| // Copyright (C) 2023 The Android Open Source Project |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <log/log.h> |
| |
| #include <atomic> |
| #include <thread> |
| |
| #include "GfxstreamEnd2EndTestUtils.h" |
| #include "GfxstreamEnd2EndTests.h" |
| #include "gfxstream/Expected.h" |
| #include "shaders/blit_sampler2d_frag.h" |
| #include "shaders/fullscreen_triangle_with_uv_vert.h" |
| |
| namespace gfxstream { |
| namespace tests { |
| namespace { |
| |
| using namespace std::chrono_literals; |
| using testing::Eq; |
| using testing::Ge; |
| using testing::IsEmpty; |
| using testing::IsNull; |
| using testing::IsTrue; |
| using testing::Ne; |
| using testing::Not; |
| using testing::NotNull; |
| |
| template <typename DurationType> |
| constexpr uint64_t AsVkTimeout(DurationType duration) { |
| return static_cast<uint64_t>(std::chrono::duration_cast<std::chrono::nanoseconds>(duration).count()); |
| } |
| |
| class GfxstreamEnd2EndVkTest : public GfxstreamEnd2EndTest { |
| protected: |
| // Gfxstream uses a vkQueueSubmit() to signal the VkFence and VkSemaphore used |
| // in vkAcquireImageANDROID() calls. The guest is not aware of this and may try |
| // to vkDestroyFence() and vkDestroySemaphore() (because the VkImage, VkFence, |
| // and VkSemaphore may have been unused from the guest point of view) while the |
| // host's command buffer is running. Gfxstream needs to ensure that it performs |
| // the necessary tracking to not delete the VkFence and VkSemaphore while they |
| // are in use on the host. |
| void DoAcquireImageAndroidWithSync(bool withFence, bool withSemaphore) { |
| auto [instance, physicalDevice, device, queue, queueFamilyIndex] = |
| GFXSTREAM_ASSERT(SetUpTypicalVkTestEnvironment()); |
| |
| const uint32_t width = 32; |
| const uint32_t height = 32; |
| auto ahb = GFXSTREAM_ASSERT(ScopedAHardwareBuffer::Allocate( |
| *mGralloc, width, height, GFXSTREAM_AHB_FORMAT_R8G8B8A8_UNORM)); |
| |
| const VkNativeBufferANDROID imageNativeBufferInfo = { |
| .sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID, |
| .handle = mGralloc->getNativeHandle(ahb), |
| }; |
| |
| auto vkAcquireImageANDROID = |
| PFN_vkAcquireImageANDROID(device->getProcAddr("vkAcquireImageANDROID")); |
| ASSERT_THAT(vkAcquireImageANDROID, NotNull()); |
| |
| const vkhpp::ImageCreateInfo imageCreateInfo = { |
| .pNext = &imageNativeBufferInfo, |
| .imageType = vkhpp::ImageType::e2D, |
| .extent.width = width, |
| .extent.height = height, |
| .extent.depth = 1, |
| .mipLevels = 1, |
| .arrayLayers = 1, |
| .format = vkhpp::Format::eR8G8B8A8Unorm, |
| .tiling = vkhpp::ImageTiling::eOptimal, |
| .initialLayout = vkhpp::ImageLayout::eUndefined, |
| .usage = vkhpp::ImageUsageFlagBits::eSampled | vkhpp::ImageUsageFlagBits::eTransferDst | |
| vkhpp::ImageUsageFlagBits::eTransferSrc, |
| .sharingMode = vkhpp::SharingMode::eExclusive, |
| .samples = vkhpp::SampleCountFlagBits::e1, |
| }; |
| auto image = device->createImageUnique(imageCreateInfo).value; |
| |
| vkhpp::MemoryRequirements imageMemoryRequirements{}; |
| device->getImageMemoryRequirements(*image, &imageMemoryRequirements); |
| |
| const uint32_t imageMemoryIndex = utils::getMemoryType( |
| physicalDevice, imageMemoryRequirements, vkhpp::MemoryPropertyFlagBits::eDeviceLocal); |
| ASSERT_THAT(imageMemoryIndex, Not(Eq(-1))); |
| |
| const vkhpp::MemoryAllocateInfo imageMemoryAllocateInfo = { |
| .allocationSize = imageMemoryRequirements.size, |
| .memoryTypeIndex = imageMemoryIndex, |
| }; |
| |
| auto imageMemory = device->allocateMemoryUnique(imageMemoryAllocateInfo).value; |
| ASSERT_THAT(imageMemory, IsValidHandle()); |
| ASSERT_THAT(device->bindImageMemory(*image, *imageMemory, 0), IsVkSuccess()); |
| |
| vkhpp::UniqueFence fence; |
| if (withFence) { |
| fence = device->createFenceUnique(vkhpp::FenceCreateInfo()).value; |
| } |
| |
| vkhpp::UniqueSemaphore semaphore; |
| if (withSemaphore) { |
| semaphore = device->createSemaphoreUnique(vkhpp::SemaphoreCreateInfo()).value; |
| } |
| |
| auto result = vkAcquireImageANDROID(*device, *image, -1, *semaphore, *fence); |
| ASSERT_THAT(result, Eq(VK_SUCCESS)); |
| |
| if (withFence) { |
| fence.reset(); |
| } |
| if (withSemaphore) { |
| semaphore.reset(); |
| } |
| } |
| |
| Result<Ok> DoCommandsImmediate( |
| TypicalVkTestEnvironment& vk, |
| const std::function<Result<Ok>(vkhpp::UniqueCommandBuffer&)>& func, |
| const std::vector<vkhpp::UniqueSemaphore>& semaphores_wait = {}, |
| const std::vector<vkhpp::UniqueSemaphore>& semaphores_signal = {}) { |
| const vkhpp::CommandPoolCreateInfo commandPoolCreateInfo = { |
| .queueFamilyIndex = vk.queueFamilyIndex, |
| }; |
| auto commandPool = |
| GFXSTREAM_EXPECT_VKHPP_RV(vk.device->createCommandPoolUnique(commandPoolCreateInfo)); |
| |
| const vkhpp::CommandBufferAllocateInfo commandBufferAllocateInfo = { |
| .commandPool = *commandPool, |
| .level = vkhpp::CommandBufferLevel::ePrimary, |
| .commandBufferCount = 1, |
| }; |
| auto commandBuffers = GFXSTREAM_EXPECT_VKHPP_RV( |
| vk.device->allocateCommandBuffersUnique(commandBufferAllocateInfo)); |
| auto commandBuffer = std::move(commandBuffers[0]); |
| |
| const vkhpp::CommandBufferBeginInfo commandBufferBeginInfo = { |
| .flags = vkhpp::CommandBufferUsageFlagBits::eOneTimeSubmit, |
| }; |
| commandBuffer->begin(commandBufferBeginInfo); |
| GFXSTREAM_EXPECT(func(commandBuffer)); |
| commandBuffer->end(); |
| |
| std::vector<vkhpp::CommandBuffer> commandBufferHandles; |
| commandBufferHandles.push_back(*commandBuffer); |
| |
| std::vector<vkhpp::Semaphore> semaphoreHandlesWait; |
| semaphoreHandlesWait.reserve(semaphores_wait.size()); |
| for (const auto& s : semaphores_wait) { |
| semaphoreHandlesWait.emplace_back(*s); |
| } |
| |
| std::vector<vkhpp::Semaphore> semaphoreHandlesSignal; |
| semaphoreHandlesSignal.reserve(semaphores_signal.size()); |
| for (const auto& s : semaphores_signal) { |
| semaphoreHandlesSignal.emplace_back(*s); |
| } |
| |
| vkhpp::SubmitInfo submitInfo = { |
| .commandBufferCount = static_cast<uint32_t>(commandBufferHandles.size()), |
| .pCommandBuffers = commandBufferHandles.data(), |
| }; |
| if (!semaphoreHandlesWait.empty()) { |
| submitInfo.waitSemaphoreCount = static_cast<uint32_t>(semaphoreHandlesWait.size()); |
| submitInfo.pWaitSemaphores = semaphoreHandlesWait.data(); |
| } |
| if (!semaphoreHandlesSignal.empty()) { |
| submitInfo.signalSemaphoreCount = static_cast<uint32_t>(semaphoreHandlesSignal.size()); |
| submitInfo.pSignalSemaphores = semaphoreHandlesSignal.data(); |
| } |
| vk.queue.submit(submitInfo); |
| vk.queue.waitIdle(); |
| return Ok{}; |
| } |
| |
| struct BufferWithMemory { |
| vkhpp::UniqueBuffer buffer; |
| vkhpp::UniqueDeviceMemory bufferMemory; |
| }; |
| Result<BufferWithMemory> CreateBuffer(TypicalVkTestEnvironment& vk, |
| vkhpp::DeviceSize bufferSize, |
| vkhpp::BufferUsageFlags bufferUsages, |
| vkhpp::MemoryPropertyFlags bufferMemoryProperties, |
| const uint8_t* data = nullptr, |
| vkhpp::DeviceSize dataSize = 0) { |
| const vkhpp::BufferCreateInfo bufferCreateInfo = { |
| .size = static_cast<VkDeviceSize>(bufferSize), |
| .usage = bufferUsages, |
| .sharingMode = vkhpp::SharingMode::eExclusive, |
| }; |
| auto buffer = GFXSTREAM_EXPECT_VKHPP_RV(vk.device->createBufferUnique(bufferCreateInfo)); |
| |
| vkhpp::MemoryRequirements bufferMemoryRequirements{}; |
| vk.device->getBufferMemoryRequirements(*buffer, &bufferMemoryRequirements); |
| |
| const auto bufferMemoryTypeIndex = utils::getMemoryType( |
| vk.physicalDevice, bufferMemoryRequirements, bufferMemoryProperties); |
| |
| const vkhpp::MemoryAllocateInfo bufferMemoryAllocateInfo = { |
| .allocationSize = bufferMemoryRequirements.size, |
| .memoryTypeIndex = bufferMemoryTypeIndex, |
| }; |
| auto bufferMemory = |
| GFXSTREAM_EXPECT_VKHPP_RV(vk.device->allocateMemoryUnique(bufferMemoryAllocateInfo)); |
| |
| GFXSTREAM_EXPECT_VKHPP_RESULT(vk.device->bindBufferMemory(*buffer, *bufferMemory, 0)); |
| |
| if (data != nullptr) { |
| if (!(bufferUsages & vkhpp::BufferUsageFlagBits::eTransferDst)) { |
| return gfxstream::unexpected( |
| "Must request transfer dst usage when creating buffer with data"); |
| } |
| if (!(bufferMemoryProperties & vkhpp::MemoryPropertyFlagBits::eHostVisible)) { |
| return gfxstream::unexpected( |
| "Must request host visible mem property when creating buffer with data"); |
| } |
| |
| void* mapped = |
| GFXSTREAM_EXPECT_VKHPP_RV(vk.device->mapMemory(*bufferMemory, 0, bufferSize)); |
| |
| std::memcpy(mapped, data, dataSize); |
| |
| if (!(bufferMemoryProperties & vkhpp::MemoryPropertyFlagBits::eHostVisible)) { |
| vk.device->flushMappedMemoryRanges(vkhpp::MappedMemoryRange{ |
| .memory = *bufferMemory, |
| .offset = 0, |
| .size = VK_WHOLE_SIZE, |
| }); |
| } |
| |
| vk.device->unmapMemory(*bufferMemory); |
| } |
| |
| return BufferWithMemory{ |
| .buffer = std::move(buffer), |
| .bufferMemory = std::move(bufferMemory), |
| }; |
| } |
| |
| struct ImageWithMemory { |
| std::optional<vkhpp::UniqueSamplerYcbcrConversion> imageSamplerConversion; |
| vkhpp::UniqueSampler imageSampler; |
| vkhpp::UniqueDeviceMemory imageMemory; |
| vkhpp::UniqueImage image; |
| vkhpp::UniqueImageView imageView; |
| }; |
| Result<ImageWithMemory> CreateImageWithAhb(TypicalVkTestEnvironment& vk, |
| const ScopedAHardwareBuffer& ahb, |
| const vkhpp::ImageUsageFlags usages, |
| const vkhpp::ImageLayout layout) { |
| const auto ahbHandle = mGralloc->getNativeHandle(ahb); |
| if (ahbHandle == nullptr) { |
| return gfxstream::unexpected("Failed to query native handle."); |
| } |
| const auto ahbFormat = mGralloc->getFormat(ahb); |
| const bool ahbIsYuv = ahbFormat == GFXSTREAM_AHB_FORMAT_YV12 || |
| ahbFormat == GFXSTREAM_AHB_FORMAT_Y8Cb8Cr8_420; |
| |
| auto vkGetAndroidHardwareBufferPropertiesANDROID = |
| reinterpret_cast<PFN_vkGetAndroidHardwareBufferPropertiesANDROID>( |
| vk.device->getProcAddr("vkGetAndroidHardwareBufferPropertiesANDROID")); |
| if (vkGetAndroidHardwareBufferPropertiesANDROID == nullptr) { |
| return gfxstream::unexpected( |
| "Failed to query vkGetAndroidHardwareBufferPropertiesANDROID()."); |
| } |
| VkAndroidHardwareBufferFormatPropertiesANDROID ahbFormatProperties = { |
| .sType = VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_FORMAT_PROPERTIES_ANDROID, |
| .pNext = nullptr, |
| }; |
| VkAndroidHardwareBufferPropertiesANDROID ahbProperties = { |
| .sType = VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_PROPERTIES_ANDROID, |
| .pNext = &ahbFormatProperties, |
| }; |
| if (vkGetAndroidHardwareBufferPropertiesANDROID(*vk.device, ahb, &ahbProperties) != |
| VK_SUCCESS) { |
| return gfxstream::unexpected("Failed to query ahb properties."); |
| } |
| |
| const VkExternalFormatANDROID externalFormat = { |
| .sType = VK_STRUCTURE_TYPE_EXTERNAL_FORMAT_ANDROID, |
| .externalFormat = ahbFormatProperties.externalFormat, |
| }; |
| |
| std::optional<vkhpp::UniqueSamplerYcbcrConversion> imageSamplerConversion; |
| std::optional<vkhpp::SamplerYcbcrConversionInfo> samplerConversionInfo; |
| if (ahbIsYuv) { |
| const vkhpp::SamplerYcbcrConversionCreateInfo conversionCreateInfo = { |
| .pNext = &externalFormat, |
| .format = static_cast<vkhpp::Format>(ahbFormatProperties.format), |
| .ycbcrModel = static_cast<vkhpp::SamplerYcbcrModelConversion>( |
| ahbFormatProperties.suggestedYcbcrModel), |
| .ycbcrRange = |
| static_cast<vkhpp::SamplerYcbcrRange>(ahbFormatProperties.suggestedYcbcrRange), |
| .components = |
| { |
| .r = static_cast<vkhpp::ComponentSwizzle>( |
| ahbFormatProperties.samplerYcbcrConversionComponents.r), |
| .g = static_cast<vkhpp::ComponentSwizzle>( |
| ahbFormatProperties.samplerYcbcrConversionComponents.g), |
| .b = static_cast<vkhpp::ComponentSwizzle>( |
| ahbFormatProperties.samplerYcbcrConversionComponents.b), |
| .a = static_cast<vkhpp::ComponentSwizzle>( |
| ahbFormatProperties.samplerYcbcrConversionComponents.a), |
| }, |
| .xChromaOffset = |
| static_cast<vkhpp::ChromaLocation>(ahbFormatProperties.suggestedXChromaOffset), |
| .yChromaOffset = |
| static_cast<vkhpp::ChromaLocation>(ahbFormatProperties.suggestedYChromaOffset), |
| .chromaFilter = vkhpp::Filter::eNearest, |
| .forceExplicitReconstruction = VK_FALSE, |
| }; |
| imageSamplerConversion = GFXSTREAM_EXPECT_VKHPP_RV( |
| vk.device->createSamplerYcbcrConversionUnique(conversionCreateInfo)); |
| |
| samplerConversionInfo = vkhpp::SamplerYcbcrConversionInfo{ |
| .conversion = **imageSamplerConversion, |
| }; |
| } |
| const vkhpp::SamplerCreateInfo samplerCreateInfo = { |
| .pNext = ahbIsYuv ? &samplerConversionInfo : nullptr, |
| .magFilter = vkhpp::Filter::eNearest, |
| .minFilter = vkhpp::Filter::eNearest, |
| .mipmapMode = vkhpp::SamplerMipmapMode::eNearest, |
| .addressModeU = vkhpp::SamplerAddressMode::eClampToEdge, |
| .addressModeV = vkhpp::SamplerAddressMode::eClampToEdge, |
| .addressModeW = vkhpp::SamplerAddressMode::eClampToEdge, |
| .mipLodBias = 0.0f, |
| .anisotropyEnable = VK_FALSE, |
| .maxAnisotropy = 1.0f, |
| .compareEnable = VK_FALSE, |
| .compareOp = vkhpp::CompareOp::eLessOrEqual, |
| .minLod = 0.0f, |
| .maxLod = 0.0f, |
| .borderColor = vkhpp::BorderColor::eIntTransparentBlack, |
| .unnormalizedCoordinates = VK_FALSE, |
| }; |
| auto imageSampler = |
| GFXSTREAM_EXPECT_VKHPP_RV(vk.device->createSamplerUnique(samplerCreateInfo)); |
| |
| const VkExternalMemoryImageCreateInfo externalMemoryImageCreateInfo = { |
| .sType = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO, |
| .pNext = &externalFormat, |
| .handleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID, |
| }; |
| const vkhpp::ImageCreateInfo imageCreateInfo = { |
| .pNext = &externalMemoryImageCreateInfo, |
| .imageType = vkhpp::ImageType::e2D, |
| .format = static_cast<vkhpp::Format>(ahbFormatProperties.format), |
| .extent = |
| { |
| .width = mGralloc->getWidth(ahb), |
| .height = mGralloc->getHeight(ahb), |
| .depth = 1, |
| }, |
| .mipLevels = 1, |
| .arrayLayers = 1, |
| .samples = vkhpp::SampleCountFlagBits::e1, |
| .tiling = vkhpp::ImageTiling::eOptimal, |
| .usage = usages, |
| .sharingMode = vkhpp::SharingMode::eExclusive, |
| .initialLayout = vkhpp::ImageLayout::eUndefined, |
| }; |
| auto image = GFXSTREAM_EXPECT_VKHPP_RV(vk.device->createImageUnique(imageCreateInfo)); |
| |
| const vkhpp::MemoryRequirements imageMemoryRequirements = { |
| .size = ahbProperties.allocationSize, |
| .alignment = 0, |
| .memoryTypeBits = ahbProperties.memoryTypeBits, |
| }; |
| const uint32_t imageMemoryIndex = |
| utils::getMemoryType(vk.physicalDevice, imageMemoryRequirements, |
| vkhpp::MemoryPropertyFlagBits::eDeviceLocal); |
| |
| const vkhpp::ImportAndroidHardwareBufferInfoANDROID importAhbInfo = { |
| .buffer = ahb, |
| }; |
| const vkhpp::MemoryDedicatedAllocateInfo importMemoryDedicatedInfo = { |
| .pNext = &importAhbInfo, |
| .image = *image, |
| }; |
| const vkhpp::MemoryAllocateInfo imageMemoryAllocateInfo = { |
| .pNext = &importMemoryDedicatedInfo, |
| .allocationSize = imageMemoryRequirements.size, |
| .memoryTypeIndex = imageMemoryIndex, |
| }; |
| auto imageMemory = |
| GFXSTREAM_EXPECT_VKHPP_RV(vk.device->allocateMemoryUnique(imageMemoryAllocateInfo)); |
| vk.device->bindImageMemory(*image, *imageMemory, 0); |
| |
| const vkhpp::ImageViewCreateInfo imageViewCreateInfo = { |
| .pNext = &samplerConversionInfo, |
| .image = *image, |
| .viewType = vkhpp::ImageViewType::e2D, |
| .format = static_cast<vkhpp::Format>(ahbFormatProperties.format), |
| .components = |
| { |
| .r = vkhpp::ComponentSwizzle::eIdentity, |
| .g = vkhpp::ComponentSwizzle::eIdentity, |
| .b = vkhpp::ComponentSwizzle::eIdentity, |
| .a = vkhpp::ComponentSwizzle::eIdentity, |
| }, |
| .subresourceRange = |
| { |
| .aspectMask = vkhpp::ImageAspectFlagBits::eColor, |
| .baseMipLevel = 0, |
| .levelCount = 1, |
| .baseArrayLayer = 0, |
| .layerCount = 1, |
| }, |
| }; |
| auto imageView = |
| GFXSTREAM_EXPECT_VKHPP_RV(vk.device->createImageViewUnique(imageViewCreateInfo)); |
| |
| GFXSTREAM_EXPECT(DoCommandsImmediate(vk, [&](vkhpp::UniqueCommandBuffer& cmd) { |
| const std::vector<vkhpp::ImageMemoryBarrier> imageMemoryBarriers = { |
| vkhpp::ImageMemoryBarrier{ |
| .srcAccessMask = {}, |
| .dstAccessMask = vkhpp::AccessFlagBits::eTransferWrite, |
| .oldLayout = vkhpp::ImageLayout::eUndefined, |
| .newLayout = layout, |
| .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, |
| .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, |
| .image = *image, |
| .subresourceRange = |
| { |
| .aspectMask = vkhpp::ImageAspectFlagBits::eColor, |
| .baseMipLevel = 0, |
| .levelCount = 1, |
| .baseArrayLayer = 0, |
| .layerCount = 1, |
| }, |
| |
| }, |
| }; |
| cmd->pipelineBarrier( |
| /*srcStageMask=*/vkhpp::PipelineStageFlagBits::eAllCommands, |
| /*dstStageMask=*/vkhpp::PipelineStageFlagBits::eAllCommands, |
| /*dependencyFlags=*/{}, |
| /*memoryBarriers=*/{}, |
| /*bufferMemoryBarriers=*/{}, |
| /*imageMemoryBarriers=*/imageMemoryBarriers); |
| return Ok{}; |
| })); |
| |
| return ImageWithMemory{ |
| .imageSamplerConversion = std::move(imageSamplerConversion), |
| .imageSampler = std::move(imageSampler), |
| .imageMemory = std::move(imageMemory), |
| .image = std::move(image), |
| .imageView = std::move(imageView), |
| }; |
| } |
| |
| Result<ImageWithMemory> CreateImage(TypicalVkTestEnvironment& vk, uint32_t width, |
| uint32_t height, vkhpp::Format format, |
| vkhpp::ImageUsageFlags usages, |
| vkhpp::MemoryPropertyFlags memoryProperties, |
| vkhpp::ImageLayout returnedLayout) { |
| const vkhpp::ImageCreateInfo imageCreateInfo = { |
| .imageType = vkhpp::ImageType::e2D, |
| .format = format, |
| .extent = |
| { |
| .width = width, |
| .height = height, |
| .depth = 1, |
| }, |
| .mipLevels = 1, |
| .arrayLayers = 1, |
| .samples = vkhpp::SampleCountFlagBits::e1, |
| .tiling = vkhpp::ImageTiling::eOptimal, |
| .usage = usages, |
| .sharingMode = vkhpp::SharingMode::eExclusive, |
| .initialLayout = vkhpp::ImageLayout::eUndefined, |
| }; |
| auto image = GFXSTREAM_EXPECT_VKHPP_RV(vk.device->createImageUnique(imageCreateInfo)); |
| |
| const auto memoryRequirements = vk.device->getImageMemoryRequirements(*image); |
| const uint32_t memoryIndex = |
| utils::getMemoryType(vk.physicalDevice, memoryRequirements, memoryProperties); |
| |
| const vkhpp::MemoryAllocateInfo imageMemoryAllocateInfo = { |
| .allocationSize = memoryRequirements.size, |
| .memoryTypeIndex = memoryIndex, |
| }; |
| auto imageMemory = |
| GFXSTREAM_EXPECT_VKHPP_RV(vk.device->allocateMemoryUnique(imageMemoryAllocateInfo)); |
| |
| vk.device->bindImageMemory(*image, *imageMemory, 0); |
| |
| const vkhpp::ImageViewCreateInfo imageViewCreateInfo = { |
| .image = *image, |
| .viewType = vkhpp::ImageViewType::e2D, |
| .format = format, |
| .components = |
| { |
| .r = vkhpp::ComponentSwizzle::eIdentity, |
| .g = vkhpp::ComponentSwizzle::eIdentity, |
| .b = vkhpp::ComponentSwizzle::eIdentity, |
| .a = vkhpp::ComponentSwizzle::eIdentity, |
| }, |
| .subresourceRange = |
| { |
| .aspectMask = vkhpp::ImageAspectFlagBits::eColor, |
| .baseMipLevel = 0, |
| .levelCount = 1, |
| .baseArrayLayer = 0, |
| .layerCount = 1, |
| }, |
| }; |
| auto imageView = |
| GFXSTREAM_EXPECT_VKHPP_RV(vk.device->createImageViewUnique(imageViewCreateInfo)); |
| |
| GFXSTREAM_EXPECT(DoCommandsImmediate(vk, [&](vkhpp::UniqueCommandBuffer& cmd) { |
| const std::vector<vkhpp::ImageMemoryBarrier> imageMemoryBarriers = { |
| vkhpp::ImageMemoryBarrier{ |
| .srcAccessMask = {}, |
| .dstAccessMask = vkhpp::AccessFlagBits::eTransferWrite, |
| .oldLayout = vkhpp::ImageLayout::eUndefined, |
| .newLayout = returnedLayout, |
| .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, |
| .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, |
| .image = *image, |
| .subresourceRange = |
| { |
| .aspectMask = vkhpp::ImageAspectFlagBits::eColor, |
| .baseMipLevel = 0, |
| .levelCount = 1, |
| .baseArrayLayer = 0, |
| .layerCount = 1, |
| }, |
| }, |
| }; |
| cmd->pipelineBarrier( |
| /*srcStageMask=*/vkhpp::PipelineStageFlagBits::eAllCommands, |
| /*dstStageMask=*/vkhpp::PipelineStageFlagBits::eAllCommands, |
| /*dependencyFlags=*/{}, |
| /*memoryBarriers=*/{}, |
| /*bufferMemoryBarriers=*/{}, |
| /*imageMemoryBarriers=*/imageMemoryBarriers); |
| |
| return Ok{}; |
| })); |
| |
| return ImageWithMemory{ |
| .image = std::move(image), |
| .imageMemory = std::move(imageMemory), |
| .imageView = std::move(imageView), |
| }; |
| } |
| |
| struct FramebufferWithAttachments { |
| std::optional<ImageWithMemory> colorAttachment; |
| std::optional<ImageWithMemory> depthAttachment; |
| vkhpp::UniqueRenderPass renderpass; |
| vkhpp::UniqueFramebuffer framebuffer; |
| }; |
| Result<FramebufferWithAttachments> CreateFramebuffer( |
| TypicalVkTestEnvironment& vk, uint32_t width, uint32_t height, |
| vkhpp::Format colorAttachmentFormat = vkhpp::Format::eUndefined, |
| vkhpp::Format depthAttachmentFormat = vkhpp::Format::eUndefined) { |
| std::optional<ImageWithMemory> colorAttachment; |
| if (colorAttachmentFormat != vkhpp::Format::eUndefined) { |
| colorAttachment = |
| GFXSTREAM_EXPECT(CreateImage(vk, width, height, colorAttachmentFormat, |
| vkhpp::ImageUsageFlagBits::eColorAttachment | |
| vkhpp::ImageUsageFlagBits::eTransferSrc, |
| vkhpp::MemoryPropertyFlagBits::eDeviceLocal, |
| vkhpp::ImageLayout::eColorAttachmentOptimal)); |
| } |
| |
| std::optional<ImageWithMemory> depthAttachment; |
| if (depthAttachmentFormat != vkhpp::Format::eUndefined) { |
| depthAttachment = |
| GFXSTREAM_EXPECT(CreateImage(vk, width, height, depthAttachmentFormat, |
| vkhpp::ImageUsageFlagBits::eDepthStencilAttachment | |
| vkhpp::ImageUsageFlagBits::eTransferSrc, |
| vkhpp::MemoryPropertyFlagBits::eDeviceLocal, |
| vkhpp::ImageLayout::eDepthStencilAttachmentOptimal)); |
| } |
| |
| std::vector<vkhpp::AttachmentDescription> attachments; |
| |
| std::optional<vkhpp::AttachmentReference> colorAttachmentReference; |
| if (colorAttachmentFormat != vkhpp::Format::eUndefined) { |
| attachments.push_back(vkhpp::AttachmentDescription{ |
| .format = colorAttachmentFormat, |
| .samples = vkhpp::SampleCountFlagBits::e1, |
| .loadOp = vkhpp::AttachmentLoadOp::eClear, |
| .storeOp = vkhpp::AttachmentStoreOp::eStore, |
| .stencilLoadOp = vkhpp::AttachmentLoadOp::eClear, |
| .stencilStoreOp = vkhpp::AttachmentStoreOp::eStore, |
| .initialLayout = vkhpp::ImageLayout::eColorAttachmentOptimal, |
| .finalLayout = vkhpp::ImageLayout::eColorAttachmentOptimal, |
| }); |
| |
| colorAttachmentReference = vkhpp::AttachmentReference{ |
| .attachment = static_cast<uint32_t>(attachments.size() - 1), |
| .layout = vkhpp::ImageLayout::eColorAttachmentOptimal, |
| }; |
| } |
| |
| std::optional<vkhpp::AttachmentReference> depthAttachmentReference; |
| if (depthAttachmentFormat != vkhpp::Format::eUndefined) { |
| attachments.push_back(vkhpp::AttachmentDescription{ |
| .format = depthAttachmentFormat, |
| .samples = vkhpp::SampleCountFlagBits::e1, |
| .loadOp = vkhpp::AttachmentLoadOp::eClear, |
| .storeOp = vkhpp::AttachmentStoreOp::eStore, |
| .stencilLoadOp = vkhpp::AttachmentLoadOp::eClear, |
| .stencilStoreOp = vkhpp::AttachmentStoreOp::eStore, |
| .initialLayout = vkhpp::ImageLayout::eColorAttachmentOptimal, |
| .finalLayout = vkhpp::ImageLayout::eColorAttachmentOptimal, |
| }); |
| |
| depthAttachmentReference = vkhpp::AttachmentReference{ |
| .attachment = static_cast<uint32_t>(attachments.size() - 1), |
| .layout = vkhpp::ImageLayout::eDepthStencilAttachmentOptimal, |
| }; |
| } |
| |
| vkhpp::SubpassDependency dependency = { |
| .srcSubpass = 0, |
| .dstSubpass = 0, |
| .srcStageMask = {}, |
| .dstStageMask = vkhpp::PipelineStageFlagBits::eFragmentShader, |
| .srcAccessMask = {}, |
| .dstAccessMask = vkhpp::AccessFlagBits::eInputAttachmentRead, |
| .dependencyFlags = vkhpp::DependencyFlagBits::eByRegion, |
| }; |
| if (colorAttachmentFormat != vkhpp::Format::eUndefined) { |
| dependency.srcStageMask |= vkhpp::PipelineStageFlagBits::eColorAttachmentOutput; |
| dependency.dstStageMask |= vkhpp::PipelineStageFlagBits::eColorAttachmentOutput; |
| dependency.srcAccessMask |= vkhpp::AccessFlagBits::eColorAttachmentWrite; |
| } |
| if (depthAttachmentFormat != vkhpp::Format::eUndefined) { |
| dependency.srcStageMask |= vkhpp::PipelineStageFlagBits::eColorAttachmentOutput; |
| dependency.dstStageMask |= vkhpp::PipelineStageFlagBits::eColorAttachmentOutput; |
| dependency.srcAccessMask |= vkhpp::AccessFlagBits::eColorAttachmentWrite; |
| } |
| |
| vkhpp::SubpassDescription subpass = { |
| .pipelineBindPoint = vkhpp::PipelineBindPoint::eGraphics, |
| .inputAttachmentCount = 0, |
| .pInputAttachments = nullptr, |
| .colorAttachmentCount = 0, |
| .pColorAttachments = nullptr, |
| .pResolveAttachments = nullptr, |
| .pDepthStencilAttachment = nullptr, |
| .pPreserveAttachments = nullptr, |
| }; |
| if (colorAttachmentFormat != vkhpp::Format::eUndefined) { |
| subpass.colorAttachmentCount = 1; |
| subpass.pColorAttachments = &*colorAttachmentReference; |
| } |
| if (depthAttachmentFormat != vkhpp::Format::eUndefined) { |
| subpass.pDepthStencilAttachment = &*depthAttachmentReference; |
| } |
| |
| const vkhpp::RenderPassCreateInfo renderpassCreateInfo = { |
| .attachmentCount = static_cast<uint32_t>(attachments.size()), |
| .pAttachments = attachments.data(), |
| .subpassCount = 1, |
| .pSubpasses = &subpass, |
| .dependencyCount = 1, |
| .pDependencies = &dependency, |
| }; |
| auto renderpass = |
| GFXSTREAM_EXPECT_VKHPP_RV(vk.device->createRenderPassUnique(renderpassCreateInfo)); |
| |
| std::vector<vkhpp::ImageView> framebufferAttachments; |
| if (colorAttachment) { |
| framebufferAttachments.push_back(*colorAttachment->imageView); |
| } |
| if (depthAttachment) { |
| framebufferAttachments.push_back(*depthAttachment->imageView); |
| } |
| const vkhpp::FramebufferCreateInfo framebufferCreateInfo = { |
| .renderPass = *renderpass, |
| .attachmentCount = static_cast<uint32_t>(framebufferAttachments.size()), |
| .pAttachments = framebufferAttachments.data(), |
| .width = width, |
| .height = height, |
| .layers = 1, |
| }; |
| auto framebuffer = |
| GFXSTREAM_EXPECT_VKHPP_RV(vk.device->createFramebufferUnique(framebufferCreateInfo)); |
| |
| return FramebufferWithAttachments{ |
| .colorAttachment = std::move(colorAttachment), |
| .depthAttachment = std::move(depthAttachment), |
| .renderpass = std::move(renderpass), |
| .framebuffer = std::move(framebuffer), |
| }; |
| } |
| |
| struct DescriptorContents { |
| uint32_t binding = 0; |
| struct Image { |
| vkhpp::ImageView imageView; |
| vkhpp::ImageLayout imageLayout; |
| vkhpp::Sampler imageSampler; |
| }; |
| std::optional<Image> image; |
| }; |
| struct DescriptorSetBundle { |
| vkhpp::UniqueDescriptorPool pool; |
| vkhpp::UniqueDescriptorSetLayout layout; |
| vkhpp::UniqueDescriptorSet ds; |
| }; |
| Result<DescriptorSetBundle> CreateDescriptorSet( |
| TypicalVkTestEnvironment& vk, |
| const std::vector<vkhpp::DescriptorSetLayoutBinding>& bindings, |
| const std::vector<DescriptorContents> contents) { |
| std::unordered_map<vkhpp::DescriptorType, uint32_t> descriptorTypeToSizes; |
| for (const auto& binding : bindings) { |
| descriptorTypeToSizes[binding.descriptorType] += binding.descriptorCount; |
| } |
| std::vector<vkhpp::DescriptorPoolSize> descriptorPoolSizes; |
| for (const auto& [descriptorType, descriptorCount] : descriptorTypeToSizes) { |
| descriptorPoolSizes.push_back(vkhpp::DescriptorPoolSize{ |
| .type = descriptorType, |
| .descriptorCount = descriptorCount, |
| }); |
| } |
| const vkhpp::DescriptorPoolCreateInfo descriptorPoolCreateInfo = { |
| .flags = vkhpp::DescriptorPoolCreateFlagBits::eFreeDescriptorSet, |
| .maxSets = 1, |
| .poolSizeCount = static_cast<uint32_t>(descriptorPoolSizes.size()), |
| .pPoolSizes = descriptorPoolSizes.data(), |
| }; |
| auto descriptorSetPool = GFXSTREAM_EXPECT_VKHPP_RV( |
| vk.device->createDescriptorPoolUnique(descriptorPoolCreateInfo)); |
| |
| const vkhpp::DescriptorSetLayoutCreateInfo descriptorSetLayoutCreateInfo = { |
| .bindingCount = static_cast<uint32_t>(bindings.size()), |
| .pBindings = bindings.data(), |
| }; |
| auto descriptorSetLayout = GFXSTREAM_EXPECT_VKHPP_RV( |
| vk.device->createDescriptorSetLayoutUnique(descriptorSetLayoutCreateInfo)); |
| |
| const vkhpp::DescriptorSetLayout descriptorSetLayoutHandle = *descriptorSetLayout; |
| const vkhpp::DescriptorSetAllocateInfo descriptorSetAllocateInfo = { |
| .descriptorPool = *descriptorSetPool, |
| .descriptorSetCount = 1, |
| .pSetLayouts = &descriptorSetLayoutHandle, |
| }; |
| auto descriptorSets = GFXSTREAM_EXPECT_VKHPP_RV( |
| vk.device->allocateDescriptorSetsUnique(descriptorSetAllocateInfo)); |
| auto descriptorSet(std::move(descriptorSets[0])); |
| |
| std::vector<std::unique_ptr<vkhpp::DescriptorImageInfo>> descriptorImageInfos; |
| std::vector<vkhpp::WriteDescriptorSet> descriptorSetWrites; |
| for (const auto& content : contents) { |
| if (content.image) { |
| descriptorImageInfos.emplace_back(new vkhpp::DescriptorImageInfo{ |
| .sampler = content.image->imageSampler, |
| .imageView = content.image->imageView, |
| .imageLayout = content.image->imageLayout, |
| }); |
| descriptorSetWrites.emplace_back(vkhpp::WriteDescriptorSet{ |
| .dstSet = *descriptorSet, |
| .dstBinding = content.binding, |
| .dstArrayElement = 0, |
| .descriptorCount = 1, |
| .descriptorType = vkhpp::DescriptorType::eCombinedImageSampler, |
| .pImageInfo = descriptorImageInfos.back().get(), |
| }); |
| } else { |
| return gfxstream::unexpected("Unhandled descriptor type"); |
| ; |
| } |
| } |
| vk.device->updateDescriptorSets(descriptorSetWrites, {}); |
| |
| return DescriptorSetBundle{ |
| .pool = std::move(descriptorSetPool), |
| .layout = std::move(descriptorSetLayout), |
| .ds = std::move(descriptorSet), |
| }; |
| } |
| |
| struct PipelineParams { |
| std::vector<uint32_t> vert; |
| std::vector<uint32_t> frag; |
| std::vector<DescriptorSetBundle*> descriptorSets; |
| const FramebufferWithAttachments* framebuffer = nullptr; |
| }; |
| struct PipelineBundle { |
| vkhpp::UniqueShaderModule vert; |
| vkhpp::UniqueShaderModule frag; |
| vkhpp::UniquePipelineLayout pipelineLayout; |
| vkhpp::UniquePipeline pipeline; |
| }; |
| Result<PipelineBundle> CreatePipeline(TypicalVkTestEnvironment& vk, |
| const PipelineParams& params) { |
| const vkhpp::ShaderModuleCreateInfo vertShaderCreateInfo = { |
| .codeSize = params.vert.size() * sizeof(uint32_t), |
| .pCode = params.vert.data(), |
| }; |
| auto vertShaderModule = |
| GFXSTREAM_EXPECT_VKHPP_RV(vk.device->createShaderModuleUnique(vertShaderCreateInfo)); |
| |
| const vkhpp::ShaderModuleCreateInfo fragShaderCreateInfo = { |
| .codeSize = params.frag.size() * sizeof(uint32_t), |
| .pCode = params.frag.data(), |
| }; |
| auto fragShaderModule = |
| GFXSTREAM_EXPECT_VKHPP_RV(vk.device->createShaderModuleUnique(fragShaderCreateInfo)); |
| |
| const std::vector<vkhpp::PipelineShaderStageCreateInfo> pipelineStages = { |
| vkhpp::PipelineShaderStageCreateInfo{ |
| .stage = vkhpp::ShaderStageFlagBits::eVertex, |
| .module = *vertShaderModule, |
| .pName = "main", |
| }, |
| vkhpp::PipelineShaderStageCreateInfo{ |
| .stage = vkhpp::ShaderStageFlagBits::eFragment, |
| .module = *fragShaderModule, |
| .pName = "main", |
| }, |
| }; |
| |
| std::vector<vkhpp::DescriptorSetLayout> descriptorSetLayoutHandles; |
| for (const auto* descriptorSet : params.descriptorSets) { |
| descriptorSetLayoutHandles.push_back(*descriptorSet->layout); |
| } |
| const vkhpp::PipelineLayoutCreateInfo pipelineLayoutCreateInfo = { |
| .setLayoutCount = static_cast<uint32_t>(descriptorSetLayoutHandles.size()), |
| .pSetLayouts = descriptorSetLayoutHandles.data(), |
| }; |
| auto pipelineLayout = GFXSTREAM_EXPECT_VKHPP_RV( |
| vk.device->createPipelineLayoutUnique(pipelineLayoutCreateInfo)); |
| |
| const vkhpp::PipelineVertexInputStateCreateInfo pipelineVertexInputStateCreateInfo = {}; |
| const vkhpp::PipelineInputAssemblyStateCreateInfo pipelineInputAssemblyStateCreateInfo = { |
| .topology = vkhpp::PrimitiveTopology::eTriangleList, |
| }; |
| const vkhpp::PipelineViewportStateCreateInfo pipelineViewportStateCreateInfo = { |
| .viewportCount = 1, |
| .pViewports = nullptr, |
| .scissorCount = 1, |
| .pScissors = nullptr, |
| }; |
| const vkhpp::PipelineRasterizationStateCreateInfo pipelineRasterStateCreateInfo = { |
| .depthClampEnable = VK_FALSE, |
| .rasterizerDiscardEnable = VK_FALSE, |
| .polygonMode = vkhpp::PolygonMode::eFill, |
| .cullMode = {}, |
| .frontFace = vkhpp::FrontFace::eCounterClockwise, |
| .depthBiasEnable = VK_FALSE, |
| .depthBiasConstantFactor = 0.0f, |
| .depthBiasClamp = 0.0f, |
| .depthBiasSlopeFactor = 0.0f, |
| .lineWidth = 1.0f, |
| }; |
| const vkhpp::SampleMask pipelineSampleMask = 65535; |
| const vkhpp::PipelineMultisampleStateCreateInfo pipelineMultisampleStateCreateInfo = { |
| .rasterizationSamples = vkhpp::SampleCountFlagBits::e1, |
| .sampleShadingEnable = VK_FALSE, |
| .minSampleShading = 1.0f, |
| .pSampleMask = &pipelineSampleMask, |
| .alphaToCoverageEnable = VK_FALSE, |
| .alphaToOneEnable = VK_FALSE, |
| }; |
| const vkhpp::PipelineDepthStencilStateCreateInfo pipelineDepthStencilStateCreateInfo = { |
| .depthTestEnable = VK_FALSE, |
| .depthWriteEnable = VK_FALSE, |
| .depthCompareOp = vkhpp::CompareOp::eLess, |
| .depthBoundsTestEnable = VK_FALSE, |
| .stencilTestEnable = VK_FALSE, |
| .front = |
| { |
| .failOp = vkhpp::StencilOp::eKeep, |
| .passOp = vkhpp::StencilOp::eKeep, |
| .depthFailOp = vkhpp::StencilOp::eKeep, |
| .compareOp = vkhpp::CompareOp::eAlways, |
| .compareMask = 0, |
| .writeMask = 0, |
| .reference = 0, |
| }, |
| .back = |
| { |
| .failOp = vkhpp::StencilOp::eKeep, |
| .passOp = vkhpp::StencilOp::eKeep, |
| .depthFailOp = vkhpp::StencilOp::eKeep, |
| .compareOp = vkhpp::CompareOp::eAlways, |
| .compareMask = 0, |
| .writeMask = 0, |
| .reference = 0, |
| }, |
| .minDepthBounds = 0.0f, |
| .maxDepthBounds = 0.0f, |
| }; |
| const std::vector<vkhpp::PipelineColorBlendAttachmentState> pipelineColorBlendAttachments = |
| { |
| vkhpp::PipelineColorBlendAttachmentState{ |
| .blendEnable = VK_FALSE, |
| .srcColorBlendFactor = vkhpp::BlendFactor::eOne, |
| .dstColorBlendFactor = vkhpp::BlendFactor::eOneMinusSrcAlpha, |
| .colorBlendOp = vkhpp::BlendOp::eAdd, |
| .srcAlphaBlendFactor = vkhpp::BlendFactor::eOne, |
| .dstAlphaBlendFactor = vkhpp::BlendFactor::eOneMinusSrcAlpha, |
| .alphaBlendOp = vkhpp::BlendOp::eAdd, |
| .colorWriteMask = |
| vkhpp::ColorComponentFlagBits::eR | vkhpp::ColorComponentFlagBits::eG | |
| vkhpp::ColorComponentFlagBits::eB | vkhpp::ColorComponentFlagBits::eA, |
| }, |
| }; |
| const vkhpp::PipelineColorBlendStateCreateInfo pipelineColorBlendStateCreateInfo = { |
| .logicOpEnable = VK_FALSE, |
| .logicOp = vkhpp::LogicOp::eCopy, |
| .attachmentCount = static_cast<uint32_t>(pipelineColorBlendAttachments.size()), |
| .pAttachments = pipelineColorBlendAttachments.data(), |
| .blendConstants = {{ |
| 0.0f, |
| 0.0f, |
| 0.0f, |
| 0.0f, |
| }}, |
| }; |
| const std::vector<vkhpp::DynamicState> pipelineDynamicStates = { |
| vkhpp::DynamicState::eViewport, |
| vkhpp::DynamicState::eScissor, |
| }; |
| const vkhpp::PipelineDynamicStateCreateInfo pipelineDynamicStateCreateInfo = { |
| .dynamicStateCount = static_cast<uint32_t>(pipelineDynamicStates.size()), |
| .pDynamicStates = pipelineDynamicStates.data(), |
| }; |
| const vkhpp::GraphicsPipelineCreateInfo pipelineCreateInfo = { |
| .stageCount = static_cast<uint32_t>(pipelineStages.size()), |
| .pStages = pipelineStages.data(), |
| .pVertexInputState = &pipelineVertexInputStateCreateInfo, |
| .pInputAssemblyState = &pipelineInputAssemblyStateCreateInfo, |
| .pTessellationState = nullptr, |
| .pViewportState = &pipelineViewportStateCreateInfo, |
| .pRasterizationState = &pipelineRasterStateCreateInfo, |
| .pMultisampleState = &pipelineMultisampleStateCreateInfo, |
| .pDepthStencilState = &pipelineDepthStencilStateCreateInfo, |
| .pColorBlendState = &pipelineColorBlendStateCreateInfo, |
| .pDynamicState = &pipelineDynamicStateCreateInfo, |
| .layout = *pipelineLayout, |
| .renderPass = *params.framebuffer->renderpass, |
| .subpass = 0, |
| .basePipelineHandle = VK_NULL_HANDLE, |
| .basePipelineIndex = 0, |
| }; |
| auto pipeline = GFXSTREAM_EXPECT_VKHPP_RV( |
| vk.device->createGraphicsPipelineUnique({}, pipelineCreateInfo)); |
| |
| return PipelineBundle{ |
| .vert = std::move(vertShaderModule), |
| .frag = std::move(fragShaderModule), |
| .pipelineLayout = std::move(pipelineLayout), |
| .pipeline = std::move(pipeline), |
| }; |
| } |
| |
| Result<Image> DownloadImage(TypicalVkTestEnvironment& vk, uint32_t width, uint32_t height, |
| const vkhpp::UniqueImage& image, vkhpp::ImageLayout currentLayout, |
| vkhpp::ImageLayout returnedLayout) { |
| static constexpr const VkDeviceSize kStagingBufferSize = 32 * 1024 * 1024; |
| auto stagingBuffer = GFXSTREAM_EXPECT(CreateBuffer( |
| vk, kStagingBufferSize, |
| vkhpp::BufferUsageFlagBits::eTransferDst | vkhpp::BufferUsageFlagBits::eTransferSrc, |
| vkhpp::MemoryPropertyFlagBits::eHostVisible | |
| vkhpp::MemoryPropertyFlagBits::eHostCoherent)); |
| |
| GFXSTREAM_EXPECT(DoCommandsImmediate(vk, [&](vkhpp::UniqueCommandBuffer& cmd) { |
| if (currentLayout != vkhpp::ImageLayout::eTransferSrcOptimal) { |
| const std::vector<vkhpp::ImageMemoryBarrier> imageMemoryBarriers = { |
| vkhpp::ImageMemoryBarrier{ |
| .srcAccessMask = vkhpp::AccessFlagBits::eMemoryRead | |
| vkhpp::AccessFlagBits::eMemoryWrite, |
| .dstAccessMask = vkhpp::AccessFlagBits::eTransferRead, |
| .oldLayout = currentLayout, |
| .newLayout = vkhpp::ImageLayout::eTransferSrcOptimal, |
| .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, |
| .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, |
| .image = *image, |
| .subresourceRange = |
| { |
| .aspectMask = vkhpp::ImageAspectFlagBits::eColor, |
| .baseMipLevel = 0, |
| .levelCount = 1, |
| .baseArrayLayer = 0, |
| .layerCount = 1, |
| }, |
| }, |
| }; |
| cmd->pipelineBarrier( |
| /*srcStageMask=*/vkhpp::PipelineStageFlagBits::eAllCommands, |
| /*dstStageMask=*/vkhpp::PipelineStageFlagBits::eAllCommands, |
| /*dependencyFlags=*/{}, |
| /*memoryBarriers=*/{}, |
| /*bufferMemoryBarriers=*/{}, |
| /*imageMemoryBarriers=*/imageMemoryBarriers); |
| } |
| |
| const std::vector<vkhpp::BufferImageCopy> regions = { |
| vkhpp::BufferImageCopy{ |
| .bufferOffset = 0, |
| .bufferRowLength = 0, |
| .bufferImageHeight = 0, |
| .imageSubresource = |
| { |
| .aspectMask = vkhpp::ImageAspectFlagBits::eColor, |
| .mipLevel = 0, |
| .baseArrayLayer = 0, |
| .layerCount = 1, |
| }, |
| .imageOffset = |
| { |
| .x = 0, |
| .y = 0, |
| .z = 0, |
| }, |
| .imageExtent = |
| { |
| .width = width, |
| .height = height, |
| .depth = 1, |
| }, |
| }, |
| }; |
| cmd->copyImageToBuffer(*image, vkhpp::ImageLayout::eTransferSrcOptimal, |
| *stagingBuffer.buffer, regions); |
| |
| if (returnedLayout != vkhpp::ImageLayout::eTransferSrcOptimal) { |
| const std::vector<vkhpp::ImageMemoryBarrier> imageMemoryBarriers = { |
| vkhpp::ImageMemoryBarrier{ |
| .srcAccessMask = vkhpp::AccessFlagBits::eTransferRead, |
| .dstAccessMask = vkhpp::AccessFlagBits::eMemoryRead | |
| vkhpp::AccessFlagBits::eMemoryWrite, |
| .oldLayout = vkhpp::ImageLayout::eTransferSrcOptimal, |
| .newLayout = returnedLayout, |
| .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, |
| .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, |
| .image = *image, |
| .subresourceRange = |
| { |
| .aspectMask = vkhpp::ImageAspectFlagBits::eColor, |
| .baseMipLevel = 0, |
| .levelCount = 1, |
| .baseArrayLayer = 0, |
| .layerCount = 1, |
| }, |
| }, |
| }; |
| cmd->pipelineBarrier( |
| /*srcStageMask=*/vkhpp::PipelineStageFlagBits::eAllCommands, |
| /*dstStageMask=*/vkhpp::PipelineStageFlagBits::eAllCommands, |
| /*dependencyFlags=*/{}, |
| /*memoryBarriers=*/{}, |
| /*bufferMemoryBarriers=*/{}, |
| /*imageMemoryBarriers=*/imageMemoryBarriers); |
| } |
| return Ok{}; |
| })); |
| |
| std::vector<uint32_t> outPixels; |
| outPixels.resize(width * height); |
| |
| auto* mapped = GFXSTREAM_EXPECT_VKHPP_RV( |
| vk.device->mapMemory(*stagingBuffer.bufferMemory, 0, VK_WHOLE_SIZE)); |
| std::memcpy(outPixels.data(), mapped, sizeof(uint32_t) * outPixels.size()); |
| vk.device->unmapMemory(*stagingBuffer.bufferMemory); |
| |
| return Image{ |
| .width = width, |
| .height = height, |
| .pixels = outPixels, |
| }; |
| } |
| |
| void DoFillAndRenderFromAhb(uint32_t ahbFormat) { |
| const uint32_t width = 1920; |
| const uint32_t height = 1080; |
| const auto goldenPixel = PixelR8G8B8A8(0, 255, 255, 255); |
| const auto badPixel = PixelR8G8B8A8(0, 0, 0, 255); |
| |
| // Bind to a placeholder ahb before rebinding to the real one. |
| // This is to test the behavior of descriptors and make sure |
| // it removes the references to the old one when overwritten. |
| auto deletedAhb = |
| GFXSTREAM_ASSERT(ScopedAHardwareBuffer::Allocate(*mGralloc, width, height, ahbFormat)); |
| |
| GFXSTREAM_ASSERT(FillAhb(deletedAhb, badPixel)); |
| |
| auto ahb = |
| GFXSTREAM_ASSERT(ScopedAHardwareBuffer::Allocate(*mGralloc, width, height, ahbFormat)); |
| |
| GFXSTREAM_ASSERT(FillAhb(ahb, goldenPixel)); |
| |
| const vkhpp::PhysicalDeviceVulkan11Features deviceFeatures = { |
| .samplerYcbcrConversion = VK_TRUE, |
| }; |
| auto vk = GFXSTREAM_ASSERT(SetUpTypicalVkTestEnvironment({ |
| .deviceExtensions = {{VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME}}, |
| .deviceCreateInfoPNext = &deviceFeatures, |
| })); |
| |
| auto deletedAhbImage = |
| GFXSTREAM_ASSERT(CreateImageWithAhb(vk, deletedAhb, vkhpp::ImageUsageFlagBits::eSampled, |
| vkhpp::ImageLayout::eShaderReadOnlyOptimal)); |
| |
| auto ahbImage = |
| GFXSTREAM_ASSERT(CreateImageWithAhb(vk, ahb, vkhpp::ImageUsageFlagBits::eSampled, |
| vkhpp::ImageLayout::eShaderReadOnlyOptimal)); |
| |
| auto framebuffer = GFXSTREAM_ASSERT(CreateFramebuffer( |
| vk, width, height, /*colorAttachmentFormat=*/vkhpp::Format::eR8G8B8A8Unorm)); |
| |
| const vkhpp::Sampler ahbSamplerHandle = *ahbImage.imageSampler; |
| auto descriptorSet0 = GFXSTREAM_ASSERT( |
| CreateDescriptorSet(vk, |
| /*bindings=*/ |
| {{ |
| .binding = 0, |
| .descriptorType = vkhpp::DescriptorType::eCombinedImageSampler, |
| .descriptorCount = 1, |
| .stageFlags = vkhpp::ShaderStageFlagBits::eFragment, |
| .pImmutableSamplers = &ahbSamplerHandle, |
| }}, |
| /*writes=*/ |
| {{ |
| .binding = 0, |
| .image = {{ |
| .imageView = *deletedAhbImage.imageView, |
| .imageLayout = vkhpp::ImageLayout::eShaderReadOnlyOptimal, |
| .imageSampler = *deletedAhbImage.imageSampler, |
| }}, |
| }})); |
| |
| auto pipeline = |
| GFXSTREAM_ASSERT(CreatePipeline(vk, { |
| .vert = kFullscreenTriangleWithUVVert, |
| .frag = kBlitSampler2dFrag, |
| .descriptorSets = {&descriptorSet0}, |
| .framebuffer = &framebuffer, |
| })); |
| |
| std::vector<vkhpp::WriteDescriptorSet> descriptorSetWrites; |
| vkhpp::DescriptorImageInfo descriptorImageInfo = { |
| .imageView = *ahbImage.imageView, |
| .imageLayout = vkhpp::ImageLayout::eShaderReadOnlyOptimal, |
| .sampler = *ahbImage.imageSampler, |
| }; |
| descriptorSetWrites.emplace_back(vkhpp::WriteDescriptorSet{ |
| .dstSet = *descriptorSet0.ds, |
| .dstBinding = 0, |
| .dstArrayElement = 0, |
| .descriptorCount = 1, |
| .descriptorType = vkhpp::DescriptorType::eCombinedImageSampler, |
| .pImageInfo = &descriptorImageInfo, |
| }); |
| vk.device->updateDescriptorSets(descriptorSetWrites, {}); |
| deletedAhbImage = {}; |
| deletedAhb = {}; |
| |
| GFXSTREAM_ASSERT(DoCommandsImmediate(vk, [&](vkhpp::UniqueCommandBuffer& cmd) { |
| const std::vector<vkhpp::ClearValue> renderPassBeginClearValues = { |
| vkhpp::ClearValue{ |
| .color = |
| { |
| .float32 = {{ |
| 1.0f, |
| 0.0f, |
| 0.0f, |
| 1.0f, |
| }}, |
| }, |
| }, |
| }; |
| const vkhpp::RenderPassBeginInfo renderPassBeginInfo = { |
| .renderPass = *framebuffer.renderpass, |
| .framebuffer = *framebuffer.framebuffer, |
| .renderArea = |
| { |
| .offset = |
| { |
| .x = 0, |
| .y = 0, |
| }, |
| .extent = |
| { |
| .width = width, |
| .height = height, |
| }, |
| }, |
| .clearValueCount = static_cast<uint32_t>(renderPassBeginClearValues.size()), |
| .pClearValues = renderPassBeginClearValues.data(), |
| }; |
| cmd->beginRenderPass(renderPassBeginInfo, vkhpp::SubpassContents::eInline); |
| cmd->bindPipeline(vkhpp::PipelineBindPoint::eGraphics, *pipeline.pipeline); |
| cmd->bindDescriptorSets(vkhpp::PipelineBindPoint::eGraphics, *pipeline.pipelineLayout, |
| /*firstSet=*/0, {*descriptorSet0.ds}, |
| /*dynamicOffsets=*/{}); |
| const vkhpp::Viewport viewport = { |
| .x = 0.0f, |
| .y = 0.0f, |
| .width = static_cast<float>(width), |
| .height = static_cast<float>(height), |
| .minDepth = 0.0f, |
| .maxDepth = 1.0f, |
| }; |
| cmd->setViewport(0, {viewport}); |
| const vkhpp::Rect2D scissor = { |
| .offset = |
| { |
| .x = 0, |
| .y = 0, |
| }, |
| .extent = |
| { |
| .width = width, |
| .height = height, |
| }, |
| }; |
| cmd->setScissor(0, {scissor}); |
| cmd->draw(3, 1, 0, 0); |
| cmd->endRenderPass(); |
| return Ok{}; |
| })); |
| |
| const auto actualImage = GFXSTREAM_ASSERT( |
| DownloadImage(vk, width, height, framebuffer.colorAttachment->image, |
| /*currentLayout=*/vkhpp::ImageLayout::eColorAttachmentOptimal, |
| /*returnedLayout=*/vkhpp::ImageLayout::eColorAttachmentOptimal)); |
| |
| const auto expectedImage = ImageFromColor(width, height, goldenPixel); |
| EXPECT_THAT(AreImagesSimilar(expectedImage, actualImage), IsTrue()); |
| } |
| }; |
| |
| TEST_P(GfxstreamEnd2EndVkTest, Basic) { |
| auto [instance, physicalDevice, device, queue, queueFamilyIndex] = |
| GFXSTREAM_ASSERT(SetUpTypicalVkTestEnvironment()); |
| } |
| |
| TEST_P(GfxstreamEnd2EndVkTest, ImportAHB) { |
| auto [instance, physicalDevice, device, queue, queueFamilyIndex] = |
| GFXSTREAM_ASSERT(SetUpTypicalVkTestEnvironment()); |
| |
| const uint32_t width = 32; |
| const uint32_t height = 32; |
| auto ahb = GFXSTREAM_ASSERT(ScopedAHardwareBuffer::Allocate( |
| *mGralloc, width, height, GFXSTREAM_AHB_FORMAT_R8G8B8A8_UNORM)); |
| |
| const VkNativeBufferANDROID imageNativeBufferInfo = { |
| .sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID, |
| .handle = mGralloc->getNativeHandle(ahb), |
| }; |
| |
| auto vkQueueSignalReleaseImageANDROID = PFN_vkQueueSignalReleaseImageANDROID( |
| device->getProcAddr("vkQueueSignalReleaseImageANDROID")); |
| ASSERT_THAT(vkQueueSignalReleaseImageANDROID, NotNull()); |
| |
| const vkhpp::ImageCreateInfo imageCreateInfo = { |
| .pNext = &imageNativeBufferInfo, |
| .imageType = vkhpp::ImageType::e2D, |
| .extent.width = width, |
| .extent.height = height, |
| .extent.depth = 1, |
| .mipLevels = 1, |
| .arrayLayers = 1, |
| .format = vkhpp::Format::eR8G8B8A8Unorm, |
| .tiling = vkhpp::ImageTiling::eOptimal, |
| .initialLayout = vkhpp::ImageLayout::eUndefined, |
| .usage = vkhpp::ImageUsageFlagBits::eSampled | |
| vkhpp::ImageUsageFlagBits::eTransferDst | |
| vkhpp::ImageUsageFlagBits::eTransferSrc, |
| .sharingMode = vkhpp::SharingMode::eExclusive, |
| .samples = vkhpp::SampleCountFlagBits::e1, |
| }; |
| auto image = device->createImageUnique(imageCreateInfo).value; |
| |
| vkhpp::MemoryRequirements imageMemoryRequirements{}; |
| device->getImageMemoryRequirements(*image, &imageMemoryRequirements); |
| |
| const uint32_t imageMemoryIndex = utils::getMemoryType( |
| physicalDevice, imageMemoryRequirements, vkhpp::MemoryPropertyFlagBits::eDeviceLocal); |
| ASSERT_THAT(imageMemoryIndex, Not(Eq(-1))); |
| |
| const vkhpp::MemoryAllocateInfo imageMemoryAllocateInfo = { |
| .allocationSize = imageMemoryRequirements.size, |
| .memoryTypeIndex = imageMemoryIndex, |
| }; |
| |
| auto imageMemory = device->allocateMemoryUnique(imageMemoryAllocateInfo).value; |
| ASSERT_THAT(imageMemory, IsValidHandle()); |
| ASSERT_THAT(device->bindImageMemory(*image, *imageMemory, 0), IsVkSuccess()); |
| |
| const vkhpp::BufferCreateInfo bufferCreateInfo = { |
| .size = static_cast<VkDeviceSize>(12 * 1024 * 1024), |
| .usage = vkhpp::BufferUsageFlagBits::eTransferDst | |
| vkhpp::BufferUsageFlagBits::eTransferSrc, |
| .sharingMode = vkhpp::SharingMode::eExclusive, |
| }; |
| auto stagingBuffer = device->createBufferUnique(bufferCreateInfo).value; |
| ASSERT_THAT(stagingBuffer, IsValidHandle()); |
| |
| vkhpp::MemoryRequirements stagingBufferMemoryRequirements{}; |
| device->getBufferMemoryRequirements(*stagingBuffer, &stagingBufferMemoryRequirements); |
| |
| const auto stagingBufferMemoryType = utils::getMemoryType( |
| physicalDevice, stagingBufferMemoryRequirements, |
| vkhpp::MemoryPropertyFlagBits::eHostVisible | vkhpp::MemoryPropertyFlagBits::eHostCoherent); |
| |
| const vkhpp::MemoryAllocateInfo stagingBufferMemoryAllocateInfo = { |
| .allocationSize = stagingBufferMemoryRequirements.size, |
| .memoryTypeIndex = stagingBufferMemoryType, |
| }; |
| auto stagingBufferMemory = device->allocateMemoryUnique(stagingBufferMemoryAllocateInfo).value; |
| ASSERT_THAT(stagingBufferMemory, IsValidHandle()); |
| ASSERT_THAT(device->bindBufferMemory(*stagingBuffer, *stagingBufferMemory, 0), IsVkSuccess()); |
| |
| const vkhpp::CommandPoolCreateInfo commandPoolCreateInfo = { |
| .queueFamilyIndex = queueFamilyIndex, |
| }; |
| |
| auto commandPool = device->createCommandPoolUnique(commandPoolCreateInfo).value; |
| ASSERT_THAT(stagingBufferMemory, IsValidHandle()); |
| |
| const vkhpp::CommandBufferAllocateInfo commandBufferAllocateInfo = { |
| .level = vkhpp::CommandBufferLevel::ePrimary, |
| .commandPool = *commandPool, |
| .commandBufferCount = 1, |
| }; |
| auto commandBuffers = device->allocateCommandBuffersUnique(commandBufferAllocateInfo).value; |
| ASSERT_THAT(commandBuffers, Not(IsEmpty())); |
| auto commandBuffer = std::move(commandBuffers[0]); |
| ASSERT_THAT(commandBuffer, IsValidHandle()); |
| |
| const vkhpp::CommandBufferBeginInfo commandBufferBeginInfo = { |
| .flags = vkhpp::CommandBufferUsageFlagBits::eOneTimeSubmit, |
| }; |
| commandBuffer->begin(commandBufferBeginInfo); |
| commandBuffer->end(); |
| |
| std::vector<vkhpp::CommandBuffer> commandBufferHandles; |
| commandBufferHandles.push_back(*commandBuffer); |
| |
| auto transferFence = device->createFenceUnique(vkhpp::FenceCreateInfo()).value; |
| ASSERT_THAT(commandBuffer, IsValidHandle()); |
| |
| const vkhpp::SubmitInfo submitInfo = { |
| .commandBufferCount = static_cast<uint32_t>(commandBufferHandles.size()), |
| .pCommandBuffers = commandBufferHandles.data(), |
| }; |
| queue.submit(submitInfo, *transferFence); |
| |
| auto waitResult = device->waitForFences(*transferFence, VK_TRUE, AsVkTimeout(3s)); |
| ASSERT_THAT(waitResult, IsVkSuccess()); |
| |
| int fence; |
| |
| auto result = vkQueueSignalReleaseImageANDROID(queue, 0, nullptr, *image, &fence); |
| ASSERT_THAT(result, Eq(VK_SUCCESS)); |
| ASSERT_THAT(fence, Not(Eq(-1))); |
| |
| ASSERT_THAT(mSync->wait(fence, 3000), Eq(0)); |
| } |
| |
| TEST_P(GfxstreamEnd2EndVkTest, DeferredImportAHB) { |
| auto [instance, physicalDevice, device, queue, queueFamilyIndex] = |
| GFXSTREAM_ASSERT(SetUpTypicalVkTestEnvironment()); |
| |
| const uint32_t width = 32; |
| const uint32_t height = 32; |
| auto ahb = GFXSTREAM_ASSERT(ScopedAHardwareBuffer::Allocate( |
| *mGralloc, width, height, GFXSTREAM_AHB_FORMAT_R8G8B8A8_UNORM)); |
| |
| auto vkQueueSignalReleaseImageANDROID = PFN_vkQueueSignalReleaseImageANDROID( |
| device->getProcAddr("vkQueueSignalReleaseImageANDROID")); |
| ASSERT_THAT(vkQueueSignalReleaseImageANDROID, NotNull()); |
| |
| const vkhpp::ImageCreateInfo imageCreateInfo = { |
| .pNext = nullptr, |
| .imageType = vkhpp::ImageType::e2D, |
| .extent.width = width, |
| .extent.height = height, |
| .extent.depth = 1, |
| .mipLevels = 1, |
| .arrayLayers = 1, |
| .format = vkhpp::Format::eR8G8B8A8Unorm, |
| .tiling = vkhpp::ImageTiling::eOptimal, |
| .initialLayout = vkhpp::ImageLayout::eUndefined, |
| .usage = vkhpp::ImageUsageFlagBits::eSampled | |
| vkhpp::ImageUsageFlagBits::eTransferDst | |
| vkhpp::ImageUsageFlagBits::eTransferSrc, |
| .sharingMode = vkhpp::SharingMode::eExclusive, |
| .samples = vkhpp::SampleCountFlagBits::e1, |
| }; |
| auto image = device->createImageUnique(imageCreateInfo).value; |
| |
| // NOTE: Binding the VkImage to the AHB happens after the VkImage is created. |
| const VkNativeBufferANDROID imageNativeBufferInfo = { |
| .sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID, |
| .handle = mGralloc->getNativeHandle(ahb), |
| }; |
| |
| const vkhpp::BindImageMemoryInfo imageBindMemoryInfo = { |
| .pNext = &imageNativeBufferInfo, |
| .image = *image, |
| .memory = VK_NULL_HANDLE, |
| .memoryOffset = 0, |
| }; |
| ASSERT_THAT(device->bindImageMemory2({imageBindMemoryInfo}), IsVkSuccess()); |
| |
| std::vector<vkhpp::Semaphore> semaphores; |
| int fence; |
| |
| auto result = vkQueueSignalReleaseImageANDROID(queue, 0, nullptr, *image, &fence); |
| ASSERT_THAT(result, Eq(VK_SUCCESS)); |
| ASSERT_THAT(fence, Not(Eq(-1))); |
| |
| ASSERT_THAT(mSync->wait(fence, 3000), Eq(0)); |
| } |
| |
| TEST_P(GfxstreamEnd2EndVkTest, BlobAHBIsNotMapable) { |
| if (GetParam().with_gl) { |
| GTEST_SKIP() |
| << "Skipping test, data buffers are currently only supported in Vulkan only mode."; |
| } |
| if (GetParam().with_features.count("VulkanUseDedicatedAhbMemoryType") == 0) { |
| GTEST_SKIP() |
| << "Skipping test, AHB test only makes sense with VulkanUseDedicatedAhbMemoryType."; |
| } |
| |
| auto [instance, physicalDevice, device, queue, queueFamilyIndex] = |
| GFXSTREAM_ASSERT(SetUpTypicalVkTestEnvironment()); |
| |
| const uint32_t width = 32; |
| const uint32_t height = 1; |
| auto ahb = GFXSTREAM_ASSERT( |
| ScopedAHardwareBuffer::Allocate(*mGralloc, width, height, GFXSTREAM_AHB_FORMAT_BLOB)); |
| |
| const vkhpp::ExternalMemoryBufferCreateInfo externalMemoryBufferCreateInfo = { |
| .handleTypes = vkhpp::ExternalMemoryHandleTypeFlagBits::eAndroidHardwareBufferANDROID, |
| }; |
| const vkhpp::BufferCreateInfo bufferCreateInfo = { |
| .pNext = &externalMemoryBufferCreateInfo, |
| .size = width, |
| .usage = vkhpp::BufferUsageFlagBits::eTransferDst | |
| vkhpp::BufferUsageFlagBits::eTransferSrc | |
| vkhpp::BufferUsageFlagBits::eVertexBuffer, |
| .sharingMode = vkhpp::SharingMode::eExclusive, |
| }; |
| auto buffer = device->createBufferUnique(bufferCreateInfo).value; |
| ASSERT_THAT(buffer, IsValidHandle()); |
| |
| auto vkGetAndroidHardwareBufferPropertiesANDROID = |
| reinterpret_cast<PFN_vkGetAndroidHardwareBufferPropertiesANDROID>( |
| device->getProcAddr("vkGetAndroidHardwareBufferPropertiesANDROID")); |
| ASSERT_THAT(vkGetAndroidHardwareBufferPropertiesANDROID, NotNull()); |
| |
| VkAndroidHardwareBufferPropertiesANDROID bufferProperties = { |
| .sType = VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_PROPERTIES_ANDROID, |
| .pNext = nullptr, |
| }; |
| ASSERT_THAT(vkGetAndroidHardwareBufferPropertiesANDROID(*device, ahb, &bufferProperties), |
| Eq(VK_SUCCESS)); |
| |
| const vkhpp::MemoryRequirements bufferMemoryRequirements{ |
| .size = bufferProperties.allocationSize, |
| .alignment = 0, |
| .memoryTypeBits = bufferProperties.memoryTypeBits, |
| }; |
| |
| const auto memoryProperties = physicalDevice.getMemoryProperties(); |
| for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) { |
| if (!(bufferMemoryRequirements.memoryTypeBits & (1 << i))) { |
| continue; |
| } |
| |
| const auto memoryPropertyFlags = memoryProperties.memoryTypes[i].propertyFlags; |
| EXPECT_THAT(memoryPropertyFlags & vkhpp::MemoryPropertyFlagBits::eHostVisible, |
| Ne(vkhpp::MemoryPropertyFlagBits::eHostVisible)); |
| } |
| |
| const auto bufferMemoryType = utils::getMemoryType(physicalDevice, bufferMemoryRequirements, |
| vkhpp::MemoryPropertyFlagBits::eDeviceLocal); |
| ASSERT_THAT(bufferMemoryType, Ne(-1)); |
| |
| const vkhpp::ImportAndroidHardwareBufferInfoANDROID importHardwareBufferInfo = { |
| .buffer = ahb, |
| }; |
| const vkhpp::MemoryAllocateInfo bufferMemoryAllocateInfo = { |
| .pNext = &importHardwareBufferInfo, |
| .allocationSize = bufferMemoryRequirements.size, |
| .memoryTypeIndex = bufferMemoryType, |
| }; |
| auto bufferMemory = device->allocateMemoryUnique(bufferMemoryAllocateInfo).value; |
| ASSERT_THAT(bufferMemory, IsValidHandle()); |
| |
| ASSERT_THAT(device->bindBufferMemory(*buffer, *bufferMemory, 0), IsVkSuccess()); |
| } |
| |
| TEST_P(GfxstreamEnd2EndVkTest, HostMemory) { |
| static constexpr const vkhpp::DeviceSize kSize = 16 * 1024; |
| |
| auto [instance, physicalDevice, device, queue, queueFamilyIndex] = |
| GFXSTREAM_ASSERT(SetUpTypicalVkTestEnvironment()); |
| |
| uint32_t hostMemoryTypeIndex = -1; |
| const auto memoryProperties = physicalDevice.getMemoryProperties(); |
| for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) { |
| const vkhpp::MemoryType& memoryType = memoryProperties.memoryTypes[i]; |
| if (memoryType.propertyFlags & vkhpp::MemoryPropertyFlagBits::eHostVisible) { |
| hostMemoryTypeIndex = i; |
| } |
| } |
| if (hostMemoryTypeIndex == -1) { |
| GTEST_SKIP() << "Skipping test due to no host visible memory type."; |
| return; |
| } |
| |
| const vkhpp::MemoryAllocateInfo memoryAllocateInfo = { |
| .allocationSize = kSize, |
| .memoryTypeIndex = hostMemoryTypeIndex, |
| }; |
| auto memory = device->allocateMemoryUnique(memoryAllocateInfo).value; |
| ASSERT_THAT(memory, IsValidHandle()); |
| |
| void* mapped = nullptr; |
| |
| auto mapResult = device->mapMemory(*memory, 0, VK_WHOLE_SIZE, vkhpp::MemoryMapFlags{}, &mapped); |
| ASSERT_THAT(mapResult, IsVkSuccess()); |
| ASSERT_THAT(mapped, NotNull()); |
| |
| auto* bytes = reinterpret_cast<uint8_t*>(mapped); |
| std::memset(bytes, 0xFF, kSize); |
| |
| const vkhpp::MappedMemoryRange range = { |
| .memory = *memory, |
| .offset = 0, |
| .size = kSize, |
| }; |
| device->flushMappedMemoryRanges({range}); |
| device->invalidateMappedMemoryRanges({range}); |
| |
| for (uint32_t i = 0; i < kSize; ++i) { |
| EXPECT_THAT(bytes[i], Eq(0xFF)); |
| } |
| } |
| |
| TEST_P(GfxstreamEnd2EndVkTest, GetPhysicalDeviceProperties2) { |
| auto [instance, physicalDevice, device, queue, queueFamilyIndex] = |
| GFXSTREAM_ASSERT(SetUpTypicalVkTestEnvironment()); |
| |
| auto props1 = physicalDevice.getProperties(); |
| auto props2 = physicalDevice.getProperties2(); |
| |
| EXPECT_THAT(props1.vendorID, Eq(props2.properties.vendorID)); |
| EXPECT_THAT(props1.deviceID, Eq(props2.properties.deviceID)); |
| } |
| |
| TEST_P(GfxstreamEnd2EndVkTest, GetPhysicalDeviceFeatures2KHR) { |
| auto [instance, physicalDevice, device, queue, queueFamilyIndex] = |
| GFXSTREAM_ASSERT(SetUpTypicalVkTestEnvironment()); |
| |
| auto features1 = physicalDevice.getFeatures(); |
| auto features2 = physicalDevice.getFeatures2(); |
| EXPECT_THAT(features1.robustBufferAccess, Eq(features2.features.robustBufferAccess)); |
| } |
| |
| TEST_P(GfxstreamEnd2EndVkTest, GetPhysicalDeviceImageFormatProperties2KHR) { |
| auto [instance, physicalDevice, device, queue, queueFamilyIndex] = |
| GFXSTREAM_ASSERT(SetUpTypicalVkTestEnvironment()); |
| |
| const vkhpp::PhysicalDeviceImageFormatInfo2 imageFormatInfo = { |
| .format = vkhpp::Format::eR8G8B8A8Unorm, |
| .type = vkhpp::ImageType::e2D, |
| .tiling = vkhpp::ImageTiling::eOptimal, |
| .usage = vkhpp::ImageUsageFlagBits::eSampled, |
| }; |
| const auto properties = |
| GFXSTREAM_ASSERT_VKHPP_RV(physicalDevice.getImageFormatProperties2(imageFormatInfo)); |
| EXPECT_THAT(properties.imageFormatProperties.maxExtent.width, Ge(1)); |
| EXPECT_THAT(properties.imageFormatProperties.maxExtent.height, Ge(1)); |
| EXPECT_THAT(properties.imageFormatProperties.maxExtent.depth, Ge(1)); |
| } |
| |
| template <typename VkhppUniqueHandleType, |
| typename VkhppHandleType = typename VkhppUniqueHandleType::element_type> |
| std::vector<VkhppHandleType> AsHandles(const std::vector<VkhppUniqueHandleType>& elements) { |
| std::vector<VkhppHandleType> ret; |
| ret.reserve(elements.size()); |
| for (const auto& e : elements) { |
| ret.push_back(*e); |
| } |
| return ret; |
| } |
| |
| struct DescriptorBundle { |
| vkhpp::UniqueDescriptorPool descriptorPool; |
| vkhpp::UniqueDescriptorSetLayout descriptorSetLayout; |
| std::vector<vkhpp::UniqueDescriptorSet> descriptorSets; |
| }; |
| |
| Result<Ok> ReallocateDescriptorBundleSets(vkhpp::Device device, uint32_t count, |
| DescriptorBundle* bundle) { |
| if (!bundle->descriptorSetLayout) { |
| return gfxstream::unexpected("Invalid descriptor set layout"); |
| } |
| |
| const std::vector<vkhpp::DescriptorSetLayout> descriptorSetLayouts(count, *bundle->descriptorSetLayout); |
| const vkhpp::DescriptorSetAllocateInfo descriptorSetAllocateInfo = { |
| .descriptorPool = *bundle->descriptorPool, |
| .descriptorSetCount = count, |
| .pSetLayouts = descriptorSetLayouts.data(), |
| }; |
| auto descriptorSets = |
| GFXSTREAM_EXPECT_VKHPP_RV(device.allocateDescriptorSetsUnique(descriptorSetAllocateInfo)); |
| bundle->descriptorSets = std::move(descriptorSets); |
| return Ok{}; |
| } |
| |
| Result<DescriptorBundle> AllocateDescriptorBundle(vkhpp::Device device, uint32_t count) { |
| const vkhpp::DescriptorPoolSize descriptorPoolSize = { |
| .type = vkhpp::DescriptorType::eUniformBuffer, |
| .descriptorCount = 1 * count, |
| }; |
| const vkhpp::DescriptorPoolCreateInfo descriptorPoolCreateInfo = { |
| .flags = vkhpp::DescriptorPoolCreateFlagBits::eFreeDescriptorSet, |
| .maxSets = count, |
| .poolSizeCount = 1, |
| .pPoolSizes = &descriptorPoolSize, |
| }; |
| auto descriptorPool = |
| GFXSTREAM_EXPECT_VKHPP_RV(device.createDescriptorPoolUnique(descriptorPoolCreateInfo)); |
| |
| const vkhpp::DescriptorSetLayoutBinding descriptorSetBinding = { |
| .binding = 0, |
| .descriptorType = vkhpp::DescriptorType::eUniformBuffer, |
| .descriptorCount = 1, |
| .stageFlags = vkhpp::ShaderStageFlagBits::eVertex, |
| }; |
| const vkhpp::DescriptorSetLayoutCreateInfo descriptorSetLayoutInfo = { |
| .bindingCount = 1, |
| .pBindings = &descriptorSetBinding, |
| }; |
| auto descriptorSetLayout = |
| GFXSTREAM_EXPECT_VKHPP_RV(device.createDescriptorSetLayoutUnique(descriptorSetLayoutInfo)); |
| |
| DescriptorBundle bundle = { |
| .descriptorPool = std::move(descriptorPool), |
| .descriptorSetLayout = std::move(descriptorSetLayout), |
| }; |
| GFXSTREAM_EXPECT(ReallocateDescriptorBundleSets(device, count, &bundle)); |
| return std::move(bundle); |
| } |
| |
| // Tests creating a bunch of descriptor sets and freeing them via vkFreeDescriptorSet. |
| // 1. Via vkFreeDescriptorSet directly |
| // 2. Via vkResetDescriptorPool |
| // 3. Via vkDestroyDescriptorPool |
| // 4. Via vkResetDescriptorPool and double frees in vkFreeDescriptorSet |
| // 5. Via vkResetDescriptorPool and double frees in vkFreeDescriptorSet |
| // 4. Via vkResetDescriptorPool, creating more, and freeing vai vkFreeDescriptorSet |
| // (because vkFree* APIs are expected to never fail) |
| // https://github.com/KhronosGroup/Vulkan-Docs/issues/1070 |
| TEST_P(GfxstreamEnd2EndVkTest, DescriptorSetAllocFree) { |
| constexpr const uint32_t kNumSets = 4; |
| |
| auto [instance, physicalDevice, device, queue, queueFamilyIndex] = |
| GFXSTREAM_ASSERT(SetUpTypicalVkTestEnvironment()); |
| |
| auto bundle = GFXSTREAM_ASSERT(AllocateDescriptorBundle(*device, kNumSets)); |
| |
| auto descriptorSetHandles = AsHandles(bundle.descriptorSets); |
| EXPECT_THAT(device->freeDescriptorSets(*bundle.descriptorPool, kNumSets, descriptorSetHandles.data()), IsVkSuccess()); |
| |
| // The double free should also work |
| EXPECT_THAT(device->freeDescriptorSets(*bundle.descriptorPool, kNumSets, descriptorSetHandles.data()), IsVkSuccess()); |
| |
| // Alloc/free again should also work |
| GFXSTREAM_ASSERT(ReallocateDescriptorBundleSets(*device, kNumSets, &bundle)); |
| |
| descriptorSetHandles = AsHandles(bundle.descriptorSets); |
| EXPECT_THAT(device->freeDescriptorSets(*bundle.descriptorPool, kNumSets, descriptorSetHandles.data()), IsVkSuccess()); |
| } |
| |
| TEST_P(GfxstreamEnd2EndVkTest, DescriptorSetAllocFreeReset) { |
| constexpr const uint32_t kNumSets = 4; |
| |
| auto [instance, physicalDevice, device, queue, queueFamilyIndex] = |
| GFXSTREAM_ASSERT(SetUpTypicalVkTestEnvironment()); |
| |
| auto bundle = GFXSTREAM_ASSERT(AllocateDescriptorBundle(*device, kNumSets)); |
| |
| device->resetDescriptorPool(*bundle.descriptorPool); |
| |
| // The double free should also work |
| auto descriptorSetHandles = AsHandles(bundle.descriptorSets); |
| EXPECT_THAT(device->freeDescriptorSets(*bundle.descriptorPool, kNumSets, descriptorSetHandles.data()), IsVkSuccess()); |
| |
| // Alloc/reset/free again should also work |
| GFXSTREAM_ASSERT(ReallocateDescriptorBundleSets(*device, kNumSets, &bundle)); |
| |
| device->resetDescriptorPool(*bundle.descriptorPool); |
| |
| descriptorSetHandles = AsHandles(bundle.descriptorSets); |
| EXPECT_THAT(device->freeDescriptorSets(*bundle.descriptorPool, kNumSets, descriptorSetHandles.data()), IsVkSuccess()); |
| } |
| |
| TEST_P(GfxstreamEnd2EndVkTest, DISABLED_DescriptorSetAllocFreeDestroy) { |
| constexpr const uint32_t kNumSets = 4; |
| |
| auto [instance, physicalDevice, device, queue, queueFamilyIndex] = |
| GFXSTREAM_ASSERT(SetUpTypicalVkTestEnvironment()); |
| |
| auto bundle = GFXSTREAM_ASSERT(AllocateDescriptorBundle(*device, kNumSets)); |
| |
| device->destroyDescriptorPool(*bundle.descriptorPool); |
| |
| // The double free should also work |
| auto descriptorSetHandles = AsHandles(bundle.descriptorSets); |
| EXPECT_THAT(device->freeDescriptorSets(*bundle.descriptorPool, kNumSets, descriptorSetHandles.data()), IsVkSuccess()); |
| } |
| |
| TEST_P(GfxstreamEnd2EndVkTest, MultiThreadedShutdown) { |
| constexpr const int kNumIterations = 20; |
| for (int i = 0; i < kNumIterations; i++) { |
| auto [instance, physicalDevice, device, queue, queueFamilyIndex] = |
| GFXSTREAM_ASSERT(SetUpTypicalVkTestEnvironment()); |
| |
| const vkhpp::BufferCreateInfo bufferCreateInfo = { |
| .size = 1024, |
| .usage = vkhpp::BufferUsageFlagBits::eTransferSrc, |
| }; |
| |
| // TODO: switch to std::barrier with arrive_and_wait(). |
| std::atomic_int threadsReady{0}; |
| std::vector<std::thread> threads; |
| |
| constexpr const int kNumThreads = 5; |
| for (int t = 0; t < kNumThreads; t++) { |
| threads.emplace_back([&, this]() { |
| // Perform some work to ensure host RenderThread started. |
| auto buffer1 = device->createBufferUnique(bufferCreateInfo).value; |
| |
| ++threadsReady; |
| while (threadsReady.load() != kNumThreads) { |
| } |
| |
| // Sleep a little which is hopefully enough time to potentially get |
| // the corresponding host ASG RenderThreads to go sleep waiting for |
| // a WAKEUP via a GFXSTREAM_CONTEXT_PING. |
| std::this_thread::sleep_for(std::chrono::milliseconds(100)); |
| |
| auto buffer2 = device->createBufferUnique(bufferCreateInfo).value; |
| |
| // 2 vkDestroyBuffer() calls happen here with the destruction of `buffer1` |
| // and `buffer2`. vkDestroy*() calls are async (return `void`) and the |
| // guest thread continues execution without waiting for the command to |
| // complete on the host. |
| // |
| // The guest ASG and corresponding virtio gpu resource will also be |
| // destructed here as a part of the thread_local HostConnection being |
| // destructed. |
| // |
| // Note: Vulkan commands are given a sequence number in order to ensure that |
| // commands from multi-threaded guest Vulkan apps are executed in order on the |
| // host. Gfxstream's host Vulkan decoders will spin loop waiting for their turn to |
| // process their next command. |
| // |
| // With all of the above, a deadlock would previouly occur with the following |
| // sequence: |
| // |
| // T1: Host-RenderThread-1: <sleeping waiting for wakeup> |
| // |
| // T2: Host-RenderThread-2: <sleeping waiting for wakeup> |
| // |
| // T3: Guest-Thread-1: vkDestroyBuffer() called, |
| // VkEncoder grabs sequence-number-10, |
| // writes sequence-number-10 into ASG-1 via resource-1 |
| // |
| // T4: Guest-Thread-2: vkDestroyBuffer() called, |
| // VkEncoder grabs sequence-number-11, |
| // writes into ASG-2 via resource-2 |
| // |
| // T5: Guest-Thread-2: ASG-2 sends a VIRTIO_GPU_CMD_SUBMIT_3D with |
| // GFXSTREAM_CONTEXT_PING on ASG-resource-2 |
| // |
| // T6: Guest-Thread-2: guest thread finishes, |
| // ASG-2 destructor destroys the virtio-gpu resource used, |
| // destruction sends VIRTIO_GPU_CMD_RESOURCE_UNREF on |
| // resource-2 |
| // |
| // T7: Guest-Thread-1: ASG-1 sends VIRTIO_GPU_CMD_SUBMIT_3D with |
| // GFXSTREAM_CONTEXT_PING on ASG-resource-1 |
| // |
| // T8: Host-Virtio-Gpu-Thread: performs VIRTIO_GPU_CMD_SUBMIT_3D from T5, |
| // pings ASG-2 which wakes up Host-RenderThread-2 |
| // |
| // T9: Host-RenderThread-2: woken from T8, |
| // reads sequence-number-11 from ASG-2, |
| // spin looping waiting for sequence-number-10 to execute |
| // |
| // T10: Host-Virtio-Gpu-Thread: performs VIRTIO_GPU_CMD_RESOURCE_UNREF for |
| // resource-2 from T6, |
| // resource-2 is used by ASG-2 / Host-RenderThread-2 |
| // waits for Host-RenderThread-2 to finish |
| // |
| // DEADLOCKED HERE: |
| // |
| // * Host-Virtio-GpuThread is waiting for Host-RenderThread-2 to finish before |
| // it can finish destroying resource-2 |
| // |
| // * Host-RenderThread-2 is waiting for Host-RenderThread-1 to execute |
| // sequence-number-10 |
| // |
| // * Host-RenderThread-1 is asleep waiting for a GFXSTREAM_CONTEXT_PING |
| // from Host-Virtio-GpuThread |
| }); |
| } |
| |
| for (auto& thread : threads) { |
| thread.join(); |
| } |
| } |
| } |
| |
| TEST_P(GfxstreamEnd2EndVkTest, DeviceCreateWithDeviceGroup) { |
| auto [instance, physicalDevice, device, queue, queueFamilyIndex] = |
| GFXSTREAM_ASSERT(SetUpTypicalVkTestEnvironment()); |
| |
| const vkhpp::DeviceGroupDeviceCreateInfo deviceGroupDeviceCreateInfo = { |
| .physicalDeviceCount = 1, |
| .pPhysicalDevices = &physicalDevice, |
| }; |
| |
| const float queuePriority = 1.0f; |
| const vkhpp::DeviceQueueCreateInfo deviceQueueCreateInfo = { |
| .queueFamilyIndex = 0, |
| .queueCount = 1, |
| .pQueuePriorities = &queuePriority, |
| }; |
| const vkhpp::DeviceCreateInfo deviceCreateInfo = { |
| .pNext = &deviceGroupDeviceCreateInfo, |
| .pQueueCreateInfos = &deviceQueueCreateInfo, |
| .queueCreateInfoCount = 1, |
| }; |
| auto device2 = GFXSTREAM_ASSERT_VKHPP_RV(physicalDevice.createDeviceUnique(deviceCreateInfo)); |
| ASSERT_THAT(device2, IsValidHandle()); |
| } |
| |
| TEST_P(GfxstreamEnd2EndVkTest, AcquireImageAndroidWithFence) { |
| DoAcquireImageAndroidWithSync(/*withFence=*/true, /*withSemaphore=*/false); |
| } |
| |
| TEST_P(GfxstreamEnd2EndVkTest, AcquireImageAndroidWithSemaphore) { |
| DoAcquireImageAndroidWithSync(/*withFence=*/false, /*withSemaphore=*/true); |
| } |
| |
| TEST_P(GfxstreamEnd2EndVkTest, AcquireImageAndroidWithFenceAndSemaphore) { |
| DoAcquireImageAndroidWithSync(/*withFence=*/true, /*withSemaphore=*/true); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL MemoryReportCallback(const VkDeviceMemoryReportCallbackDataEXT*, void*) { |
| // Unused |
| } |
| |
| TEST_P(GfxstreamEnd2EndVkTest, DeviceMemoryReport) { |
| int userdata = 1; |
| vkhpp::DeviceDeviceMemoryReportCreateInfoEXT deviceDeviceMemoryReportInfo = { |
| .pfnUserCallback = &MemoryReportCallback, |
| .pUserData = &userdata, |
| }; |
| |
| auto [instance, physicalDevice, device, queue, queueFamilyIndex] = |
| GFXSTREAM_ASSERT(SetUpTypicalVkTestEnvironment({ |
| .deviceExtensions = {{ |
| VK_EXT_DEVICE_MEMORY_REPORT_EXTENSION_NAME, |
| }}, |
| .deviceCreateInfoPNext = &deviceDeviceMemoryReportInfo, |
| })); |
| |
| const vkhpp::MemoryAllocateInfo memoryAllocateInfo = { |
| .allocationSize = 1024, |
| .memoryTypeIndex = 0, |
| }; |
| auto memory = device->allocateMemoryUnique(memoryAllocateInfo).value; |
| ASSERT_THAT(memory, IsValidHandle()); |
| } |
| |
| TEST_P(GfxstreamEnd2EndVkTest, DescriptorUpdateTemplateWithWrapping) { |
| auto vk = GFXSTREAM_ASSERT(SetUpTypicalVkTestEnvironment()); |
| auto& [instance, physicalDevice, device, queue, queueFamilyIndex] = vk; |
| |
| const VkDeviceSize kBufferSize = 1024; |
| auto buffer = GFXSTREAM_ASSERT(CreateBuffer( |
| vk, kBufferSize, |
| vkhpp::BufferUsageFlagBits::eTransferDst | |
| vkhpp::BufferUsageFlagBits::eTransferSrc | |
| vkhpp::BufferUsageFlagBits::eUniformBuffer, |
| vkhpp::MemoryPropertyFlagBits::eHostVisible | |
| vkhpp::MemoryPropertyFlagBits::eHostCoherent)); |
| |
| const std::vector<VkDescriptorBufferInfo> descriptorInfo = { |
| VkDescriptorBufferInfo{ |
| .buffer = *buffer.buffer, |
| .offset = 0, |
| .range = kBufferSize, |
| }, |
| VkDescriptorBufferInfo{ |
| .buffer = *buffer.buffer, |
| .offset = 0, |
| .range = kBufferSize, |
| }, |
| VkDescriptorBufferInfo{ |
| .buffer = *buffer.buffer, |
| .offset = 0, |
| .range = kBufferSize, |
| }, |
| VkDescriptorBufferInfo{ |
| .buffer = *buffer.buffer, |
| .offset = 0, |
| .range = kBufferSize, |
| }, |
| }; |
| |
| const std::vector<vkhpp::DescriptorPoolSize> descriptorPoolSizes = { |
| { |
| .type = vkhpp::DescriptorType::eUniformBuffer, |
| .descriptorCount = 4, |
| }, |
| }; |
| const vkhpp::DescriptorPoolCreateInfo descriptorPoolCreateInfo = { |
| .flags = vkhpp::DescriptorPoolCreateFlagBits::eFreeDescriptorSet, |
| .maxSets = 1, |
| .poolSizeCount = static_cast<uint32_t>(descriptorPoolSizes.size()), |
| .pPoolSizes = descriptorPoolSizes.data(), |
| }; |
| auto descriptorPool = |
| GFXSTREAM_ASSERT_VKHPP_RV(device->createDescriptorPoolUnique(descriptorPoolCreateInfo)); |
| |
| const std::vector<vkhpp::DescriptorSetLayoutBinding> descriptorSetBindings = { |
| { |
| .binding = 0, |
| .descriptorType = vkhpp::DescriptorType::eUniformBuffer, |
| .descriptorCount = 1, |
| .stageFlags = vkhpp::ShaderStageFlagBits::eVertex, |
| }, |
| { |
| .binding = 1, |
| .descriptorType = vkhpp::DescriptorType::eUniformBuffer, |
| .descriptorCount = 1, |
| .stageFlags = vkhpp::ShaderStageFlagBits::eVertex, |
| }, |
| { |
| .binding = 2, |
| .descriptorType = vkhpp::DescriptorType::eUniformBuffer, |
| .descriptorCount = 1, |
| .stageFlags = vkhpp::ShaderStageFlagBits::eVertex, |
| }, |
| { |
| .binding = 3, |
| .descriptorType = vkhpp::DescriptorType::eUniformBuffer, |
| .descriptorCount = 1, |
| .stageFlags = vkhpp::ShaderStageFlagBits::eVertex, |
| }, |
| }; |
| const vkhpp::DescriptorSetLayoutCreateInfo descriptorSetLayoutInfo = { |
| .bindingCount = static_cast<uint32_t>(descriptorSetBindings.size()), |
| .pBindings = descriptorSetBindings.data(), |
| }; |
| auto descriptorSetLayout = |
| GFXSTREAM_ASSERT_VKHPP_RV(device->createDescriptorSetLayoutUnique(descriptorSetLayoutInfo)); |
| |
| const std::vector<vkhpp::DescriptorSetLayout> descriptorSetLayouts = {*descriptorSetLayout}; |
| const vkhpp::DescriptorSetAllocateInfo descriptorSetAllocateInfo = { |
| .descriptorPool = *descriptorPool, |
| .descriptorSetCount = static_cast<uint32_t>(descriptorSetLayouts.size()), |
| .pSetLayouts = descriptorSetLayouts.data(), |
| }; |
| auto descriptorSets = |
| GFXSTREAM_ASSERT_VKHPP_RV(device->allocateDescriptorSetsUnique(descriptorSetAllocateInfo)); |
| auto descriptorSet = std::move(descriptorSets[0]); |
| |
| const vkhpp::PipelineLayoutCreateInfo pipelineLayoutCreateInfo = { |
| .setLayoutCount = static_cast<uint32_t>(descriptorSetLayouts.size()), |
| .pSetLayouts = descriptorSetLayouts.data(), |
| }; |
| auto pipelineLayout = |
| GFXSTREAM_ASSERT_VKHPP_RV(device->createPipelineLayoutUnique(pipelineLayoutCreateInfo)); |
| |
| const std::vector<vkhpp::DescriptorUpdateTemplateEntry> descriptorUpdateEntries = { |
| { |
| .dstBinding = 0, |
| .dstArrayElement = 0, |
| .descriptorCount = 4, |
| .descriptorType = vkhpp::DescriptorType::eUniformBuffer, |
| .offset = 0, |
| .stride = sizeof(VkDescriptorBufferInfo), |
| }, |
| }; |
| const vkhpp::DescriptorUpdateTemplateCreateInfo descriptorUpdateTemplateCreateInfo = { |
| .descriptorUpdateEntryCount = static_cast<uint32_t>(descriptorUpdateEntries.size()), |
| .pDescriptorUpdateEntries = descriptorUpdateEntries.data(), |
| .descriptorSetLayout = *descriptorSetLayout, |
| .pipelineBindPoint = vkhpp::PipelineBindPoint::eGraphics, |
| .pipelineLayout = *pipelineLayout, |
| .set = 0, |
| }; |
| auto descriptorUpdateTemplate = GFXSTREAM_ASSERT_VKHPP_RV( |
| device->createDescriptorUpdateTemplateUnique(descriptorUpdateTemplateCreateInfo)); |
| |
| device->updateDescriptorSetWithTemplate(*descriptorSet, *descriptorUpdateTemplate, |
| (const void*)descriptorInfo.data()); |
| |
| // Gfxstream optimizes descriptor set updates by batching updates until there is an |
| // actual use in a command buffer. Try to force that flush by binding the descriptor |
| // set here: |
| GFXSTREAM_ASSERT(DoCommandsImmediate(vk, |
| [&](vkhpp::UniqueCommandBuffer& cmd) { |
| cmd->bindDescriptorSets(vkhpp::PipelineBindPoint::eGraphics, *pipelineLayout, |
| /*firstSet=*/0, {*descriptorSet}, |
| /*dynamicOffsets=*/{}); |
| return Ok{}; |
| })); |
| } |
| |
| TEST_P(GfxstreamEnd2EndVkTest, MultiThreadedVkMapMemory) { |
| auto [instance, physicalDevice, device, queue, queueFamilyIndex] = |
| GFXSTREAM_ASSERT(SetUpTypicalVkTestEnvironment()); |
| |
| static constexpr const vkhpp::DeviceSize kSize = 1024; |
| const vkhpp::BufferCreateInfo bufferCreateInfo = { |
| .size = kSize, |
| .usage = vkhpp::BufferUsageFlagBits::eTransferSrc, |
| }; |
| auto buffer = device->createBufferUnique(bufferCreateInfo).value; |
| |
| vkhpp::MemoryRequirements bufferMemoryRequirements{}; |
| device->getBufferMemoryRequirements(*buffer, &bufferMemoryRequirements); |
| |
| const uint32_t bufferMemoryIndex = utils::getMemoryType( |
| physicalDevice, bufferMemoryRequirements, |
| vkhpp::MemoryPropertyFlagBits::eHostVisible | vkhpp::MemoryPropertyFlagBits::eHostCoherent); |
| if (bufferMemoryIndex == -1) { |
| GTEST_SKIP() << "Skipping test due to no memory type with HOST_VISIBLE | HOST_COHERENT."; |
| } |
| |
| std::vector<std::thread> threads; |
| std::atomic_int threadsReady{0}; |
| |
| constexpr const int kNumThreads = 2; |
| for (int t = 0; t < kNumThreads; t++) { |
| threads.emplace_back([&, this]() { |
| // Perform some work to ensure host RenderThread started. |
| auto buffer2 = device->createBufferUnique(bufferCreateInfo).value; |
| ASSERT_THAT(buffer2, IsValidHandle()); |
| |
| ++threadsReady; |
| while (threadsReady.load() != kNumThreads) { |
| } |
| |
| constexpr const int kNumIterations = 100; |
| for (int i = 0; i < kNumIterations; i++) { |
| auto buffer3 = device->createBufferUnique(bufferCreateInfo).value; |
| ASSERT_THAT(buffer3, IsValidHandle()); |
| |
| const vkhpp::MemoryAllocateInfo buffer3MemoryAllocateInfo = { |
| .allocationSize = bufferMemoryRequirements.size, |
| .memoryTypeIndex = bufferMemoryIndex, |
| }; |
| auto buffer3Memory = device->allocateMemoryUnique(buffer3MemoryAllocateInfo).value; |
| ASSERT_THAT(buffer3Memory, IsValidHandle()); |
| |
| ASSERT_THAT(device->bindBufferMemory(*buffer3, *buffer3Memory, 0), IsVkSuccess()); |
| |
| void* mapped = nullptr; |
| ASSERT_THAT(device->mapMemory(*buffer3Memory, 0, VK_WHOLE_SIZE, |
| vkhpp::MemoryMapFlags{}, &mapped), |
| IsVkSuccess()); |
| ASSERT_THAT(mapped, NotNull()); |
| |
| device->unmapMemory(*buffer3Memory); |
| } |
| }); |
| } |
| |
| for (auto& thread : threads) { |
| thread.join(); |
| } |
| } |
| |
| TEST_P(GfxstreamEnd2EndVkTest, MultiThreadedResetCommandBuffer) { |
| auto [instance, physicalDevice, device, queue, queueFamilyIndex] = |
| GFXSTREAM_ASSERT(SetUpTypicalVkTestEnvironment()); |
| |
| static constexpr const vkhpp::DeviceSize kSize = 1024; |
| const vkhpp::BufferCreateInfo bufferCreateInfo = { |
| .size = kSize, |
| .usage = vkhpp::BufferUsageFlagBits::eTransferSrc, |
| }; |
| |
| static std::mutex queue_mutex; |
| std::vector<std::thread> threads; |
| std::atomic_int threadsReady{0}; |
| |
| constexpr const int kNumThreads = 10; |
| for (int t = 0; t < kNumThreads; t++) { |
| threads.emplace_back([&, this]() { |
| // Perform some work to ensure host RenderThread started. |
| auto buffer2 = device->createBufferUnique(bufferCreateInfo).value; |
| ASSERT_THAT(buffer2, IsValidHandle()); |
| |
| ++threadsReady; |
| while (threadsReady.load() != kNumThreads) { |
| } |
| |
| const vkhpp::CommandPoolCreateInfo commandPoolCreateInfo = { |
| .queueFamilyIndex = queueFamilyIndex, |
| }; |
| auto commandPool = device->createCommandPoolUnique(commandPoolCreateInfo).value; |
| |
| const vkhpp::CommandBufferAllocateInfo commandBufferAllocateInfo = { |
| .level = vkhpp::CommandBufferLevel::ePrimary, |
| .commandPool = *commandPool, |
| .commandBufferCount = 1, |
| }; |
| auto commandBuffers = device->allocateCommandBuffersUnique(commandBufferAllocateInfo).value; |
| ASSERT_THAT(commandBuffers, Not(IsEmpty())); |
| auto commandBuffer = std::move(commandBuffers[0]); |
| ASSERT_THAT(commandBuffer, IsValidHandle()); |
| |
| auto transferFence = device->createFenceUnique(vkhpp::FenceCreateInfo()).value; |
| ASSERT_THAT(commandBuffer, IsValidHandle()); |
| |
| constexpr const int kNumIterations = 1000; |
| for (int i = 0; i < kNumIterations; i++) { |
| commandBuffer->reset(); |
| const vkhpp::CommandBufferBeginInfo commandBufferBeginInfo = { |
| .flags = vkhpp::CommandBufferUsageFlagBits::eOneTimeSubmit, |
| }; |
| commandBuffer->begin(commandBufferBeginInfo); |
| |
| commandBuffer->end(); |
| |
| std::vector<vkhpp::CommandBuffer> commandBufferHandles; |
| commandBufferHandles.push_back(*commandBuffer); |
| |
| const vkhpp::SubmitInfo submitInfo = { |
| .commandBufferCount = static_cast<uint32_t>(commandBufferHandles.size()), |
| .pCommandBuffers = commandBufferHandles.data(), |
| }; |
| { |
| std::lock_guard<std::mutex> qm(queue_mutex); |
| queue.submit(submitInfo, *transferFence); |
| } |
| auto waitResult = device->waitForFences(*transferFence, VK_TRUE, AsVkTimeout(3s)); |
| ASSERT_THAT(waitResult, IsVkSuccess()); |
| } |
| }); |
| } |
| |
| for (auto& thread : threads) { |
| thread.join(); |
| } |
| } |
| |
| TEST_P(GfxstreamEnd2EndVkTest, ImportAndBlitFromR8G8B8A8Ahb) { |
| DoFillAndRenderFromAhb(GFXSTREAM_AHB_FORMAT_R8G8B8A8_UNORM); |
| } |
| |
| TEST_P(GfxstreamEnd2EndVkTest, ImportAndBlitFromYCbCr888420Ahb) { |
| DoFillAndRenderFromAhb(GFXSTREAM_AHB_FORMAT_Y8Cb8Cr8_420); |
| } |
| |
| TEST_P(GfxstreamEnd2EndVkTest, ImportAndBlitFromYv12Ahb) { |
| DoFillAndRenderFromAhb(GFXSTREAM_AHB_FORMAT_YV12); |
| } |
| |
| std::vector<TestParams> GenerateTestCases() { |
| std::vector<TestParams> cases = {TestParams{ |
| .with_gl = false, |
| .with_vk = true, |
| .with_transport = GfxstreamTransport::kVirtioGpuAsg, |
| }, |
| TestParams{ |
| .with_gl = true, |
| .with_vk = true, |
| .with_transport = GfxstreamTransport::kVirtioGpuAsg, |
| }, |
| TestParams{ |
| .with_gl = false, |
| .with_vk = true, |
| .with_transport = GfxstreamTransport::kVirtioGpuPipe, |
| }, |
| TestParams{ |
| .with_gl = true, |
| .with_vk = true, |
| .with_transport = GfxstreamTransport::kVirtioGpuPipe, |
| }}; |
| cases = WithAndWithoutFeatures(cases, {"VulkanSnapshots"}); |
| cases = WithAndWithoutFeatures(cases, {"VulkanUseDedicatedAhbMemoryType"}); |
| return cases; |
| } |
| |
| INSTANTIATE_TEST_CASE_P(GfxstreamEnd2EndTests, GfxstreamEnd2EndVkTest, |
| ::testing::ValuesIn(GenerateTestCases()), &GetTestName); |
| |
| } // namespace |
| } // namespace tests |
| } // namespace gfxstream |