| // SPDX-License-Identifier: Apache-2.0 |
| // ---------------------------------------------------------------------------- |
| // Copyright 2011-2022 Arm Limited |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); you may not |
| // use this file except in compliance with the License. You may obtain a copy |
| // of the License at: |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the |
| // License for the specific language governing permissions and limitations |
| // under the License. |
| // ---------------------------------------------------------------------------- |
| |
| #if !defined(ASTCENC_DECOMPRESS_ONLY) |
| |
| /** |
| * @brief Functions for angular-sum algorithm for weight alignment. |
| * |
| * This algorithm works as follows: |
| * - we compute a complex number P as (cos s*i, sin s*i) for each weight, |
| * where i is the input value and s is a scaling factor based on the spacing between the weights. |
| * - we then add together complex numbers for all the weights. |
| * - we then compute the length and angle of the resulting sum. |
| * |
| * This should produce the following results: |
| * - perfect alignment results in a vector whose length is equal to the sum of lengths of all inputs |
| * - even distribution results in a vector of length 0. |
| * - all samples identical results in perfect alignment for every scaling. |
| * |
| * For each scaling factor within a given set, we compute an alignment factor from 0 to 1. This |
| * should then result in some scalings standing out as having particularly good alignment factors; |
| * we can use this to produce a set of candidate scale/shift values for various quantization levels; |
| * we should then actually try them and see what happens. |
| */ |
| |
| #include "astcenc_internal.h" |
| #include "astcenc_vecmathlib.h" |
| |
| #include <stdio.h> |
| #include <cassert> |
| #include <cstring> |
| |
| static constexpr unsigned int ANGULAR_STEPS { 32 }; |
| |
| static_assert((ANGULAR_STEPS % ASTCENC_SIMD_WIDTH) == 0, |
| "ANGULAR_STEPS must be multiple of ASTCENC_SIMD_WIDTH"); |
| |
| static_assert(ANGULAR_STEPS >= 32, |
| "ANGULAR_STEPS must be at least max(steps_for_quant_level)"); |
| |
| // Store a reduced sin/cos table for 64 possible weight values; this causes |
| // slight quality loss compared to using sin() and cos() directly. Must be 2^N. |
| static constexpr unsigned int SINCOS_STEPS { 64 }; |
| |
| static const uint8_t steps_for_quant_level[12] { |
| 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32 |
| }; |
| |
| alignas(ASTCENC_VECALIGN) static float sin_table[SINCOS_STEPS][ANGULAR_STEPS]; |
| alignas(ASTCENC_VECALIGN) static float cos_table[SINCOS_STEPS][ANGULAR_STEPS]; |
| |
| #if defined(ASTCENC_DIAGNOSTICS) |
| static bool print_once { true }; |
| #endif |
| |
| /* See header for documentation. */ |
| void prepare_angular_tables() |
| { |
| for (unsigned int i = 0; i < ANGULAR_STEPS; i++) |
| { |
| float angle_step = static_cast<float>(i + 1); |
| |
| for (unsigned int j = 0; j < SINCOS_STEPS; j++) |
| { |
| sin_table[j][i] = static_cast<float>(sinf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angle_step * static_cast<float>(j))); |
| cos_table[j][i] = static_cast<float>(cosf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angle_step * static_cast<float>(j))); |
| } |
| } |
| } |
| |
| /** |
| * @brief Compute the angular alignment factors and offsets. |
| * |
| * @param weight_count The number of (decimated) weights. |
| * @param dec_weight_ideal_value The ideal decimated unquantized weight values. |
| * @param max_angular_steps The maximum number of steps to be tested. |
| * @param[out] offsets The output angular offsets array. |
| */ |
| static void compute_angular_offsets( |
| unsigned int weight_count, |
| const float* dec_weight_ideal_value, |
| unsigned int max_angular_steps, |
| float* offsets |
| ) { |
| promise(weight_count > 0); |
| promise(max_angular_steps > 0); |
| |
| alignas(ASTCENC_VECALIGN) int isamplev[BLOCK_MAX_WEIGHTS]; |
| |
| // Precompute isample; arrays are always allocated 64 elements long |
| for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH) |
| { |
| // Add 2^23 and interpreting bits extracts round-to-nearest int |
| vfloat sample = loada(dec_weight_ideal_value + i) * (SINCOS_STEPS - 1.0f) + vfloat(12582912.0f); |
| vint isample = float_as_int(sample) & vint((SINCOS_STEPS - 1)); |
| storea(isample, isamplev + i); |
| } |
| |
| // Arrays are multiple of SIMD width (ANGULAR_STEPS), safe to overshoot max |
| vfloat mult = vfloat(1.0f / (2.0f * astc::PI)); |
| |
| for (unsigned int i = 0; i < max_angular_steps; i += ASTCENC_SIMD_WIDTH) |
| { |
| vfloat anglesum_x = vfloat::zero(); |
| vfloat anglesum_y = vfloat::zero(); |
| |
| for (unsigned int j = 0; j < weight_count; j++) |
| { |
| int isample = isamplev[j]; |
| anglesum_x += loada(cos_table[isample] + i); |
| anglesum_y += loada(sin_table[isample] + i); |
| } |
| |
| vfloat angle = atan2(anglesum_y, anglesum_x); |
| vfloat ofs = angle * mult; |
| storea(ofs, offsets + i); |
| } |
| } |
| |
| /** |
| * @brief For a given step size compute the lowest and highest weight. |
| * |
| * Compute the lowest and highest weight that results from quantizing using the given stepsize and |
| * offset, and then compute the resulting error. The cut errors indicate the error that results from |
| * forcing samples that should have had one weight value one step up or down. |
| * |
| * @param weight_count The number of (decimated) weights. |
| * @param dec_weight_ideal_value The ideal decimated unquantized weight values. |
| * @param max_angular_steps The maximum number of steps to be tested. |
| * @param max_quant_steps The maximum quantization level to be tested. |
| * @param offsets The angular offsets array. |
| * @param[out] lowest_weight Per angular step, the lowest weight. |
| * @param[out] weight_span Per angular step, the span between lowest and highest weight. |
| * @param[out] error Per angular step, the error. |
| * @param[out] cut_low_weight_error Per angular step, the low weight cut error. |
| * @param[out] cut_high_weight_error Per angular step, the high weight cut error. |
| */ |
| static void compute_lowest_and_highest_weight( |
| unsigned int weight_count, |
| const float* dec_weight_ideal_value, |
| unsigned int max_angular_steps, |
| unsigned int max_quant_steps, |
| const float* offsets, |
| float* lowest_weight, |
| int* weight_span, |
| float* error, |
| float* cut_low_weight_error, |
| float* cut_high_weight_error |
| ) { |
| promise(weight_count > 0); |
| promise(max_angular_steps > 0); |
| |
| vfloat rcp_stepsize = vfloat::lane_id() + vfloat(1.0f); |
| |
| // Arrays are ANGULAR_STEPS long, so always safe to run full vectors |
| for (unsigned int sp = 0; sp < max_angular_steps; sp += ASTCENC_SIMD_WIDTH) |
| { |
| vfloat minidx(128.0f); |
| vfloat maxidx(-128.0f); |
| vfloat errval = vfloat::zero(); |
| vfloat cut_low_weight_err = vfloat::zero(); |
| vfloat cut_high_weight_err = vfloat::zero(); |
| vfloat offset = loada(offsets + sp); |
| |
| for (unsigned int j = 0; j < weight_count; j++) |
| { |
| vfloat sval = load1(dec_weight_ideal_value + j) * rcp_stepsize - offset; |
| vfloat svalrte = round(sval); |
| vfloat diff = sval - svalrte; |
| errval += diff * diff; |
| |
| // Reset tracker on min hit |
| vmask mask = svalrte < minidx; |
| minidx = select(minidx, svalrte, mask); |
| cut_low_weight_err = select(cut_low_weight_err, vfloat::zero(), mask); |
| |
| // Accumulate on min hit |
| mask = svalrte == minidx; |
| vfloat accum = cut_low_weight_err + vfloat(1.0f) - vfloat(2.0f) * diff; |
| cut_low_weight_err = select(cut_low_weight_err, accum, mask); |
| |
| // Reset tracker on max hit |
| mask = svalrte > maxidx; |
| maxidx = select(maxidx, svalrte, mask); |
| cut_high_weight_err = select(cut_high_weight_err, vfloat::zero(), mask); |
| |
| // Accumulate on max hit |
| mask = svalrte == maxidx; |
| accum = cut_high_weight_err + vfloat(1.0f) + vfloat(2.0f) * diff; |
| cut_high_weight_err = select(cut_high_weight_err, accum, mask); |
| } |
| |
| // Write out min weight and weight span; clamp span to a usable range |
| vint span = float_to_int(maxidx - minidx + vfloat(1)); |
| span = min(span, vint(max_quant_steps + 3)); |
| span = max(span, vint(2)); |
| storea(minidx, lowest_weight + sp); |
| storea(span, weight_span + sp); |
| |
| // The cut_(lowest/highest)_weight_error indicate the error that results from forcing |
| // samples that should have had the weight value one step (up/down). |
| vfloat ssize = 1.0f / rcp_stepsize; |
| vfloat errscale = ssize * ssize; |
| storea(errval * errscale, error + sp); |
| storea(cut_low_weight_err * errscale, cut_low_weight_error + sp); |
| storea(cut_high_weight_err * errscale, cut_high_weight_error + sp); |
| |
| rcp_stepsize = rcp_stepsize + vfloat(ASTCENC_SIMD_WIDTH); |
| } |
| } |
| |
| /** |
| * @brief The main function for the angular algorithm. |
| * |
| * @param weight_count The number of (decimated) weights. |
| * @param dec_weight_ideal_value The ideal decimated unquantized weight values. |
| * @param max_quant_level The maximum quantization level to be tested. |
| * @param[out] low_value Per angular step, the lowest weight value. |
| * @param[out] high_value Per angular step, the highest weight value. |
| */ |
| static void compute_angular_endpoints_for_quant_levels( |
| unsigned int weight_count, |
| const float* dec_weight_ideal_value, |
| unsigned int max_quant_level, |
| float low_value[TUNE_MAX_ANGULAR_QUANT + 1], |
| float high_value[TUNE_MAX_ANGULAR_QUANT + 1] |
| ) { |
| unsigned int max_quant_steps = steps_for_quant_level[max_quant_level]; |
| unsigned int max_angular_steps = steps_for_quant_level[max_quant_level]; |
| |
| alignas(ASTCENC_VECALIGN) float angular_offsets[ANGULAR_STEPS]; |
| |
| compute_angular_offsets(weight_count, dec_weight_ideal_value, |
| max_angular_steps, angular_offsets); |
| |
| alignas(ASTCENC_VECALIGN) float lowest_weight[ANGULAR_STEPS]; |
| alignas(ASTCENC_VECALIGN) int32_t weight_span[ANGULAR_STEPS]; |
| alignas(ASTCENC_VECALIGN) float error[ANGULAR_STEPS]; |
| alignas(ASTCENC_VECALIGN) float cut_low_weight_error[ANGULAR_STEPS]; |
| alignas(ASTCENC_VECALIGN) float cut_high_weight_error[ANGULAR_STEPS]; |
| |
| compute_lowest_and_highest_weight(weight_count, dec_weight_ideal_value, |
| max_angular_steps, max_quant_steps, |
| angular_offsets, lowest_weight, weight_span, error, |
| cut_low_weight_error, cut_high_weight_error); |
| |
| // For each quantization level, find the best error terms. Use packed vectors so data-dependent |
| // branches can become selects. This involves some integer to float casts, but the values are |
| // small enough so they never round the wrong way. |
| vfloat4 best_results[36]; |
| |
| // Initialize the array to some safe defaults |
| promise(max_quant_steps > 0); |
| for (unsigned int i = 0; i < (max_quant_steps + 4); i++) |
| { |
| // Lane<0> = Best error |
| // Lane<1> = Best scale; -1 indicates no solution found |
| // Lane<2> = Cut low weight |
| best_results[i] = vfloat4(ERROR_CALC_DEFAULT, -1.0f, 0.0f, 0.0f); |
| } |
| |
| promise(max_angular_steps > 0); |
| for (unsigned int i = 0; i < max_angular_steps; i++) |
| { |
| float i_flt = static_cast<float>(i); |
| |
| int idx_span = weight_span[i]; |
| |
| float error_cut_low = error[i] + cut_low_weight_error[i]; |
| float error_cut_high = error[i] + cut_high_weight_error[i]; |
| float error_cut_low_high = error[i] + cut_low_weight_error[i] + cut_high_weight_error[i]; |
| |
| // Check best error against record N |
| vfloat4 best_result = best_results[idx_span]; |
| vfloat4 new_result = vfloat4(error[i], i_flt, 0.0f, 0.0f); |
| vmask4 mask = vfloat4(best_result.lane<0>()) > vfloat4(error[i]); |
| best_results[idx_span] = select(best_result, new_result, mask); |
| |
| // Check best error against record N-1 with either cut low or cut high |
| best_result = best_results[idx_span - 1]; |
| |
| new_result = vfloat4(error_cut_low, i_flt, 1.0f, 0.0f); |
| mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_low); |
| best_result = select(best_result, new_result, mask); |
| |
| new_result = vfloat4(error_cut_high, i_flt, 0.0f, 0.0f); |
| mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_high); |
| best_results[idx_span - 1] = select(best_result, new_result, mask); |
| |
| // Check best error against record N-2 with both cut low and high |
| best_result = best_results[idx_span - 2]; |
| new_result = vfloat4(error_cut_low_high, i_flt, 1.0f, 0.0f); |
| mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_low_high); |
| best_results[idx_span - 2] = select(best_result, new_result, mask); |
| } |
| |
| for (unsigned int i = 0; i <= max_quant_level; i++) |
| { |
| unsigned int q = steps_for_quant_level[i]; |
| int bsi = static_cast<int>(best_results[q].lane<1>()); |
| |
| // Did we find anything? |
| #if defined(ASTCENC_DIAGNOSTICS) |
| if ((bsi < 0) && print_once) |
| { |
| print_once = false; |
| printf("INFO: Unable to find full encoding within search error limit.\n\n"); |
| } |
| #endif |
| |
| bsi = astc::max(0, bsi); |
| |
| float lwi = lowest_weight[bsi] + best_results[q].lane<2>(); |
| float hwi = lwi + static_cast<float>(q) - 1.0f; |
| |
| float stepsize = 1.0f / (1.0f + static_cast<float>(bsi)); |
| low_value[i] = (angular_offsets[bsi] + lwi) * stepsize; |
| high_value[i] = (angular_offsets[bsi] + hwi) * stepsize; |
| } |
| } |
| |
| /* See header for documentation. */ |
| void compute_angular_endpoints_1plane( |
| bool only_always, |
| const block_size_descriptor& bsd, |
| const float* dec_weight_ideal_value, |
| unsigned int max_weight_quant, |
| compression_working_buffers& tmpbuf |
| ) { |
| float (&low_value)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value1; |
| float (&high_value)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value1; |
| |
| float (&low_values)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values1; |
| float (&high_values)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values1; |
| |
| unsigned int max_decimation_modes = only_always ? bsd.decimation_mode_count_always |
| : bsd.decimation_mode_count_selected; |
| promise(max_decimation_modes > 0); |
| for (unsigned int i = 0; i < max_decimation_modes; i++) |
| { |
| const decimation_mode& dm = bsd.decimation_modes[i]; |
| if (!dm.is_ref_1_plane(static_cast<quant_method>(max_weight_quant))) |
| { |
| continue; |
| } |
| |
| unsigned int weight_count = bsd.get_decimation_info(i).weight_count; |
| |
| unsigned int max_precision = dm.maxprec_1plane; |
| if (max_precision > TUNE_MAX_ANGULAR_QUANT) |
| { |
| max_precision = TUNE_MAX_ANGULAR_QUANT; |
| } |
| |
| if (max_precision > max_weight_quant) |
| { |
| max_precision = max_weight_quant; |
| } |
| |
| compute_angular_endpoints_for_quant_levels( |
| weight_count, |
| dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS, |
| max_precision, low_values[i], high_values[i]); |
| } |
| |
| unsigned int max_block_modes = only_always ? bsd.block_mode_count_1plane_always |
| : bsd.block_mode_count_1plane_selected; |
| promise(max_block_modes > 0); |
| for (unsigned int i = 0; i < max_block_modes; i++) |
| { |
| const block_mode& bm = bsd.block_modes[i]; |
| assert(!bm.is_dual_plane); |
| |
| unsigned int quant_mode = bm.quant_mode; |
| unsigned int decim_mode = bm.decimation_mode; |
| |
| if (quant_mode <= TUNE_MAX_ANGULAR_QUANT) |
| { |
| low_value[i] = low_values[decim_mode][quant_mode]; |
| high_value[i] = high_values[decim_mode][quant_mode]; |
| } |
| else |
| { |
| low_value[i] = 0.0f; |
| high_value[i] = 1.0f; |
| } |
| } |
| } |
| |
| /* See header for documentation. */ |
| void compute_angular_endpoints_2planes( |
| const block_size_descriptor& bsd, |
| const float* dec_weight_ideal_value, |
| unsigned int max_weight_quant, |
| compression_working_buffers& tmpbuf |
| ) { |
| float (&low_value1)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value1; |
| float (&high_value1)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value1; |
| float (&low_value2)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value2; |
| float (&high_value2)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value2; |
| |
| float (&low_values1)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values1; |
| float (&high_values1)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values1; |
| float (&low_values2)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values2; |
| float (&high_values2)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values2; |
| |
| promise(bsd.decimation_mode_count_selected > 0); |
| for (unsigned int i = 0; i < bsd.decimation_mode_count_selected; i++) |
| { |
| const decimation_mode& dm = bsd.decimation_modes[i]; |
| if (!dm.is_ref_2_plane(static_cast<quant_method>(max_weight_quant))) |
| { |
| continue; |
| } |
| |
| unsigned int weight_count = bsd.get_decimation_info(i).weight_count; |
| |
| unsigned int max_precision = dm.maxprec_2planes; |
| if (max_precision > TUNE_MAX_ANGULAR_QUANT) |
| { |
| max_precision = TUNE_MAX_ANGULAR_QUANT; |
| } |
| |
| if (max_precision > max_weight_quant) |
| { |
| max_precision = max_weight_quant; |
| } |
| |
| compute_angular_endpoints_for_quant_levels( |
| weight_count, |
| dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS, |
| max_precision, low_values1[i], high_values1[i]); |
| |
| compute_angular_endpoints_for_quant_levels( |
| weight_count, |
| dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS + WEIGHTS_PLANE2_OFFSET, |
| max_precision, low_values2[i], high_values2[i]); |
| } |
| |
| unsigned int start = bsd.block_mode_count_1plane_selected; |
| unsigned int end = bsd.block_mode_count_1plane_2plane_selected; |
| for (unsigned int i = start; i < end; i++) |
| { |
| const block_mode& bm = bsd.block_modes[i]; |
| unsigned int quant_mode = bm.quant_mode; |
| unsigned int decim_mode = bm.decimation_mode; |
| |
| if (quant_mode <= TUNE_MAX_ANGULAR_QUANT) |
| { |
| low_value1[i] = low_values1[decim_mode][quant_mode]; |
| high_value1[i] = high_values1[decim_mode][quant_mode]; |
| low_value2[i] = low_values2[decim_mode][quant_mode]; |
| high_value2[i] = high_values2[decim_mode][quant_mode]; |
| } |
| else |
| { |
| low_value1[i] = 0.0f; |
| high_value1[i] = 1.0f; |
| low_value2[i] = 0.0f; |
| high_value2[i] = 1.0f; |
| } |
| } |
| } |
| |
| #endif |