) {
sFenceRegistry.onFenceCreated(sync);
}
void GLClientState::onFenceDestroyed(GLsync sync) {
sFenceRegistry.onFenceDestroyed(sync);
}
bool GLClientState::fenceExists(GLsync sync) {
return sFenceRegistry.exists(sync);
}
} // namespace guest
} // namespace gfxstream