| // SPDX-License-Identifier: Apache-2.0 |
| // ---------------------------------------------------------------------------- |
| // Copyright 2011-2021 Arm Limited |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); you may not |
| // use this file except in compliance with the License. You may obtain a copy |
| // of the License at: |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the |
| // License for the specific language governing permissions and limitations |
| // under the License. |
| // ---------------------------------------------------------------------------- |
| |
| /** |
| * @brief Functions for converting between symbolic and physical encodings. |
| */ |
| |
| #include "astcenc_internal.h" |
| |
| #include <cassert> |
| |
| /** |
| * @brief Write up to 8 bits at an arbitrary bit offset. |
| * |
| * The stored value is at most 8 bits, but can be stored at an offset of between 0 and 7 bits so |
| * may span two separate bytes in memory. |
| * |
| * @param value The value to write. |
| * @param bitcount The number of bits to write, starting from LSB. |
| * @param bitoffset The bit offset to store at, between 0 and 7. |
| * @param[in,out] ptr The data pointer to write to. |
| */ |
| static inline void write_bits( |
| int value, |
| int bitcount, |
| int bitoffset, |
| uint8_t* ptr |
| ) { |
| int mask = (1 << bitcount) - 1; |
| value &= mask; |
| ptr += bitoffset >> 3; |
| bitoffset &= 7; |
| value <<= bitoffset; |
| mask <<= bitoffset; |
| mask = ~mask; |
| |
| ptr[0] &= mask; |
| ptr[0] |= value; |
| ptr[1] &= mask >> 8; |
| ptr[1] |= value >> 8; |
| } |
| |
| /** |
| * @brief Read up to 8 bits at an arbitrary bit offset. |
| * |
| * The stored value is at most 8 bits, but can be stored at an offset of between 0 and 7 bits so may |
| * span two separate bytes in memory. |
| * |
| * @param bitcount The number of bits to read. |
| * @param bitoffset The bit offset to read from, between 0 and 7. |
| * @param[in,out] ptr The data pointer to read from. |
| * |
| * @return The read value. |
| */ |
| static inline int read_bits( |
| int bitcount, |
| int bitoffset, |
| const uint8_t* ptr |
| ) { |
| int mask = (1 << bitcount) - 1; |
| ptr += bitoffset >> 3; |
| bitoffset &= 7; |
| int value = ptr[0] | (ptr[1] << 8); |
| value >>= bitoffset; |
| value &= mask; |
| return value; |
| } |
| |
| /** |
| * @brief Reverse bits in a byte. |
| * |
| * @param p The value to reverse. |
| * |
| * @return The reversed result. |
| */ |
| static inline int bitrev8(int p) |
| { |
| p = ((p & 0x0F) << 4) | ((p >> 4) & 0x0F); |
| p = ((p & 0x33) << 2) | ((p >> 2) & 0x33); |
| p = ((p & 0x55) << 1) | ((p >> 1) & 0x55); |
| return p; |
| } |
| |
| /* See header for documentation. */ |
| void symbolic_to_physical( |
| const block_size_descriptor& bsd, |
| const symbolic_compressed_block& scb, |
| physical_compressed_block& pcb |
| ) { |
| assert(scb.block_type != SYM_BTYPE_ERROR); |
| |
| // Constant color block using UNORM16 colors |
| if (scb.block_type == SYM_BTYPE_CONST_U16) |
| { |
| // There is currently no attempt to coalesce larger void-extents |
| static const uint8_t cbytes[8] { 0xFC, 0xFD, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; |
| for (unsigned int i = 0; i < 8; i++) |
| { |
| pcb.data[i] = cbytes[i]; |
| } |
| |
| for (unsigned int i = 0; i < BLOCK_MAX_COMPONENTS; i++) |
| { |
| pcb.data[2 * i + 8] = scb.constant_color[i] & 0xFF; |
| pcb.data[2 * i + 9] = (scb.constant_color[i] >> 8) & 0xFF; |
| } |
| |
| return; |
| } |
| |
| // Constant color block using FP16 colors |
| if (scb.block_type == SYM_BTYPE_CONST_F16) |
| { |
| // There is currently no attempt to coalesce larger void-extents |
| static const uint8_t cbytes[8] { 0xFC, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; |
| for (unsigned int i = 0; i < 8; i++) |
| { |
| pcb.data[i] = cbytes[i]; |
| } |
| |
| for (unsigned int i = 0; i < BLOCK_MAX_COMPONENTS; i++) |
| { |
| pcb.data[2 * i + 8] = scb.constant_color[i] & 0xFF; |
| pcb.data[2 * i + 9] = (scb.constant_color[i] >> 8) & 0xFF; |
| } |
| |
| return; |
| } |
| |
| unsigned int partition_count = scb.partition_count; |
| |
| // Compress the weights. |
| // They are encoded as an ordinary integer-sequence, then bit-reversed |
| uint8_t weightbuf[16] { 0 }; |
| |
| const auto& bm = bsd.get_block_mode(scb.block_mode); |
| const auto& di = bsd.get_decimation_info(bm.decimation_mode); |
| int weight_count = di.weight_count; |
| quant_method weight_quant_method = bm.get_weight_quant_mode(); |
| float weight_quant_levels = static_cast<float>(get_quant_level(weight_quant_method)); |
| int is_dual_plane = bm.is_dual_plane; |
| |
| const auto& qat = quant_and_xfer_tables[weight_quant_method]; |
| |
| int real_weight_count = is_dual_plane ? 2 * weight_count : weight_count; |
| |
| int bits_for_weights = get_ise_sequence_bitcount(real_weight_count, weight_quant_method); |
| |
| uint8_t weights[64]; |
| if (is_dual_plane) |
| { |
| for (int i = 0; i < weight_count; i++) |
| { |
| float uqw = static_cast<float>(scb.weights[i]); |
| float qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f); |
| int qwi = static_cast<int>(qw + 0.5f); |
| weights[2 * i] = qat.scramble_map[qwi]; |
| |
| uqw = static_cast<float>(scb.weights[i + WEIGHTS_PLANE2_OFFSET]); |
| qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f); |
| qwi = static_cast<int>(qw + 0.5f); |
| weights[2 * i + 1] = qat.scramble_map[qwi]; |
| } |
| } |
| else |
| { |
| for (int i = 0; i < weight_count; i++) |
| { |
| float uqw = static_cast<float>(scb.weights[i]); |
| float qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f); |
| int qwi = static_cast<int>(qw + 0.5f); |
| weights[i] = qat.scramble_map[qwi]; |
| } |
| } |
| |
| encode_ise(weight_quant_method, real_weight_count, weights, weightbuf, 0); |
| |
| for (int i = 0; i < 16; i++) |
| { |
| pcb.data[i] = static_cast<uint8_t>(bitrev8(weightbuf[15 - i])); |
| } |
| |
| write_bits(scb.block_mode, 11, 0, pcb.data); |
| write_bits(partition_count - 1, 2, 11, pcb.data); |
| |
| int below_weights_pos = 128 - bits_for_weights; |
| |
| // Encode partition index and color endpoint types for blocks with 2+ partitions |
| if (partition_count > 1) |
| { |
| write_bits(scb.partition_index, 6, 13, pcb.data); |
| write_bits(scb.partition_index >> 6, PARTITION_INDEX_BITS - 6, 19, pcb.data); |
| |
| if (scb.color_formats_matched) |
| { |
| write_bits(scb.color_formats[0] << 2, 6, 13 + PARTITION_INDEX_BITS, pcb.data); |
| } |
| else |
| { |
| // Check endpoint types for each partition to determine the lowest class present |
| int low_class = 4; |
| |
| for (unsigned int i = 0; i < partition_count; i++) |
| { |
| int class_of_format = scb.color_formats[i] >> 2; |
| low_class = astc::min(class_of_format, low_class); |
| } |
| |
| if (low_class == 3) |
| { |
| low_class = 2; |
| } |
| |
| int encoded_type = low_class + 1; |
| int bitpos = 2; |
| |
| for (unsigned int i = 0; i < partition_count; i++) |
| { |
| int classbit_of_format = (scb.color_formats[i] >> 2) - low_class; |
| encoded_type |= classbit_of_format << bitpos; |
| bitpos++; |
| } |
| |
| for (unsigned int i = 0; i < partition_count; i++) |
| { |
| int lowbits_of_format = scb.color_formats[i] & 3; |
| encoded_type |= lowbits_of_format << bitpos; |
| bitpos += 2; |
| } |
| |
| int encoded_type_lowpart = encoded_type & 0x3F; |
| int encoded_type_highpart = encoded_type >> 6; |
| int encoded_type_highpart_size = (3 * partition_count) - 4; |
| int encoded_type_highpart_pos = 128 - bits_for_weights - encoded_type_highpart_size; |
| write_bits(encoded_type_lowpart, 6, 13 + PARTITION_INDEX_BITS, pcb.data); |
| write_bits(encoded_type_highpart, encoded_type_highpart_size, encoded_type_highpart_pos, pcb.data); |
| below_weights_pos -= encoded_type_highpart_size; |
| } |
| } |
| else |
| { |
| write_bits(scb.color_formats[0], 4, 13, pcb.data); |
| } |
| |
| // In dual-plane mode, encode the color component of the second plane of weights |
| if (is_dual_plane) |
| { |
| write_bits(scb.plane2_component, 2, below_weights_pos - 2, pcb.data); |
| } |
| |
| // Encode the color components |
| uint8_t values_to_encode[32]; |
| int valuecount_to_encode = 0; |
| for (unsigned int i = 0; i < scb.partition_count; i++) |
| { |
| int vals = 2 * (scb.color_formats[i] >> 2) + 2; |
| assert(vals <= 8); |
| for (int j = 0; j < vals; j++) |
| { |
| values_to_encode[j + valuecount_to_encode] = scb.color_values[i][j]; |
| } |
| valuecount_to_encode += vals; |
| } |
| |
| encode_ise(scb.get_color_quant_mode(), valuecount_to_encode, values_to_encode, pcb.data, |
| scb.partition_count == 1 ? 17 : 19 + PARTITION_INDEX_BITS); |
| } |
| |
| /* See header for documentation. */ |
| void physical_to_symbolic( |
| const block_size_descriptor& bsd, |
| const physical_compressed_block& pcb, |
| symbolic_compressed_block& scb |
| ) { |
| uint8_t bswapped[16]; |
| |
| scb.block_type = SYM_BTYPE_NONCONST; |
| |
| // Extract header fields |
| int block_mode = read_bits(11, 0, pcb.data); |
| if ((block_mode & 0x1FF) == 0x1FC) |
| { |
| // Constant color block |
| |
| // Check what format the data has |
| if (block_mode & 0x200) |
| { |
| scb.block_type = SYM_BTYPE_CONST_F16; |
| } |
| else |
| { |
| scb.block_type = SYM_BTYPE_CONST_U16; |
| } |
| |
| scb.partition_count = 0; |
| for (int i = 0; i < 4; i++) |
| { |
| scb.constant_color[i] = pcb.data[2 * i + 8] | (pcb.data[2 * i + 9] << 8); |
| } |
| |
| // Additionally, check that the void-extent |
| if (bsd.zdim == 1) |
| { |
| // 2D void-extent |
| int rsvbits = read_bits(2, 10, pcb.data); |
| if (rsvbits != 3) |
| { |
| scb.block_type = SYM_BTYPE_ERROR; |
| return; |
| } |
| |
| int vx_low_s = read_bits(8, 12, pcb.data) | (read_bits(5, 12 + 8, pcb.data) << 8); |
| int vx_high_s = read_bits(8, 25, pcb.data) | (read_bits(5, 25 + 8, pcb.data) << 8); |
| int vx_low_t = read_bits(8, 38, pcb.data) | (read_bits(5, 38 + 8, pcb.data) << 8); |
| int vx_high_t = read_bits(8, 51, pcb.data) | (read_bits(5, 51 + 8, pcb.data) << 8); |
| |
| int all_ones = vx_low_s == 0x1FFF && vx_high_s == 0x1FFF && vx_low_t == 0x1FFF && vx_high_t == 0x1FFF; |
| |
| if ((vx_low_s >= vx_high_s || vx_low_t >= vx_high_t) && !all_ones) |
| { |
| scb.block_type = SYM_BTYPE_ERROR; |
| return; |
| } |
| } |
| else |
| { |
| // 3D void-extent |
| int vx_low_s = read_bits(9, 10, pcb.data); |
| int vx_high_s = read_bits(9, 19, pcb.data); |
| int vx_low_t = read_bits(9, 28, pcb.data); |
| int vx_high_t = read_bits(9, 37, pcb.data); |
| int vx_low_p = read_bits(9, 46, pcb.data); |
| int vx_high_p = read_bits(9, 55, pcb.data); |
| |
| int all_ones = vx_low_s == 0x1FF && vx_high_s == 0x1FF && vx_low_t == 0x1FF && vx_high_t == 0x1FF && vx_low_p == 0x1FF && vx_high_p == 0x1FF; |
| |
| if ((vx_low_s >= vx_high_s || vx_low_t >= vx_high_t || vx_low_p >= vx_high_p) && !all_ones) |
| { |
| scb.block_type = SYM_BTYPE_ERROR; |
| return; |
| } |
| } |
| |
| return; |
| } |
| |
| unsigned int packed_index = bsd.block_mode_packed_index[block_mode]; |
| if (packed_index == BLOCK_BAD_BLOCK_MODE) |
| { |
| scb.block_type = SYM_BTYPE_ERROR; |
| return; |
| } |
| |
| const auto& bm = bsd.get_block_mode(block_mode); |
| const auto& di = bsd.get_decimation_info(bm.decimation_mode); |
| |
| int weight_count = di.weight_count; |
| quant_method weight_quant_method = static_cast<quant_method>(bm.quant_mode); |
| int is_dual_plane = bm.is_dual_plane; |
| |
| int real_weight_count = is_dual_plane ? 2 * weight_count : weight_count; |
| |
| int partition_count = read_bits(2, 11, pcb.data) + 1; |
| |
| scb.block_mode = static_cast<uint16_t>(block_mode); |
| scb.partition_count = static_cast<uint8_t>(partition_count); |
| |
| for (int i = 0; i < 16; i++) |
| { |
| bswapped[i] = static_cast<uint8_t>(bitrev8(pcb.data[15 - i])); |
| } |
| |
| int bits_for_weights = get_ise_sequence_bitcount(real_weight_count, weight_quant_method); |
| |
| int below_weights_pos = 128 - bits_for_weights; |
| |
| uint8_t indices[64]; |
| const auto& qat = quant_and_xfer_tables[weight_quant_method]; |
| |
| decode_ise(weight_quant_method, real_weight_count, bswapped, indices, 0); |
| |
| if (is_dual_plane) |
| { |
| for (int i = 0; i < weight_count; i++) |
| { |
| scb.weights[i] = qat.unscramble_and_unquant_map[indices[2 * i]]; |
| scb.weights[i + WEIGHTS_PLANE2_OFFSET] = qat.unscramble_and_unquant_map[indices[2 * i + 1]]; |
| } |
| } |
| else |
| { |
| for (int i = 0; i < weight_count; i++) |
| { |
| scb.weights[i] = qat.unscramble_and_unquant_map[indices[i]]; |
| } |
| } |
| |
| if (is_dual_plane && partition_count == 4) |
| { |
| scb.block_type = SYM_BTYPE_ERROR; |
| return; |
| } |
| |
| scb.color_formats_matched = 0; |
| |
| // Determine the format of each endpoint pair |
| int color_formats[BLOCK_MAX_PARTITIONS]; |
| int encoded_type_highpart_size = 0; |
| if (partition_count == 1) |
| { |
| color_formats[0] = read_bits(4, 13, pcb.data); |
| scb.partition_index = 0; |
| } |
| else |
| { |
| encoded_type_highpart_size = (3 * partition_count) - 4; |
| below_weights_pos -= encoded_type_highpart_size; |
| int encoded_type = read_bits(6, 13 + PARTITION_INDEX_BITS, pcb.data) | (read_bits(encoded_type_highpart_size, below_weights_pos, pcb.data) << 6); |
| int baseclass = encoded_type & 0x3; |
| if (baseclass == 0) |
| { |
| for (int i = 0; i < partition_count; i++) |
| { |
| color_formats[i] = (encoded_type >> 2) & 0xF; |
| } |
| |
| below_weights_pos += encoded_type_highpart_size; |
| scb.color_formats_matched = 1; |
| encoded_type_highpart_size = 0; |
| } |
| else |
| { |
| int bitpos = 2; |
| baseclass--; |
| |
| for (int i = 0; i < partition_count; i++) |
| { |
| color_formats[i] = (((encoded_type >> bitpos) & 1) + baseclass) << 2; |
| bitpos++; |
| } |
| |
| for (int i = 0; i < partition_count; i++) |
| { |
| color_formats[i] |= (encoded_type >> bitpos) & 3; |
| bitpos += 2; |
| } |
| } |
| scb.partition_index = static_cast<uint16_t>(read_bits(6, 13, pcb.data) | (read_bits(PARTITION_INDEX_BITS - 6, 19, pcb.data) << 6)); |
| } |
| |
| for (int i = 0; i < partition_count; i++) |
| { |
| scb.color_formats[i] = static_cast<uint8_t>(color_formats[i]); |
| } |
| |
| // Determine number of color endpoint integers |
| int color_integer_count = 0; |
| for (int i = 0; i < partition_count; i++) |
| { |
| int endpoint_class = color_formats[i] >> 2; |
| color_integer_count += (endpoint_class + 1) * 2; |
| } |
| |
| if (color_integer_count > 18) |
| { |
| scb.block_type = SYM_BTYPE_ERROR; |
| return; |
| } |
| |
| // Determine the color endpoint format to use |
| static const int color_bits_arr[5] { -1, 115 - 4, 113 - 4 - PARTITION_INDEX_BITS, 113 - 4 - PARTITION_INDEX_BITS, 113 - 4 - PARTITION_INDEX_BITS }; |
| int color_bits = color_bits_arr[partition_count] - bits_for_weights - encoded_type_highpart_size; |
| if (is_dual_plane) |
| { |
| color_bits -= 2; |
| } |
| |
| if (color_bits < 0) |
| { |
| color_bits = 0; |
| } |
| |
| int color_quant_level = quant_mode_table[color_integer_count >> 1][color_bits]; |
| if (color_quant_level < QUANT_6) |
| { |
| scb.block_type = SYM_BTYPE_ERROR; |
| return; |
| } |
| |
| // Unpack the integer color values and assign to endpoints |
| scb.quant_mode = static_cast<quant_method>(color_quant_level); |
| uint8_t values_to_decode[32]; |
| decode_ise(static_cast<quant_method>(color_quant_level), color_integer_count, pcb.data, |
| values_to_decode, (partition_count == 1 ? 17 : 19 + PARTITION_INDEX_BITS)); |
| |
| int valuecount_to_decode = 0; |
| for (int i = 0; i < partition_count; i++) |
| { |
| int vals = 2 * (color_formats[i] >> 2) + 2; |
| for (int j = 0; j < vals; j++) |
| { |
| scb.color_values[i][j] = values_to_decode[j + valuecount_to_decode]; |
| } |
| valuecount_to_decode += vals; |
| } |
| |
| // Fetch component for second-plane in the case of dual plane of weights. |
| if (is_dual_plane) |
| { |
| scb.plane2_component = static_cast<int8_t>(read_bits(2, below_weights_pos - 2, pcb.data)); |
| } |
| } |