| // SPDX-License-Identifier: Apache-2.0 |
| // ---------------------------------------------------------------------------- |
| // Copyright 2011-2022 Arm Limited |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); you may not |
| // use this file except in compliance with the License. You may obtain a copy |
| // of the License at: |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the |
| // License for the specific language governing permissions and limitations |
| // under the License. |
| // ---------------------------------------------------------------------------- |
| |
| /** |
| * @brief Functions to decompress a symbolic block. |
| */ |
| |
| #include "astcenc_internal.h" |
| |
| #include <stdio.h> |
| #include <assert.h> |
| |
| /** |
| * @brief Compute the integer linear interpolation of two color endpoints. |
| * |
| * @param decode_mode The ASTC profile (linear or sRGB) |
| * @param color0 The endpoint0 color. |
| * @param color1 The endpoint1 color. |
| * @param weights The interpolation weight (between 0 and 64). |
| * |
| * @return The interpolated color. |
| */ |
| static vint4 lerp_color_int( |
| astcenc_profile decode_mode, |
| vint4 color0, |
| vint4 color1, |
| vint4 weights |
| ) { |
| vint4 weight1 = weights; |
| vint4 weight0 = vint4(64) - weight1; |
| |
| if (decode_mode == ASTCENC_PRF_LDR_SRGB) |
| { |
| color0 = asr<8>(color0); |
| color1 = asr<8>(color1); |
| } |
| |
| vint4 color = (color0 * weight0) + (color1 * weight1) + vint4(32); |
| color = asr<6>(color); |
| |
| if (decode_mode == ASTCENC_PRF_LDR_SRGB) |
| { |
| color = color * vint4(257); |
| } |
| |
| return color; |
| } |
| |
| |
| /** |
| * @brief Convert integer color value into a float value for the decoder. |
| * |
| * @param data The integer color value post-interpolation. |
| * @param lns_mask If set treat lane as HDR (LNS) else LDR (unorm16). |
| * |
| * @return The float color value. |
| */ |
| static inline vfloat4 decode_texel( |
| vint4 data, |
| vmask4 lns_mask |
| ) { |
| vint4 color_lns = vint4::zero(); |
| vint4 color_unorm = vint4::zero(); |
| |
| if (any(lns_mask)) |
| { |
| color_lns = lns_to_sf16(data); |
| } |
| |
| if (!all(lns_mask)) |
| { |
| color_unorm = unorm16_to_sf16(data); |
| } |
| |
| // Pick components and then convert to FP16 |
| vint4 datai = select(color_unorm, color_lns, lns_mask); |
| return float16_to_float(datai); |
| } |
| |
| /* See header for documentation. */ |
| void unpack_weights( |
| const block_size_descriptor& bsd, |
| const symbolic_compressed_block& scb, |
| const decimation_info& di, |
| bool is_dual_plane, |
| int weights_plane1[BLOCK_MAX_TEXELS], |
| int weights_plane2[BLOCK_MAX_TEXELS] |
| ) { |
| // Safe to overshoot as all arrays are allocated to full size |
| if (!is_dual_plane) |
| { |
| // Build full 64-entry weight lookup table |
| vint4 tab0(reinterpret_cast<const int*>(scb.weights + 0)); |
| vint4 tab1(reinterpret_cast<const int*>(scb.weights + 16)); |
| vint4 tab2(reinterpret_cast<const int*>(scb.weights + 32)); |
| vint4 tab3(reinterpret_cast<const int*>(scb.weights + 48)); |
| |
| vint tab0p, tab1p, tab2p, tab3p; |
| vtable_prepare(tab0, tab1, tab2, tab3, tab0p, tab1p, tab2p, tab3p); |
| |
| for (unsigned int i = 0; i < bsd.texel_count; i += ASTCENC_SIMD_WIDTH) |
| { |
| vint summed_value(8); |
| vint weight_count(di.texel_weight_count + i); |
| int max_weight_count = hmax(weight_count).lane<0>(); |
| |
| promise(max_weight_count > 0); |
| for (int j = 0; j < max_weight_count; j++) |
| { |
| vint texel_weights(di.texel_weights_4t[j] + i); |
| vint texel_weights_int(di.texel_weights_int_4t[j] + i); |
| |
| summed_value += vtable_8bt_32bi(tab0p, tab1p, tab2p, tab3p, texel_weights) * texel_weights_int; |
| } |
| |
| store(lsr<4>(summed_value), weights_plane1 + i); |
| } |
| } |
| else |
| { |
| // Build a 32-entry weight lookup table per plane |
| // Plane 1 |
| vint4 tab0_plane1(reinterpret_cast<const int*>(scb.weights + 0)); |
| vint4 tab1_plane1(reinterpret_cast<const int*>(scb.weights + 16)); |
| vint tab0_plane1p, tab1_plane1p; |
| vtable_prepare(tab0_plane1, tab1_plane1, tab0_plane1p, tab1_plane1p); |
| |
| // Plane 2 |
| vint4 tab0_plane2(reinterpret_cast<const int*>(scb.weights + 32)); |
| vint4 tab1_plane2(reinterpret_cast<const int*>(scb.weights + 48)); |
| vint tab0_plane2p, tab1_plane2p; |
| vtable_prepare(tab0_plane2, tab1_plane2, tab0_plane2p, tab1_plane2p); |
| |
| for (unsigned int i = 0; i < bsd.texel_count; i += ASTCENC_SIMD_WIDTH) |
| { |
| vint sum_plane1(8); |
| vint sum_plane2(8); |
| |
| vint weight_count(di.texel_weight_count + i); |
| int max_weight_count = hmax(weight_count).lane<0>(); |
| |
| promise(max_weight_count > 0); |
| for (int j = 0; j < max_weight_count; j++) |
| { |
| vint texel_weights(di.texel_weights_4t[j] + i); |
| vint texel_weights_int(di.texel_weights_int_4t[j] + i); |
| |
| sum_plane1 += vtable_8bt_32bi(tab0_plane1p, tab1_plane1p, texel_weights) * texel_weights_int; |
| sum_plane2 += vtable_8bt_32bi(tab0_plane2p, tab1_plane2p, texel_weights) * texel_weights_int; |
| } |
| |
| store(lsr<4>(sum_plane1), weights_plane1 + i); |
| store(lsr<4>(sum_plane2), weights_plane2 + i); |
| } |
| } |
| } |
| |
| /** |
| * @brief Return an FP32 NaN value for use in error colors. |
| * |
| * This NaN encoding will turn into 0xFFFF when converted to an FP16 NaN. |
| * |
| * @return The float color value. |
| */ |
| static float error_color_nan() |
| { |
| if32 v; |
| v.u = 0xFFFFE000U; |
| return v.f; |
| } |
| |
| /* See header for documentation. */ |
| void decompress_symbolic_block( |
| astcenc_profile decode_mode, |
| const block_size_descriptor& bsd, |
| int xpos, |
| int ypos, |
| int zpos, |
| const symbolic_compressed_block& scb, |
| image_block& blk |
| ) { |
| blk.xpos = xpos; |
| blk.ypos = ypos; |
| blk.zpos = zpos; |
| |
| blk.data_min = vfloat4::zero(); |
| blk.data_mean = vfloat4::zero(); |
| blk.data_max = vfloat4::zero(); |
| blk.grayscale = false; |
| |
| // If we detected an error-block, blow up immediately. |
| if (scb.block_type == SYM_BTYPE_ERROR) |
| { |
| for (unsigned int i = 0; i < bsd.texel_count; i++) |
| { |
| blk.data_r[i] = error_color_nan(); |
| blk.data_g[i] = error_color_nan(); |
| blk.data_b[i] = error_color_nan(); |
| blk.data_a[i] = error_color_nan(); |
| blk.rgb_lns[i] = 0; |
| blk.alpha_lns[i] = 0; |
| } |
| |
| return; |
| } |
| |
| if ((scb.block_type == SYM_BTYPE_CONST_F16) || |
| (scb.block_type == SYM_BTYPE_CONST_U16)) |
| { |
| vfloat4 color; |
| uint8_t use_lns = 0; |
| |
| // UNORM16 constant color block |
| if (scb.block_type == SYM_BTYPE_CONST_U16) |
| { |
| vint4 colori(scb.constant_color); |
| |
| // For sRGB decoding a real decoder would just use the top 8 bits for color conversion. |
| // We don't color convert, so rescale the top 8 bits into the full 16 bit dynamic range. |
| if (decode_mode == ASTCENC_PRF_LDR_SRGB) |
| { |
| colori = asr<8>(colori) * 257; |
| } |
| |
| vint4 colorf16 = unorm16_to_sf16(colori); |
| color = float16_to_float(colorf16); |
| } |
| // FLOAT16 constant color block |
| else |
| { |
| switch (decode_mode) |
| { |
| case ASTCENC_PRF_LDR_SRGB: |
| case ASTCENC_PRF_LDR: |
| color = vfloat4(error_color_nan()); |
| break; |
| case ASTCENC_PRF_HDR_RGB_LDR_A: |
| case ASTCENC_PRF_HDR: |
| // Constant-color block; unpack from FP16 to FP32. |
| color = float16_to_float(vint4(scb.constant_color)); |
| use_lns = 1; |
| break; |
| } |
| } |
| |
| for (unsigned int i = 0; i < bsd.texel_count; i++) |
| { |
| blk.data_r[i] = color.lane<0>(); |
| blk.data_g[i] = color.lane<1>(); |
| blk.data_b[i] = color.lane<2>(); |
| blk.data_a[i] = color.lane<3>(); |
| blk.rgb_lns[i] = use_lns; |
| blk.alpha_lns[i] = use_lns; |
| } |
| |
| return; |
| } |
| |
| // Get the appropriate partition-table entry |
| int partition_count = scb.partition_count; |
| const auto& pi = bsd.get_partition_info(partition_count, scb.partition_index); |
| |
| // Get the appropriate block descriptors |
| const auto& bm = bsd.get_block_mode(scb.block_mode); |
| const auto& di = bsd.get_decimation_info(bm.decimation_mode); |
| |
| bool is_dual_plane = static_cast<bool>(bm.is_dual_plane); |
| |
| // Unquantize and undecimate the weights |
| int plane1_weights[BLOCK_MAX_TEXELS]; |
| int plane2_weights[BLOCK_MAX_TEXELS]; |
| unpack_weights(bsd, scb, di, is_dual_plane, plane1_weights, plane2_weights); |
| |
| // Now that we have endpoint colors and weights, we can unpack texel colors |
| int plane2_component = is_dual_plane ? scb.plane2_component : -1; |
| vmask4 plane2_mask = vint4::lane_id() == vint4(plane2_component); |
| |
| for (int i = 0; i < partition_count; i++) |
| { |
| // Decode the color endpoints for this partition |
| vint4 ep0; |
| vint4 ep1; |
| bool rgb_lns; |
| bool a_lns; |
| |
| unpack_color_endpoints(decode_mode, |
| scb.color_formats[i], |
| scb.get_color_quant_mode(), |
| scb.color_values[i], |
| rgb_lns, a_lns, |
| ep0, ep1); |
| |
| vmask4 lns_mask(rgb_lns, rgb_lns, rgb_lns, a_lns); |
| |
| int texel_count = pi.partition_texel_count[i]; |
| for (int j = 0; j < texel_count; j++) |
| { |
| int tix = pi.texels_of_partition[i][j]; |
| vint4 weight = select(vint4(plane1_weights[tix]), vint4(plane2_weights[tix]), plane2_mask); |
| vint4 color = lerp_color_int(decode_mode, ep0, ep1, weight); |
| vfloat4 colorf = decode_texel(color, lns_mask); |
| |
| blk.data_r[tix] = colorf.lane<0>(); |
| blk.data_g[tix] = colorf.lane<1>(); |
| blk.data_b[tix] = colorf.lane<2>(); |
| blk.data_a[tix] = colorf.lane<3>(); |
| } |
| } |
| } |
| |
| #if !defined(ASTCENC_DECOMPRESS_ONLY) |
| |
| /* See header for documentation. */ |
| float compute_symbolic_block_difference_2plane( |
| const astcenc_config& config, |
| const block_size_descriptor& bsd, |
| const symbolic_compressed_block& scb, |
| const image_block& blk |
| ) { |
| // If we detected an error-block, blow up immediately. |
| if (scb.block_type == SYM_BTYPE_ERROR) |
| { |
| return ERROR_CALC_DEFAULT; |
| } |
| |
| assert(scb.block_mode >= 0); |
| assert(scb.partition_count == 1); |
| assert(bsd.get_block_mode(scb.block_mode).is_dual_plane == 1); |
| |
| // Get the appropriate block descriptor |
| const block_mode& bm = bsd.get_block_mode(scb.block_mode); |
| const decimation_info& di = bsd.get_decimation_info(bm.decimation_mode); |
| |
| // Unquantize and undecimate the weights |
| int plane1_weights[BLOCK_MAX_TEXELS]; |
| int plane2_weights[BLOCK_MAX_TEXELS]; |
| unpack_weights(bsd, scb, di, true, plane1_weights, plane2_weights); |
| |
| vmask4 plane2_mask = vint4::lane_id() == vint4(scb.plane2_component); |
| |
| vfloat4 summa = vfloat4::zero(); |
| |
| // Decode the color endpoints for this partition |
| vint4 ep0; |
| vint4 ep1; |
| bool rgb_lns; |
| bool a_lns; |
| |
| unpack_color_endpoints(config.profile, |
| scb.color_formats[0], |
| scb.get_color_quant_mode(), |
| scb.color_values[0], |
| rgb_lns, a_lns, |
| ep0, ep1); |
| |
| // Unpack and compute error for each texel in the partition |
| unsigned int texel_count = bsd.texel_count; |
| for (unsigned int i = 0; i < texel_count; i++) |
| { |
| vint4 weight = select(vint4(plane1_weights[i]), vint4(plane2_weights[i]), plane2_mask); |
| vint4 colori = lerp_color_int(config.profile, ep0, ep1, weight); |
| |
| vfloat4 color = int_to_float(colori); |
| vfloat4 oldColor = blk.texel(i); |
| |
| // Compare error using a perceptual decode metric for RGBM textures |
| if (config.flags & ASTCENC_FLG_MAP_RGBM) |
| { |
| // Fail encodings that result in zero weight M pixels. Note that this can cause |
| // "interesting" artifacts if we reject all useful encodings - we typically get max |
| // brightness encodings instead which look just as bad. We recommend users apply a |
| // bias to their stored M value, limiting the lower value to 16 or 32 to avoid |
| // getting small M values post-quantization, but we can't prove it would never |
| // happen, especially at low bit rates ... |
| if (color.lane<3>() == 0.0f) |
| { |
| return -ERROR_CALC_DEFAULT; |
| } |
| |
| // Compute error based on decoded RGBM color |
| color = vfloat4( |
| color.lane<0>() * color.lane<3>() * config.rgbm_m_scale, |
| color.lane<1>() * color.lane<3>() * config.rgbm_m_scale, |
| color.lane<2>() * color.lane<3>() * config.rgbm_m_scale, |
| 1.0f |
| ); |
| |
| oldColor = vfloat4( |
| oldColor.lane<0>() * oldColor.lane<3>() * config.rgbm_m_scale, |
| oldColor.lane<1>() * oldColor.lane<3>() * config.rgbm_m_scale, |
| oldColor.lane<2>() * oldColor.lane<3>() * config.rgbm_m_scale, |
| 1.0f |
| ); |
| } |
| |
| vfloat4 error = oldColor - color; |
| error = min(abs(error), 1e15f); |
| error = error * error; |
| |
| summa += min(dot(error, blk.channel_weight), ERROR_CALC_DEFAULT); |
| } |
| |
| return summa.lane<0>(); |
| } |
| |
| /* See header for documentation. */ |
| float compute_symbolic_block_difference_1plane( |
| const astcenc_config& config, |
| const block_size_descriptor& bsd, |
| const symbolic_compressed_block& scb, |
| const image_block& blk |
| ) { |
| assert(bsd.get_block_mode(scb.block_mode).is_dual_plane == 0); |
| |
| // If we detected an error-block, blow up immediately. |
| if (scb.block_type == SYM_BTYPE_ERROR) |
| { |
| return ERROR_CALC_DEFAULT; |
| } |
| |
| assert(scb.block_mode >= 0); |
| |
| // Get the appropriate partition-table entry |
| unsigned int partition_count = scb.partition_count; |
| const auto& pi = bsd.get_partition_info(partition_count, scb.partition_index); |
| |
| // Get the appropriate block descriptor |
| const block_mode& bm = bsd.get_block_mode(scb.block_mode); |
| const decimation_info& di = bsd.get_decimation_info(bm.decimation_mode); |
| |
| // Unquantize and undecimate the weights |
| int plane1_weights[BLOCK_MAX_TEXELS]; |
| unpack_weights(bsd, scb, di, false, plane1_weights, nullptr); |
| |
| vfloat4 summa = vfloat4::zero(); |
| for (unsigned int i = 0; i < partition_count; i++) |
| { |
| // Decode the color endpoints for this partition |
| vint4 ep0; |
| vint4 ep1; |
| bool rgb_lns; |
| bool a_lns; |
| |
| unpack_color_endpoints(config.profile, |
| scb.color_formats[i], |
| scb.get_color_quant_mode(), |
| scb.color_values[i], |
| rgb_lns, a_lns, |
| ep0, ep1); |
| |
| // Unpack and compute error for each texel in the partition |
| unsigned int texel_count = pi.partition_texel_count[i]; |
| for (unsigned int j = 0; j < texel_count; j++) |
| { |
| unsigned int tix = pi.texels_of_partition[i][j]; |
| vint4 colori = lerp_color_int(config.profile, ep0, ep1, |
| vint4(plane1_weights[tix])); |
| |
| vfloat4 color = int_to_float(colori); |
| vfloat4 oldColor = blk.texel(tix); |
| |
| // Compare error using a perceptual decode metric for RGBM textures |
| if (config.flags & ASTCENC_FLG_MAP_RGBM) |
| { |
| // Fail encodings that result in zero weight M pixels. Note that this can cause |
| // "interesting" artifacts if we reject all useful encodings - we typically get max |
| // brightness encodings instead which look just as bad. We recommend users apply a |
| // bias to their stored M value, limiting the lower value to 16 or 32 to avoid |
| // getting small M values post-quantization, but we can't prove it would never |
| // happen, especially at low bit rates ... |
| if (color.lane<3>() == 0.0f) |
| { |
| return -ERROR_CALC_DEFAULT; |
| } |
| |
| // Compute error based on decoded RGBM color |
| color = vfloat4( |
| color.lane<0>() * color.lane<3>() * config.rgbm_m_scale, |
| color.lane<1>() * color.lane<3>() * config.rgbm_m_scale, |
| color.lane<2>() * color.lane<3>() * config.rgbm_m_scale, |
| 1.0f |
| ); |
| |
| oldColor = vfloat4( |
| oldColor.lane<0>() * oldColor.lane<3>() * config.rgbm_m_scale, |
| oldColor.lane<1>() * oldColor.lane<3>() * config.rgbm_m_scale, |
| oldColor.lane<2>() * oldColor.lane<3>() * config.rgbm_m_scale, |
| 1.0f |
| ); |
| } |
| |
| vfloat4 error = oldColor - color; |
| error = min(abs(error), 1e15f); |
| error = error * error; |
| |
| summa += min(dot(error, blk.channel_weight), ERROR_CALC_DEFAULT); |
| } |
| } |
| |
| return summa.lane<0>(); |
| } |
| |
| /* See header for documentation. */ |
| float compute_symbolic_block_difference_1plane_1partition( |
| const astcenc_config& config, |
| const block_size_descriptor& bsd, |
| const symbolic_compressed_block& scb, |
| const image_block& blk |
| ) { |
| // If we detected an error-block, blow up immediately. |
| if (scb.block_type == SYM_BTYPE_ERROR) |
| { |
| return ERROR_CALC_DEFAULT; |
| } |
| |
| assert(scb.block_mode >= 0); |
| assert(bsd.get_partition_info(scb.partition_count, scb.partition_index).partition_count == 1); |
| |
| // Get the appropriate block descriptor |
| const block_mode& bm = bsd.get_block_mode(scb.block_mode); |
| const decimation_info& di = bsd.get_decimation_info(bm.decimation_mode); |
| |
| // Unquantize and undecimate the weights |
| alignas(ASTCENC_VECALIGN) int plane1_weights[BLOCK_MAX_TEXELS]; |
| unpack_weights(bsd, scb, di, false, plane1_weights, nullptr); |
| |
| // Decode the color endpoints for this partition |
| vint4 ep0; |
| vint4 ep1; |
| bool rgb_lns; |
| bool a_lns; |
| |
| unpack_color_endpoints(config.profile, |
| scb.color_formats[0], |
| scb.get_color_quant_mode(), |
| scb.color_values[0], |
| rgb_lns, a_lns, |
| ep0, ep1); |
| |
| |
| // Pre-shift sRGB so things round correctly |
| if (config.profile == ASTCENC_PRF_LDR_SRGB) |
| { |
| ep0 = asr<8>(ep0); |
| ep1 = asr<8>(ep1); |
| } |
| |
| // Unpack and compute error for each texel in the partition |
| vfloatacc summav = vfloatacc::zero(); |
| |
| vint lane_id = vint::lane_id(); |
| vint srgb_scale(config.profile == ASTCENC_PRF_LDR_SRGB ? 257 : 1); |
| |
| unsigned int texel_count = bsd.texel_count; |
| for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) |
| { |
| // Compute EP1 contribution |
| vint weight1 = vint::loada(plane1_weights + i); |
| vint ep1_r = vint(ep1.lane<0>()) * weight1; |
| vint ep1_g = vint(ep1.lane<1>()) * weight1; |
| vint ep1_b = vint(ep1.lane<2>()) * weight1; |
| vint ep1_a = vint(ep1.lane<3>()) * weight1; |
| |
| // Compute EP0 contribution |
| vint weight0 = vint(64) - weight1; |
| vint ep0_r = vint(ep0.lane<0>()) * weight0; |
| vint ep0_g = vint(ep0.lane<1>()) * weight0; |
| vint ep0_b = vint(ep0.lane<2>()) * weight0; |
| vint ep0_a = vint(ep0.lane<3>()) * weight0; |
| |
| // Shift so things round correctly |
| vint colori_r = asr<6>(ep0_r + ep1_r + vint(32)) * srgb_scale; |
| vint colori_g = asr<6>(ep0_g + ep1_g + vint(32)) * srgb_scale; |
| vint colori_b = asr<6>(ep0_b + ep1_b + vint(32)) * srgb_scale; |
| vint colori_a = asr<6>(ep0_a + ep1_a + vint(32)) * srgb_scale; |
| |
| // Compute color diff |
| vfloat color_r = int_to_float(colori_r); |
| vfloat color_g = int_to_float(colori_g); |
| vfloat color_b = int_to_float(colori_b); |
| vfloat color_a = int_to_float(colori_a); |
| |
| vfloat color_orig_r = loada(blk.data_r + i); |
| vfloat color_orig_g = loada(blk.data_g + i); |
| vfloat color_orig_b = loada(blk.data_b + i); |
| vfloat color_orig_a = loada(blk.data_a + i); |
| |
| vfloat color_error_r = min(abs(color_orig_r - color_r), vfloat(1e15f)); |
| vfloat color_error_g = min(abs(color_orig_g - color_g), vfloat(1e15f)); |
| vfloat color_error_b = min(abs(color_orig_b - color_b), vfloat(1e15f)); |
| vfloat color_error_a = min(abs(color_orig_a - color_a), vfloat(1e15f)); |
| |
| // Compute squared error metric |
| color_error_r = color_error_r * color_error_r; |
| color_error_g = color_error_g * color_error_g; |
| color_error_b = color_error_b * color_error_b; |
| color_error_a = color_error_a * color_error_a; |
| |
| vfloat metric = color_error_r * blk.channel_weight.lane<0>() |
| + color_error_g * blk.channel_weight.lane<1>() |
| + color_error_b * blk.channel_weight.lane<2>() |
| + color_error_a * blk.channel_weight.lane<3>(); |
| |
| // Mask off bad lanes |
| vmask mask = lane_id < vint(texel_count); |
| lane_id += vint(ASTCENC_SIMD_WIDTH); |
| haccumulate(summav, metric, mask); |
| } |
| |
| return hadd_s(summav); |
| } |
| |
| #endif |