| // SPDX-License-Identifier: Apache-2.0 |
| // ---------------------------------------------------------------------------- |
| // Copyright 2019-2022 Arm Limited |
| // Copyright 2008 Jose Fonseca |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); you may not |
| // use this file except in compliance with the License. You may obtain a copy |
| // of the License at: |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the |
| // License for the specific language governing permissions and limitations |
| // under the License. |
| // ---------------------------------------------------------------------------- |
| |
| /* |
| * This module implements vector support for floats, ints, and vector lane |
| * control masks. It provides access to both explicit vector width types, and |
| * flexible N-wide types where N can be determined at compile time. |
| * |
| * The design of this module encourages use of vector length agnostic code, via |
| * the vint, vfloat, and vmask types. These will take on the widest SIMD vector |
| * with that is available at compile time. The current vector width is |
| * accessible for e.g. loop strides via the ASTCENC_SIMD_WIDTH constant. |
| * |
| * Explicit scalar types are acessible via the vint1, vfloat1, vmask1 types. |
| * These are provided primarily for prototyping and algorithm debug of VLA |
| * implementations. |
| * |
| * Explicit 4-wide types are accessible via the vint4, vfloat4, and vmask4 |
| * types. These are provided for use by VLA code, but are also expected to be |
| * used as a fixed-width type and will supported a reference C++ fallback for |
| * use on platforms without SIMD intrinsics. |
| * |
| * Explicit 8-wide types are accessible via the vint8, vfloat8, and vmask8 |
| * types. These are provide for use by VLA code, and are not expected to be |
| * used as a fixed-width type in normal code. No reference C implementation is |
| * provided on platforms without underlying SIMD intrinsics. |
| * |
| * With the current implementation ISA support is provided for: |
| * |
| * * 1-wide for scalar reference. |
| * * 4-wide for Armv8-A NEON. |
| * * 4-wide for x86-64 SSE2. |
| * * 4-wide for x86-64 SSE4.1. |
| * * 8-wide for x86-64 AVX2. |
| */ |
| |
| #ifndef ASTC_VECMATHLIB_H_INCLUDED |
| #define ASTC_VECMATHLIB_H_INCLUDED |
| |
| #if ASTCENC_SSE != 0 || ASTCENC_AVX != 0 |
| #include <immintrin.h> |
| #elif ASTCENC_NEON != 0 |
| #include <arm_neon.h> |
| #endif |
| |
| #if !defined(__clang__) && defined(_MSC_VER) |
| #define ASTCENC_SIMD_INLINE __forceinline |
| #define ASTCENC_NO_INLINE |
| #elif defined(__GNUC__) && !defined(__clang__) |
| #define ASTCENC_SIMD_INLINE __attribute__((always_inline)) inline |
| #define ASTCENC_NO_INLINE __attribute__ ((noinline)) |
| #else |
| #define ASTCENC_SIMD_INLINE __attribute__((always_inline, nodebug)) inline |
| #define ASTCENC_NO_INLINE __attribute__ ((noinline)) |
| #endif |
| |
| #if ASTCENC_AVX >= 2 |
| /* If we have AVX2 expose 8-wide VLA. */ |
| #include "astcenc_vecmathlib_sse_4.h" |
| #include "astcenc_vecmathlib_common_4.h" |
| #include "astcenc_vecmathlib_avx2_8.h" |
| |
| #define ASTCENC_SIMD_WIDTH 8 |
| |
| using vfloat = vfloat8; |
| |
| #if defined(ASTCENC_NO_INVARIANCE) |
| using vfloatacc = vfloat8; |
| #else |
| using vfloatacc = vfloat4; |
| #endif |
| |
| using vint = vint8; |
| using vmask = vmask8; |
| |
| constexpr auto loada = vfloat8::loada; |
| constexpr auto load1 = vfloat8::load1; |
| |
| #elif ASTCENC_SSE >= 20 |
| /* If we have SSE expose 4-wide VLA, and 4-wide fixed width. */ |
| #include "astcenc_vecmathlib_sse_4.h" |
| #include "astcenc_vecmathlib_common_4.h" |
| |
| #define ASTCENC_SIMD_WIDTH 4 |
| |
| using vfloat = vfloat4; |
| using vfloatacc = vfloat4; |
| using vint = vint4; |
| using vmask = vmask4; |
| |
| constexpr auto loada = vfloat4::loada; |
| constexpr auto load1 = vfloat4::load1; |
| |
| #elif ASTCENC_NEON > 0 |
| /* If we have NEON expose 4-wide VLA. */ |
| #include "astcenc_vecmathlib_neon_4.h" |
| #include "astcenc_vecmathlib_common_4.h" |
| |
| #define ASTCENC_SIMD_WIDTH 4 |
| |
| using vfloat = vfloat4; |
| using vfloatacc = vfloat4; |
| using vint = vint4; |
| using vmask = vmask4; |
| |
| constexpr auto loada = vfloat4::loada; |
| constexpr auto load1 = vfloat4::load1; |
| |
| #else |
| // If we have nothing expose 4-wide VLA, and 4-wide fixed width. |
| |
| // Note: We no longer expose the 1-wide scalar fallback because it is not |
| // invariant with the 4-wide path due to algorithms that use horizontal |
| // operations that accumulate a local vector sum before accumulating into |
| // a running sum. |
| // |
| // For 4 items adding into an accumulator using 1-wide vectors the sum is: |
| // |
| // result = ((((sum + l0) + l1) + l2) + l3) |
| // |
| // ... whereas the accumulator for a 4-wide vector sum is: |
| // |
| // result = sum + ((l0 + l2) + (l1 + l3)) |
| // |
| // In "normal maths" this is the same, but the floating point reassociation |
| // differences mean that these will not produce the same result. |
| |
| #include "astcenc_vecmathlib_none_4.h" |
| #include "astcenc_vecmathlib_common_4.h" |
| |
| #define ASTCENC_SIMD_WIDTH 4 |
| |
| using vfloat = vfloat4; |
| using vfloatacc = vfloat4; |
| using vint = vint4; |
| using vmask = vmask4; |
| |
| constexpr auto loada = vfloat4::loada; |
| constexpr auto load1 = vfloat4::load1; |
| #endif |
| |
| /** |
| * @brief Round a count down to the largest multiple of 8. |
| * |
| * @param count The unrounded value. |
| * |
| * @return The rounded value. |
| */ |
| ASTCENC_SIMD_INLINE unsigned int round_down_to_simd_multiple_8(unsigned int count) |
| { |
| return count & static_cast<unsigned int>(~(8 - 1)); |
| } |
| |
| /** |
| * @brief Round a count down to the largest multiple of 4. |
| * |
| * @param count The unrounded value. |
| * |
| * @return The rounded value. |
| */ |
| ASTCENC_SIMD_INLINE unsigned int round_down_to_simd_multiple_4(unsigned int count) |
| { |
| return count & static_cast<unsigned int>(~(4 - 1)); |
| } |
| |
| /** |
| * @brief Round a count down to the largest multiple of the SIMD width. |
| * |
| * Assumption that the vector width is a power of two ... |
| * |
| * @param count The unrounded value. |
| * |
| * @return The rounded value. |
| */ |
| ASTCENC_SIMD_INLINE unsigned int round_down_to_simd_multiple_vla(unsigned int count) |
| { |
| return count & static_cast<unsigned int>(~(ASTCENC_SIMD_WIDTH - 1)); |
| } |
| |
| /** |
| * @brief Round a count up to the largest multiple of the SIMD width. |
| * |
| * Assumption that the vector width is a power of two ... |
| * |
| * @param count The unrounded value. |
| * |
| * @return The rounded value. |
| */ |
| ASTCENC_SIMD_INLINE unsigned int round_up_to_simd_multiple_vla(unsigned int count) |
| { |
| unsigned int multiples = (count + ASTCENC_SIMD_WIDTH - 1) / ASTCENC_SIMD_WIDTH; |
| return multiples * ASTCENC_SIMD_WIDTH; |
| } |
| |
| /** |
| * @brief Return @c a with lanes negated if the @c b lane is negative. |
| */ |
| ASTCENC_SIMD_INLINE vfloat change_sign(vfloat a, vfloat b) |
| { |
| vint ia = float_as_int(a); |
| vint ib = float_as_int(b); |
| vint sign_mask(static_cast<int>(0x80000000)); |
| vint r = ia ^ (ib & sign_mask); |
| return int_as_float(r); |
| } |
| |
| /** |
| * @brief Return fast, but approximate, vector atan(x). |
| * |
| * Max error of this implementation is 0.004883. |
| */ |
| ASTCENC_SIMD_INLINE vfloat atan(vfloat x) |
| { |
| vmask c = abs(x) > vfloat(1.0f); |
| vfloat z = change_sign(vfloat(astc::PI_OVER_TWO), x); |
| vfloat y = select(x, vfloat(1.0f) / x, c); |
| y = y / (y * y * vfloat(0.28f) + vfloat(1.0f)); |
| return select(y, z - y, c); |
| } |
| |
| /** |
| * @brief Return fast, but approximate, vector atan2(x, y). |
| */ |
| ASTCENC_SIMD_INLINE vfloat atan2(vfloat y, vfloat x) |
| { |
| vfloat z = atan(abs(y / x)); |
| vmask xmask = vmask(float_as_int(x).m); |
| return change_sign(select_msb(z, vfloat(astc::PI) - z, xmask), y); |
| } |
| |
| /* |
| * @brief Factory that returns a unit length 4 component vfloat4. |
| */ |
| static ASTCENC_SIMD_INLINE vfloat4 unit4() |
| { |
| return vfloat4(0.5f); |
| } |
| |
| /** |
| * @brief Factory that returns a unit length 3 component vfloat4. |
| */ |
| static ASTCENC_SIMD_INLINE vfloat4 unit3() |
| { |
| float val = 0.577350258827209473f; |
| return vfloat4(val, val, val, 0.0f); |
| } |
| |
| /** |
| * @brief Factory that returns a unit length 2 component vfloat4. |
| */ |
| static ASTCENC_SIMD_INLINE vfloat4 unit2() |
| { |
| float val = 0.707106769084930420f; |
| return vfloat4(val, val, 0.0f, 0.0f); |
| } |
| |
| /** |
| * @brief Factory that returns a 3 component vfloat4. |
| */ |
| static ASTCENC_SIMD_INLINE vfloat4 vfloat3(float a, float b, float c) |
| { |
| return vfloat4(a, b, c, 0.0f); |
| } |
| |
| /** |
| * @brief Factory that returns a 2 component vfloat4. |
| */ |
| static ASTCENC_SIMD_INLINE vfloat4 vfloat2(float a, float b) |
| { |
| return vfloat4(a, b, 0.0f, 0.0f); |
| } |
| |
| /** |
| * @brief Normalize a non-zero length vector to unit length. |
| */ |
| static ASTCENC_SIMD_INLINE vfloat4 normalize(vfloat4 a) |
| { |
| vfloat4 length = dot(a, a); |
| return a / sqrt(length); |
| } |
| |
| /** |
| * @brief Normalize a vector, returning @c safe if len is zero. |
| */ |
| static ASTCENC_SIMD_INLINE vfloat4 normalize_safe(vfloat4 a, vfloat4 safe) |
| { |
| vfloat4 length = dot(a, a); |
| if (length.lane<0>() != 0.0f) |
| { |
| return a / sqrt(length); |
| } |
| |
| return safe; |
| } |
| |
| |
| |
| #define POLY0(x, c0) ( c0) |
| #define POLY1(x, c0, c1) ((POLY0(x, c1) * x) + c0) |
| #define POLY2(x, c0, c1, c2) ((POLY1(x, c1, c2) * x) + c0) |
| #define POLY3(x, c0, c1, c2, c3) ((POLY2(x, c1, c2, c3) * x) + c0) |
| #define POLY4(x, c0, c1, c2, c3, c4) ((POLY3(x, c1, c2, c3, c4) * x) + c0) |
| #define POLY5(x, c0, c1, c2, c3, c4, c5) ((POLY4(x, c1, c2, c3, c4, c5) * x) + c0) |
| |
| /** |
| * @brief Compute an approximate exp2(x) for each lane in the vector. |
| * |
| * Based on 5th degree minimax polynomials, ported from this blog |
| * https://jrfonseca.blogspot.com/2008/09/fast-sse2-pow-tables-or-polynomials.html |
| */ |
| static ASTCENC_SIMD_INLINE vfloat4 exp2(vfloat4 x) |
| { |
| x = clamp(-126.99999f, 129.0f, x); |
| |
| vint4 ipart = float_to_int(x - 0.5f); |
| vfloat4 fpart = x - int_to_float(ipart); |
| |
| // Integer contrib, using 1 << ipart |
| vfloat4 iexp = int_as_float(lsl<23>(ipart + 127)); |
| |
| // Fractional contrib, using polynomial fit of 2^x in range [-0.5, 0.5) |
| vfloat4 fexp = POLY5(fpart, |
| 9.9999994e-1f, |
| 6.9315308e-1f, |
| 2.4015361e-1f, |
| 5.5826318e-2f, |
| 8.9893397e-3f, |
| 1.8775767e-3f); |
| |
| return iexp * fexp; |
| } |
| |
| /** |
| * @brief Compute an approximate log2(x) for each lane in the vector. |
| * |
| * Based on 5th degree minimax polynomials, ported from this blog |
| * https://jrfonseca.blogspot.com/2008/09/fast-sse2-pow-tables-or-polynomials.html |
| */ |
| static ASTCENC_SIMD_INLINE vfloat4 log2(vfloat4 x) |
| { |
| vint4 exp(0x7F800000); |
| vint4 mant(0x007FFFFF); |
| vint4 one(0x3F800000); |
| |
| vint4 i = float_as_int(x); |
| |
| vfloat4 e = int_to_float(lsr<23>(i & exp) - 127); |
| |
| vfloat4 m = int_as_float((i & mant) | one); |
| |
| // Polynomial fit of log2(x)/(x - 1), for x in range [1, 2) |
| vfloat4 p = POLY4(m, |
| 2.8882704548164776201f, |
| -2.52074962577807006663f, |
| 1.48116647521213171641f, |
| -0.465725644288844778798f, |
| 0.0596515482674574969533f); |
| |
| // Increases the polynomial degree, but ensures that log2(1) == 0 |
| p = p * (m - 1.0f); |
| |
| return p + e; |
| } |
| |
| /** |
| * @brief Compute an approximate pow(x, y) for each lane in the vector. |
| * |
| * Power function based on the exp2(log2(x) * y) transform. |
| */ |
| static ASTCENC_SIMD_INLINE vfloat4 pow(vfloat4 x, vfloat4 y) |
| { |
| vmask4 zero_mask = y == vfloat4(0.0f); |
| vfloat4 estimate = exp2(log2(x) * y); |
| |
| // Guarantee that y == 0 returns exactly 1.0f |
| return select(estimate, vfloat4(1.0f), zero_mask); |
| } |
| |
| /** |
| * @brief Count the leading zeros for each lane in @c a. |
| * |
| * Valid for all data values of @c a; will return a per-lane value [0, 32]. |
| */ |
| static ASTCENC_SIMD_INLINE vint4 clz(vint4 a) |
| { |
| // This function is a horrible abuse of floating point exponents to convert |
| // the original integer value into a 2^N encoding we can recover easily. |
| |
| // Convert to float without risk of rounding up by keeping only top 8 bits. |
| // This trick is is guranteed to keep top 8 bits and clear the 9th. |
| a = (~lsr<8>(a)) & a; |
| a = float_as_int(int_to_float(a)); |
| |
| // Extract and unbias exponent |
| a = vint4(127 + 31) - lsr<23>(a); |
| |
| // Clamp result to a valid 32-bit range |
| return clamp(0, 32, a); |
| } |
| |
| /** |
| * @brief Return lanewise 2^a for each lane in @c a. |
| * |
| * Use of signed int means that this is only valid for values in range [0, 31]. |
| */ |
| static ASTCENC_SIMD_INLINE vint4 two_to_the_n(vint4 a) |
| { |
| // 2^30 is the largest signed number than can be represented |
| assert(all(a < vint4(31))); |
| |
| // This function is a horrible abuse of floating point to use the exponent |
| // and float conversion to generate a 2^N multiple. |
| |
| // Bias the exponent |
| vint4 exp = a + 127; |
| exp = lsl<23>(exp); |
| |
| // Reinterpret the bits as a float, and then convert to an int |
| vfloat4 f = int_as_float(exp); |
| return float_to_int(f); |
| } |
| |
| /** |
| * @brief Convert unorm16 [0, 65535] to float16 in range [0, 1]. |
| */ |
| static ASTCENC_SIMD_INLINE vint4 unorm16_to_sf16(vint4 p) |
| { |
| vint4 fp16_one = vint4(0x3C00); |
| vint4 fp16_small = lsl<8>(p); |
| |
| vmask4 is_one = p == vint4(0xFFFF); |
| vmask4 is_small = p < vint4(4); |
| |
| // Manually inline clz() on Visual Studio to avoid release build codegen bug |
| // see https://github.com/ARM-software/astc-encoder/issues/259 |
| #if !defined(__clang__) && defined(_MSC_VER) |
| vint4 a = (~lsr<8>(p)) & p; |
| a = float_as_int(int_to_float(a)); |
| a = vint4(127 + 31) - lsr<23>(a); |
| vint4 lz = clamp(0, 32, a) - 16; |
| #else |
| vint4 lz = clz(p) - 16; |
| #endif |
| |
| p = p * two_to_the_n(lz + 1); |
| p = p & vint4(0xFFFF); |
| |
| p = lsr<6>(p); |
| |
| p = p | lsl<10>(vint4(14) - lz); |
| |
| vint4 r = select(p, fp16_one, is_one); |
| r = select(r, fp16_small, is_small); |
| return r; |
| } |
| |
| /** |
| * @brief Convert 16-bit LNS to float16. |
| */ |
| static ASTCENC_SIMD_INLINE vint4 lns_to_sf16(vint4 p) |
| { |
| vint4 mc = p & 0x7FF; |
| vint4 ec = lsr<11>(p); |
| |
| vint4 mc_512 = mc * 3; |
| vmask4 mask_512 = mc < vint4(512); |
| |
| vint4 mc_1536 = mc * 4 - 512; |
| vmask4 mask_1536 = mc < vint4(1536); |
| |
| vint4 mc_else = mc * 5 - 2048; |
| |
| vint4 mt = mc_else; |
| mt = select(mt, mc_1536, mask_1536); |
| mt = select(mt, mc_512, mask_512); |
| |
| vint4 res = lsl<10>(ec) | lsr<3>(mt); |
| return min(res, vint4(0x7BFF)); |
| } |
| |
| /** |
| * @brief Extract mantissa and exponent of a float value. |
| * |
| * @param a The input value. |
| * @param[out] exp The output exponent. |
| * |
| * @return The mantissa. |
| */ |
| static ASTCENC_SIMD_INLINE vfloat4 frexp(vfloat4 a, vint4& exp) |
| { |
| // Interpret the bits as an integer |
| vint4 ai = float_as_int(a); |
| |
| // Extract and unbias the exponent |
| exp = (lsr<23>(ai) & 0xFF) - 126; |
| |
| // Extract and unbias the mantissa |
| vint4 manti = (ai & static_cast<int>(0x807FFFFF)) | 0x3F000000; |
| return int_as_float(manti); |
| } |
| |
| /** |
| * @brief Convert float to 16-bit LNS. |
| */ |
| static ASTCENC_SIMD_INLINE vfloat4 float_to_lns(vfloat4 a) |
| { |
| vint4 exp; |
| vfloat4 mant = frexp(a, exp); |
| |
| // Do these early before we start messing about ... |
| vmask4 mask_underflow_nan = ~(a > vfloat4(1.0f / 67108864.0f)); |
| vmask4 mask_infinity = a >= vfloat4(65536.0f); |
| |
| // If input is smaller than 2^-14, multiply by 2^25 and don't bias. |
| vmask4 exp_lt_m13 = exp < vint4(-13); |
| |
| vfloat4 a1a = a * 33554432.0f; |
| vint4 expa = vint4::zero(); |
| |
| vfloat4 a1b = (mant - 0.5f) * 4096; |
| vint4 expb = exp + 14; |
| |
| a = select(a1b, a1a, exp_lt_m13); |
| exp = select(expb, expa, exp_lt_m13); |
| |
| vmask4 a_lt_384 = a < vfloat4(384.0f); |
| vmask4 a_lt_1408 = a <= vfloat4(1408.0f); |
| |
| vfloat4 a2a = a * (4.0f / 3.0f); |
| vfloat4 a2b = a + 128.0f; |
| vfloat4 a2c = (a + 512.0f) * (4.0f / 5.0f); |
| |
| a = a2c; |
| a = select(a, a2b, a_lt_1408); |
| a = select(a, a2a, a_lt_384); |
| |
| a = a + (int_to_float(exp) * 2048.0f) + 1.0f; |
| |
| a = select(a, vfloat4(65535.0f), mask_infinity); |
| a = select(a, vfloat4::zero(), mask_underflow_nan); |
| |
| return a; |
| } |
| |
| namespace astc |
| { |
| |
| static ASTCENC_SIMD_INLINE float pow(float x, float y) |
| { |
| return pow(vfloat4(x), vfloat4(y)).lane<0>(); |
| } |
| |
| } |
| |
| #endif // #ifndef ASTC_VECMATHLIB_H_INCLUDED |