commit | 69698e391816a3334e8b7c31692f899e78229467 | [log] [tgz] |
---|---|---|
author | Jason Macnak <[email protected]> | Wed Sep 08 15:40:04 2021 -0700 |
committer | Jason Macnak <[email protected]> | Thu Sep 09 09:30:03 2021 -0700 |
tree | 0346d5a38337abd2795663a5f07fba2d42d96a75 | |
parent | 176c51a69edb5828e3efd7cb151c9fe797274c51 [diff] |
Call eglReleaseThread() in ~RenderThread() ... to ensure EGL resources are fully cleaned up. Prior to this change, running Cuttlefish with Gfxstream on Nvidia would leak file descriptors and memory every time an app was opened and closed. Bug: b/189879393 Test: `launch_cvd --gpu_mode=gfxstream` and open+close phone repeatedly Change-Id: I1e8f3008cca2dbd7ab815104903da5094c3e865f
Graphics Streaming Kit is a code generator that makes it easier to serialize and forward graphics API calls from one place to another:
Make sure the latest CMake is installed. Make sure the opengl lib is installed. Otherwise, sudo apt-get install libglu1-mesa-dev freeglut3-dev mesa-common-dev Make sure you are using Clang as your CC
and clang++ as yourCXX
. Then
mkdir build cd build cmake . ../ make -j24
Unit tests:
make test
Make sure the latest CMake is installed. Make sure Visual Studio 2019 is installed on your system along with all the Clang C++ toolchain components. Then
mkdir build cd build cmake . ../ -A x64 -T ClangCL
A solution file should be generated. Then open the solution file in Visual studio and build the gfxstream_backend
target.
Be in the Android build system. Then
m libgfxstream_backend
It then ends up in out/host
This also builds for Android on-device.
libgfxstream_backend.(dll|so|dylib)
scripts/generate-vulkan-sources.sh
If you're in an AOSP checkout, this will also modify contents of the guest Vulkan encoder in ../goldfish-opengl
.
First, build build/gfxstream-generic-apigen
. Then run
scripts/generate-apigen-source.sh
There are a bunch of test executables generated. They require libEGL.so
and libGLESv2.so
and libvulkan.so
to be available, possibly from your GPU vendor or ANGLE, in the $LD_LIBRARY_PATH
.
There are a bunch of test executables generated. They require libEGL.dll
and libGLESv2.dll
and vulkan-1.dll
to be available, possibly from your GPU vendor or ANGLE, in the %PATH%
.
These are currently not built due to the dependency on system libEGL/libvulkan to run correctly.
CMakeLists.txt
: specifies all host-side build targets. This includes all backends along with client/server setups that live only on the host. SomeAndroid.bp
: specifies all guest-side build targets for Android:BUILD.gn
: specifies all guest-side build targets for Fuchsiabase/
: common libraries that are built for both the guest and host. Contains utility code related to synchronization, threading, and suballocation.protocols/
: implementations of protocols for various graphics APIs. May contain code generators to make it easy to regen the protocol based on certain things.host-common/
: implementations of host-side support code that makes it easier to run the server in a variety of virtual device environments. Contains concrete implementations of auxiliary virtual devices such as Address Space Device and Goldfish Pipe.stream-servers/
: implementations of various backends for various graphics APIs that consume protocol. gfxstream-virtio-gpu-renderer.cpp
contains a virtio-gpu backend implementation.