/// @ref gtc_matrix_transform | |
/// @file glm/gtc/matrix_transform.inl | |
#include "../geometric.hpp" | |
#include "../trigonometric.hpp" | |
#include "../matrix.hpp" | |
namespace glm | |
{ | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tmat4x4<T, P> translate(tmat4x4<T, P> const & m, tvec3<T, P> const & v) | |
{ | |
tmat4x4<T, P> Result(m); | |
Result[3] = m[0] * v[0] + m[1] * v[1] + m[2] * v[2] + m[3]; | |
return Result; | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tmat4x4<T, P> rotate(tmat4x4<T, P> const & m, T angle, tvec3<T, P> const & v) | |
{ | |
T const a = angle; | |
T const c = cos(a); | |
T const s = sin(a); | |
tvec3<T, P> axis(normalize(v)); | |
tvec3<T, P> temp((T(1) - c) * axis); | |
tmat4x4<T, P> Rotate(uninitialize); | |
Rotate[0][0] = c + temp[0] * axis[0]; | |
Rotate[0][1] = temp[0] * axis[1] + s * axis[2]; | |
Rotate[0][2] = temp[0] * axis[2] - s * axis[1]; | |
Rotate[1][0] = temp[1] * axis[0] - s * axis[2]; | |
Rotate[1][1] = c + temp[1] * axis[1]; | |
Rotate[1][2] = temp[1] * axis[2] + s * axis[0]; | |
Rotate[2][0] = temp[2] * axis[0] + s * axis[1]; | |
Rotate[2][1] = temp[2] * axis[1] - s * axis[0]; | |
Rotate[2][2] = c + temp[2] * axis[2]; | |
tmat4x4<T, P> Result(uninitialize); | |
Result[0] = m[0] * Rotate[0][0] + m[1] * Rotate[0][1] + m[2] * Rotate[0][2]; | |
Result[1] = m[0] * Rotate[1][0] + m[1] * Rotate[1][1] + m[2] * Rotate[1][2]; | |
Result[2] = m[0] * Rotate[2][0] + m[1] * Rotate[2][1] + m[2] * Rotate[2][2]; | |
Result[3] = m[3]; | |
return Result; | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tmat4x4<T, P> rotate_slow(tmat4x4<T, P> const & m, T angle, tvec3<T, P> const & v) | |
{ | |
T const a = angle; | |
T const c = cos(a); | |
T const s = sin(a); | |
tmat4x4<T, P> Result; | |
tvec3<T, P> axis = normalize(v); | |
Result[0][0] = c + (static_cast<T>(1) - c) * axis.x * axis.x; | |
Result[0][1] = (static_cast<T>(1) - c) * axis.x * axis.y + s * axis.z; | |
Result[0][2] = (static_cast<T>(1) - c) * axis.x * axis.z - s * axis.y; | |
Result[0][3] = static_cast<T>(0); | |
Result[1][0] = (static_cast<T>(1) - c) * axis.y * axis.x - s * axis.z; | |
Result[1][1] = c + (static_cast<T>(1) - c) * axis.y * axis.y; | |
Result[1][2] = (static_cast<T>(1) - c) * axis.y * axis.z + s * axis.x; | |
Result[1][3] = static_cast<T>(0); | |
Result[2][0] = (static_cast<T>(1) - c) * axis.z * axis.x + s * axis.y; | |
Result[2][1] = (static_cast<T>(1) - c) * axis.z * axis.y - s * axis.x; | |
Result[2][2] = c + (static_cast<T>(1) - c) * axis.z * axis.z; | |
Result[2][3] = static_cast<T>(0); | |
Result[3] = tvec4<T, P>(0, 0, 0, 1); | |
return m * Result; | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tmat4x4<T, P> scale(tmat4x4<T, P> const & m, tvec3<T, P> const & v) | |
{ | |
tmat4x4<T, P> Result(uninitialize); | |
Result[0] = m[0] * v[0]; | |
Result[1] = m[1] * v[1]; | |
Result[2] = m[2] * v[2]; | |
Result[3] = m[3]; | |
return Result; | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tmat4x4<T, P> scale_slow(tmat4x4<T, P> const & m, tvec3<T, P> const & v) | |
{ | |
tmat4x4<T, P> Result(T(1)); | |
Result[0][0] = v.x; | |
Result[1][1] = v.y; | |
Result[2][2] = v.z; | |
return m * Result; | |
} | |
template <typename T> | |
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> ortho | |
( | |
T left, T right, | |
T bottom, T top, | |
T zNear, T zFar | |
) | |
{ | |
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED | |
return orthoLH(left, right, bottom, top, zNear, zFar); | |
# else | |
return orthoRH(left, right, bottom, top, zNear, zFar); | |
# endif | |
} | |
template <typename T> | |
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> orthoLH | |
( | |
T left, T right, | |
T bottom, T top, | |
T zNear, T zFar | |
) | |
{ | |
tmat4x4<T, defaultp> Result(1); | |
Result[0][0] = static_cast<T>(2) / (right - left); | |
Result[1][1] = static_cast<T>(2) / (top - bottom); | |
Result[3][0] = - (right + left) / (right - left); | |
Result[3][1] = - (top + bottom) / (top - bottom); | |
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE | |
Result[2][2] = static_cast<T>(1) / (zFar - zNear); | |
Result[3][2] = - zNear / (zFar - zNear); | |
# else | |
Result[2][2] = static_cast<T>(2) / (zFar - zNear); | |
Result[3][2] = - (zFar + zNear) / (zFar - zNear); | |
# endif | |
return Result; | |
} | |
template <typename T> | |
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> orthoRH | |
( | |
T left, T right, | |
T bottom, T top, | |
T zNear, T zFar | |
) | |
{ | |
tmat4x4<T, defaultp> Result(1); | |
Result[0][0] = static_cast<T>(2) / (right - left); | |
Result[1][1] = static_cast<T>(2) / (top - bottom); | |
Result[3][0] = - (right + left) / (right - left); | |
Result[3][1] = - (top + bottom) / (top - bottom); | |
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE | |
Result[2][2] = - static_cast<T>(1) / (zFar - zNear); | |
Result[3][2] = - zNear / (zFar - zNear); | |
# else | |
Result[2][2] = - static_cast<T>(2) / (zFar - zNear); | |
Result[3][2] = - (zFar + zNear) / (zFar - zNear); | |
# endif | |
return Result; | |
} | |
template <typename T> | |
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> ortho | |
( | |
T left, T right, | |
T bottom, T top | |
) | |
{ | |
tmat4x4<T, defaultp> Result(static_cast<T>(1)); | |
Result[0][0] = static_cast<T>(2) / (right - left); | |
Result[1][1] = static_cast<T>(2) / (top - bottom); | |
Result[2][2] = - static_cast<T>(1); | |
Result[3][0] = - (right + left) / (right - left); | |
Result[3][1] = - (top + bottom) / (top - bottom); | |
return Result; | |
} | |
template <typename T> | |
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustum | |
( | |
T left, T right, | |
T bottom, T top, | |
T nearVal, T farVal | |
) | |
{ | |
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED | |
return frustumLH(left, right, bottom, top, nearVal, farVal); | |
# else | |
return frustumRH(left, right, bottom, top, nearVal, farVal); | |
# endif | |
} | |
template <typename T> | |
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustumLH | |
( | |
T left, T right, | |
T bottom, T top, | |
T nearVal, T farVal | |
) | |
{ | |
tmat4x4<T, defaultp> Result(0); | |
Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left); | |
Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom); | |
Result[2][0] = (right + left) / (right - left); | |
Result[2][1] = (top + bottom) / (top - bottom); | |
Result[2][3] = static_cast<T>(1); | |
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE | |
Result[2][2] = farVal / (farVal - nearVal); | |
Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); | |
# else | |
Result[2][2] = (farVal + nearVal) / (farVal - nearVal); | |
Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal); | |
# endif | |
return Result; | |
} | |
template <typename T> | |
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustumRH | |
( | |
T left, T right, | |
T bottom, T top, | |
T nearVal, T farVal | |
) | |
{ | |
tmat4x4<T, defaultp> Result(0); | |
Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left); | |
Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom); | |
Result[2][0] = (right + left) / (right - left); | |
Result[2][1] = (top + bottom) / (top - bottom); | |
Result[2][3] = static_cast<T>(-1); | |
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE | |
Result[2][2] = farVal / (nearVal - farVal); | |
Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); | |
# else | |
Result[2][2] = - (farVal + nearVal) / (farVal - nearVal); | |
Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal); | |
# endif | |
return Result; | |
} | |
template <typename T> | |
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspective(T fovy, T aspect, T zNear, T zFar) | |
{ | |
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED | |
return perspectiveLH(fovy, aspect, zNear, zFar); | |
# else | |
return perspectiveRH(fovy, aspect, zNear, zFar); | |
# endif | |
} | |
template <typename T> | |
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveRH(T fovy, T aspect, T zNear, T zFar) | |
{ | |
assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0)); | |
T const tanHalfFovy = tan(fovy / static_cast<T>(2)); | |
tmat4x4<T, defaultp> Result(static_cast<T>(0)); | |
Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy); | |
Result[1][1] = static_cast<T>(1) / (tanHalfFovy); | |
Result[2][3] = - static_cast<T>(1); | |
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE | |
Result[2][2] = zFar / (zNear - zFar); | |
Result[3][2] = -(zFar * zNear) / (zFar - zNear); | |
# else | |
Result[2][2] = - (zFar + zNear) / (zFar - zNear); | |
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); | |
# endif | |
return Result; | |
} | |
template <typename T> | |
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveLH(T fovy, T aspect, T zNear, T zFar) | |
{ | |
assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0)); | |
T const tanHalfFovy = tan(fovy / static_cast<T>(2)); | |
tmat4x4<T, defaultp> Result(static_cast<T>(0)); | |
Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy); | |
Result[1][1] = static_cast<T>(1) / (tanHalfFovy); | |
Result[2][3] = static_cast<T>(1); | |
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE | |
Result[2][2] = zFar / (zFar - zNear); | |
Result[3][2] = -(zFar * zNear) / (zFar - zNear); | |
# else | |
Result[2][2] = (zFar + zNear) / (zFar - zNear); | |
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); | |
# endif | |
return Result; | |
} | |
template <typename T> | |
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFov(T fov, T width, T height, T zNear, T zFar) | |
{ | |
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED | |
return perspectiveFovLH(fov, width, height, zNear, zFar); | |
# else | |
return perspectiveFovRH(fov, width, height, zNear, zFar); | |
# endif | |
} | |
template <typename T> | |
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFovRH(T fov, T width, T height, T zNear, T zFar) | |
{ | |
assert(width > static_cast<T>(0)); | |
assert(height > static_cast<T>(0)); | |
assert(fov > static_cast<T>(0)); | |
T const rad = fov; | |
T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad); | |
T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? | |
tmat4x4<T, defaultp> Result(static_cast<T>(0)); | |
Result[0][0] = w; | |
Result[1][1] = h; | |
Result[2][3] = - static_cast<T>(1); | |
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE | |
Result[2][2] = zFar / (zNear - zFar); | |
Result[3][2] = -(zFar * zNear) / (zFar - zNear); | |
# else | |
Result[2][2] = - (zFar + zNear) / (zFar - zNear); | |
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); | |
# endif | |
return Result; | |
} | |
template <typename T> | |
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFovLH(T fov, T width, T height, T zNear, T zFar) | |
{ | |
assert(width > static_cast<T>(0)); | |
assert(height > static_cast<T>(0)); | |
assert(fov > static_cast<T>(0)); | |
T const rad = fov; | |
T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad); | |
T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? | |
tmat4x4<T, defaultp> Result(static_cast<T>(0)); | |
Result[0][0] = w; | |
Result[1][1] = h; | |
Result[2][3] = static_cast<T>(1); | |
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE | |
Result[2][2] = zFar / (zFar - zNear); | |
Result[3][2] = -(zFar * zNear) / (zFar - zNear); | |
# else | |
Result[2][2] = (zFar + zNear) / (zFar - zNear); | |
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); | |
# endif | |
return Result; | |
} | |
template <typename T> | |
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspective(T fovy, T aspect, T zNear) | |
{ | |
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED | |
return infinitePerspectiveLH(fovy, aspect, zNear); | |
# else | |
return infinitePerspectiveRH(fovy, aspect, zNear); | |
# endif | |
} | |
template <typename T> | |
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspectiveRH(T fovy, T aspect, T zNear) | |
{ | |
T const range = tan(fovy / static_cast<T>(2)) * zNear; | |
T const left = -range * aspect; | |
T const right = range * aspect; | |
T const bottom = -range; | |
T const top = range; | |
tmat4x4<T, defaultp> Result(static_cast<T>(0)); | |
Result[0][0] = (static_cast<T>(2) * zNear) / (right - left); | |
Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom); | |
Result[2][2] = - static_cast<T>(1); | |
Result[2][3] = - static_cast<T>(1); | |
Result[3][2] = - static_cast<T>(2) * zNear; | |
return Result; | |
} | |
template <typename T> | |
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspectiveLH(T fovy, T aspect, T zNear) | |
{ | |
T const range = tan(fovy / static_cast<T>(2)) * zNear; | |
T const left = -range * aspect; | |
T const right = range * aspect; | |
T const bottom = -range; | |
T const top = range; | |
tmat4x4<T, defaultp> Result(T(0)); | |
Result[0][0] = (static_cast<T>(2) * zNear) / (right - left); | |
Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom); | |
Result[2][2] = static_cast<T>(1); | |
Result[2][3] = static_cast<T>(1); | |
Result[3][2] = - static_cast<T>(2) * zNear; | |
return Result; | |
} | |
// Infinite projection matrix: http://www.terathon.com/gdc07_lengyel.pdf | |
template <typename T> | |
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear, T ep) | |
{ | |
T const range = tan(fovy / static_cast<T>(2)) * zNear; | |
T const left = -range * aspect; | |
T const right = range * aspect; | |
T const bottom = -range; | |
T const top = range; | |
tmat4x4<T, defaultp> Result(static_cast<T>(0)); | |
Result[0][0] = (static_cast<T>(2) * zNear) / (right - left); | |
Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom); | |
Result[2][2] = ep - static_cast<T>(1); | |
Result[2][3] = static_cast<T>(-1); | |
Result[3][2] = (ep - static_cast<T>(2)) * zNear; | |
return Result; | |
} | |
template <typename T> | |
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear) | |
{ | |
return tweakedInfinitePerspective(fovy, aspect, zNear, epsilon<T>()); | |
} | |
template <typename T, typename U, precision P> | |
GLM_FUNC_QUALIFIER tvec3<T, P> project | |
( | |
tvec3<T, P> const & obj, | |
tmat4x4<T, P> const & model, | |
tmat4x4<T, P> const & proj, | |
tvec4<U, P> const & viewport | |
) | |
{ | |
tvec4<T, P> tmp = tvec4<T, P>(obj, static_cast<T>(1)); | |
tmp = model * tmp; | |
tmp = proj * tmp; | |
tmp /= tmp.w; | |
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE | |
tmp.x = tmp.x * static_cast<T>(0.5) + static_cast<T>(0.5); | |
tmp.y = tmp.y * static_cast<T>(0.5) + static_cast<T>(0.5); | |
# else | |
tmp = tmp * static_cast<T>(0.5) + static_cast<T>(0.5); | |
# endif | |
tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]); | |
tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]); | |
return tvec3<T, P>(tmp); | |
} | |
template <typename T, typename U, precision P> | |
GLM_FUNC_QUALIFIER tvec3<T, P> unProject | |
( | |
tvec3<T, P> const & win, | |
tmat4x4<T, P> const & model, | |
tmat4x4<T, P> const & proj, | |
tvec4<U, P> const & viewport | |
) | |
{ | |
tmat4x4<T, P> Inverse = inverse(proj * model); | |
tvec4<T, P> tmp = tvec4<T, P>(win, T(1)); | |
tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]); | |
tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]); | |
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE | |
tmp.x = tmp.x * static_cast<T>(2) - static_cast<T>(1); | |
tmp.y = tmp.y * static_cast<T>(2) - static_cast<T>(1); | |
# else | |
tmp = tmp * static_cast<T>(2) - static_cast<T>(1); | |
# endif | |
tvec4<T, P> obj = Inverse * tmp; | |
obj /= obj.w; | |
return tvec3<T, P>(obj); | |
} | |
template <typename T, precision P, typename U> | |
GLM_FUNC_QUALIFIER tmat4x4<T, P> pickMatrix(tvec2<T, P> const & center, tvec2<T, P> const & delta, tvec4<U, P> const & viewport) | |
{ | |
assert(delta.x > static_cast<T>(0) && delta.y > static_cast<T>(0)); | |
tmat4x4<T, P> Result(static_cast<T>(1)); | |
if(!(delta.x > static_cast<T>(0) && delta.y > static_cast<T>(0))) | |
return Result; // Error | |
tvec3<T, P> Temp( | |
(static_cast<T>(viewport[2]) - static_cast<T>(2) * (center.x - static_cast<T>(viewport[0]))) / delta.x, | |
(static_cast<T>(viewport[3]) - static_cast<T>(2) * (center.y - static_cast<T>(viewport[1]))) / delta.y, | |
static_cast<T>(0)); | |
// Translate and scale the picked region to the entire window | |
Result = translate(Result, Temp); | |
return scale(Result, tvec3<T, P>(static_cast<T>(viewport[2]) / delta.x, static_cast<T>(viewport[3]) / delta.y, static_cast<T>(1))); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAt(tvec3<T, P> const & eye, tvec3<T, P> const & center, tvec3<T, P> const & up) | |
{ | |
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED | |
return lookAtLH(eye, center, up); | |
# else | |
return lookAtRH(eye, center, up); | |
# endif | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAtRH | |
( | |
tvec3<T, P> const & eye, | |
tvec3<T, P> const & center, | |
tvec3<T, P> const & up | |
) | |
{ | |
tvec3<T, P> const f(normalize(center - eye)); | |
tvec3<T, P> const s(normalize(cross(f, up))); | |
tvec3<T, P> const u(cross(s, f)); | |
tmat4x4<T, P> Result(1); | |
Result[0][0] = s.x; | |
Result[1][0] = s.y; | |
Result[2][0] = s.z; | |
Result[0][1] = u.x; | |
Result[1][1] = u.y; | |
Result[2][1] = u.z; | |
Result[0][2] =-f.x; | |
Result[1][2] =-f.y; | |
Result[2][2] =-f.z; | |
Result[3][0] =-dot(s, eye); | |
Result[3][1] =-dot(u, eye); | |
Result[3][2] = dot(f, eye); | |
return Result; | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAtLH | |
( | |
tvec3<T, P> const & eye, | |
tvec3<T, P> const & center, | |
tvec3<T, P> const & up | |
) | |
{ | |
tvec3<T, P> const f(normalize(center - eye)); | |
tvec3<T, P> const s(normalize(cross(up, f))); | |
tvec3<T, P> const u(cross(f, s)); | |
tmat4x4<T, P> Result(1); | |
Result[0][0] = s.x; | |
Result[1][0] = s.y; | |
Result[2][0] = s.z; | |
Result[0][1] = u.x; | |
Result[1][1] = u.y; | |
Result[2][1] = u.z; | |
Result[0][2] = f.x; | |
Result[1][2] = f.y; | |
Result[2][2] = f.z; | |
Result[3][0] = -dot(s, eye); | |
Result[3][1] = -dot(u, eye); | |
Result[3][2] = -dot(f, eye); | |
return Result; | |
} | |
}//namespace glm |