blob: 7d5318064c0d611776b0a2594abec36af6419c34 [file] [log] [blame]
/*
* Copyright (C) 2011-2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "FrameBuffer.h"
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <iomanip>
#include <iostream>
#if defined(__linux__)
#include <sys/resource.h>
#endif
#include "ContextHelper.h"
#include "Hwc2.h"
#include "NativeSubWindow.h"
#include "RenderThreadInfo.h"
#include "SyncThread.h"
#include "aemu/base/LayoutResolver.h"
#include "aemu/base/Metrics.h"
#include "aemu/base/SharedLibrary.h"
#include "aemu/base/Tracing.h"
#include "aemu/base/GraphicsObjectCounter.h"
#include "aemu/base/containers/Lookup.h"
#include "aemu/base/files/StreamSerializing.h"
#include "aemu/base/memory/MemoryTracker.h"
#include "aemu/base/synchronization/Lock.h"
#include "aemu/base/system/System.h"
#if GFXSTREAM_ENABLE_HOST_GLES
#include "GLESVersionDetector.h"
#include "OpenGLESDispatch/DispatchTables.h"
#include "OpenGLESDispatch/EGLDispatch.h"
#include "PostWorkerGl.h"
#include "RenderControl.h"
#include "RenderThreadInfoGl.h"
#include "gl/YUVConverter.h"
#include "gl/gles2_dec/gles2_dec.h"
#include "gl/glestranslator/EGL/EglGlobalInfo.h"
#endif
#include "host-common/GfxstreamFatalError.h"
#include "host-common/crash_reporter.h"
#include "host-common/feature_control.h"
#include "host-common/logging.h"
#include "host-common/misc.h"
#include "host-common/opengl/misc.h"
#include "host-common/vm_operations.h"
#include "render-utils/MediaNative.h"
#include "vulkan/DisplayVk.h"
#include "vulkan/PostWorkerVk.h"
#include "vulkan/VkCommonOperations.h"
#include "vulkan/VkDecoderGlobalState.h"
namespace gfxstream {
using android::base::AutoLock;
using android::base::ManagedDescriptor;
using android::base::MetricEventVulkanOutOfMemory;
using android::base::Stream;
using android::base::WorkerProcessingResult;
using emugl::ABORT_REASON_OTHER;
using emugl::CreateHealthMonitor;
using emugl::FatalError;
using emugl::GfxApiLogger;
using gfxstream::host::FeatureSet;
#if GFXSTREAM_ENABLE_HOST_GLES
using gl::DisplaySurfaceGl;
using gl::EmulatedEglConfig;
using gl::EmulatedEglConfigList;
using gl::EmulatedEglContext;
using gl::EmulatedEglContextMap;
using gl::EmulatedEglContextPtr;
using gl::EmulatedEglFenceSync;
using gl::EmulatedEglWindowSurface;
using gl::EmulatedEglWindowSurfaceMap;
using gl::EmulatedEglWindowSurfacePtr;
using gl::EmulationGl;
using gl::GLES_DISPATCH_MAX_VERSION_2;
using gl::GLESApi;
using gl::GLESApi_2;
using gl::GLESApi_CM;
using gl::GLESDispatchMaxVersion;
using gl::RenderThreadInfoGl;
using gl::s_egl;
using gl::s_gles2;
using gl::TextureDraw;
using gl::YUVConverter;
using gl::YUVPlane;
#endif
using gfxstream::vk::AstcEmulationMode;
using gfxstream::vk::VkEmulationFeatures;
// static std::string getTimeStampString() {
// const time_t timestamp = android::base::getUnixTimeUs();
// const struct tm *timeinfo = localtime(&timestamp);
// // Target format: 07-31 4:44:33
// char b[64];
// snprintf(
// b,
// sizeof(b) - 1,
// "%02u-%02u %02u:%02u:%02u",
// timeinfo->tm_mon + 1,
// timeinfo->tm_mday,
// timeinfo->tm_hour,
// timeinfo->tm_min,
// timeinfo->tm_sec);
// return std::string(b);
// }
// static unsigned int getUptimeMs() {
// return android::base::getUptimeMs();
// }
static void dumpPerfStats() {
// auto usage = System::get()->getMemUsage();
// std::string memoryStats =
// emugl::getMemoryTracker()
// ? emugl::getMemoryTracker()->printUsage()
// : "";
// auto cpuUsage = emugl::getCpuUsage();
// std::string lastStats =
// cpuUsage ? cpuUsage->printUsage() : "";
// printf("%s Uptime: %u ms Resident memory: %f mb %s \n%s\n",
// getTimeStampString().c_str(), getUptimeMs(),
// (float)usage.resident / 1048576.0f, lastStats.c_str(),
// memoryStats.c_str());
}
class PerfStatThread : public android::base::Thread {
public:
PerfStatThread(bool* perfStatActive) :
Thread(), m_perfStatActive(perfStatActive) {}
virtual intptr_t main() {
while (*m_perfStatActive) {
sleepMs(1000);
dumpPerfStats();
}
return 0;
}
private:
bool* m_perfStatActive;
};
FrameBuffer* FrameBuffer::s_theFrameBuffer = NULL;
HandleType FrameBuffer::s_nextHandle = 0;
// A condition variable needed to wait for framebuffer initialization.
namespace {
struct InitializedGlobals {
android::base::Lock lock;
android::base::ConditionVariable condVar;
};
bool postOnlyOnMainThread() {
#ifdef __APPLE__
return true;
#else
return false;
#endif
}
AstcEmulationMode getAstcEmulationMode() {
return AstcEmulationMode::Gpu;
// return AstcEmulationMode::Cpu;
}
} // namespace
// |sInitialized| caches the initialized framebuffer state - this way
// happy path doesn't need to lock the mutex.
static std::atomic<bool> sInitialized{false};
static InitializedGlobals* sGlobals() {
static InitializedGlobals* g = new InitializedGlobals;
return g;
}
void FrameBuffer::waitUntilInitialized() {
if (sInitialized.load(std::memory_order_relaxed)) {
return;
}
#if SNAPSHOT_PROFILE > 1
const auto startTime = android::base::getHighResTimeUs();
#endif
{
AutoLock l(sGlobals()->lock);
sGlobals()->condVar.wait(
&l, [] { return sInitialized.load(std::memory_order_acquire); });
}
#if SNAPSHOT_PROFILE > 1
printf("Waited for FrameBuffer initialization for %.03f ms\n",
(android::base::getHighResTimeUs() - startTime) / 1000.0);
#endif
}
void MaybeIncreaseFileDescriptorSoftLimit() {
#if defined(__linux__)
// Cuttlefish with Gfxstream on Nvidia and SwiftShader often hits the default nofile
// soft limit (1024) when running large test suites.
struct rlimit nofileLimits = {
.rlim_cur = 0,
.rlim_max = 0,
};
int ret = getrlimit(RLIMIT_NOFILE, &nofileLimits);
if (ret) {
ERR("Warning: failed to query nofile limits.");
return;
}
const auto softLimit = nofileLimits.rlim_cur;
const auto hardLimit = nofileLimits.rlim_max;
constexpr const rlim_t kDesiredNofileSoftLimit = 4096;
if (softLimit < kDesiredNofileSoftLimit) {
if (softLimit == hardLimit) {
ERR("Warning: unable to raise nofile soft limit - already at hard limit.");
return;
}
if (kDesiredNofileSoftLimit > hardLimit) {
ERR("Warning: unable to raise nofile soft limit to desired %d - hard limit is %d.",
static_cast<int>(kDesiredNofileSoftLimit), static_cast<int>(hardLimit));
}
const rlim_t requestedSoftLimit = std::min(kDesiredNofileSoftLimit, hardLimit);
struct rlimit requestedNofileLimits = {
.rlim_cur = requestedSoftLimit,
.rlim_max = hardLimit,
};
ret = setrlimit(RLIMIT_NOFILE, &requestedNofileLimits);
if (ret) {
ERR("Warning: failed to raise nofile soft limit to %d: %s (%d)",
static_cast<int>(requestedSoftLimit), strerror(errno), errno);
return;
}
INFO("Raised nofile soft limit to %d.", static_cast<int>(requestedSoftLimit));
} else {
INFO("Not raising nofile soft limit from %d.", static_cast<int>(softLimit));
}
#endif
}
bool FrameBuffer::initialize(int width, int height, gfxstream::host::FeatureSet features,
bool useSubWindow, bool egl2egl) {
GL_LOG("FrameBuffer::initialize");
if (s_theFrameBuffer != NULL) {
return true;
}
MaybeIncreaseFileDescriptorSoftLimit();
android::base::initializeTracing();
//
// allocate space for the FrameBuffer object
//
std::unique_ptr<FrameBuffer> fb(new FrameBuffer(width, height, features, useSubWindow));
if (!fb) {
GL_LOG("Failed to create fb");
ERR("Failed to create fb\n");
return false;
}
std::unique_ptr<emugl::RenderDocWithMultipleVkInstances> renderDocMultipleVkInstances = nullptr;
if (!android::base::getEnvironmentVariable("ANDROID_EMU_RENDERDOC").empty()) {
SharedLibrary* renderdocLib = nullptr;
#ifdef _WIN32
renderdocLib = SharedLibrary::open(R"(C:\Program Files\RenderDoc\renderdoc.dll)");
#elif defined(__linux__)
renderdocLib = SharedLibrary::open("librenderdoc.so");
#endif
fb->m_renderDoc = emugl::RenderDoc::create(renderdocLib);
if (fb->m_renderDoc) {
INFO("RenderDoc integration enabled.");
renderDocMultipleVkInstances =
std::make_unique<emugl::RenderDocWithMultipleVkInstances>(*fb->m_renderDoc);
if (!renderDocMultipleVkInstances) {
ERR("Failed to initialize RenderDoc with multiple VkInstances. Can't capture any "
"information from guest VkInstances with RenderDoc.");
}
}
}
// Initialize Vulkan emulation state
//
// Note: This must happen before any use of s_egl,
// or it's possible that the existing EGL display and contexts
// used by underlying EGL driver might become invalid,
// preventing new contexts from being created that share
// against those contexts.
vk::VkEmulation* vkEmu = nullptr;
vk::VulkanDispatch* vkDispatch = nullptr;
if (fb->m_features.Vulkan.enabled) {
vkDispatch = vk::vkDispatch(false /* not for testing */);
vkEmu = vk::createGlobalVkEmulation(vkDispatch, fb->m_features);
if (!vkEmu) {
ERR("Failed to initialize global Vulkan emulation. Disable the Vulkan support.");
}
fb->m_emulationVk = vkEmu;
}
if (vkEmu) {
fb->m_vulkanEnabled = true;
if (fb->m_features.VulkanNativeSwapchain.enabled) {
fb->m_vkInstance = vkEmu->instance;
}
if (vkEmu->instanceSupportsPhysicalDeviceIDProperties) {
GL_LOG("Supports id properties, got a vulkan device UUID");
fprintf(stderr, "%s: Supports id properties, got a vulkan device UUID\n", __func__);
memcpy(fb->m_vulkanUUID.data(), vkEmu->deviceInfo.idProps.deviceUUID, VK_UUID_SIZE);
} else {
GL_LOG("Doesn't support id properties, no vulkan device UUID");
fprintf(stderr, "%s: Doesn't support id properties, no vulkan device UUID\n", __func__);
}
}
#if GFXSTREAM_ENABLE_HOST_GLES
// Do not initialize GL emulation if the guest is using ANGLE.
if (!fb->m_features.GuestVulkanOnly.enabled) {
fb->m_emulationGl = EmulationGl::create(width, height, fb->m_features, useSubWindow, egl2egl);
if (!fb->m_emulationGl) {
ERR("Failed to initialize GL emulation.");
return false;
}
}
#endif
fb->m_useVulkanComposition = fb->m_features.GuestVulkanOnly.enabled ||
fb->m_features.VulkanNativeSwapchain.enabled;
std::unique_ptr<VkEmulationFeatures> vkEmulationFeatures =
std::make_unique<VkEmulationFeatures>(VkEmulationFeatures{
.glInteropSupported = false, // Set later.
.deferredCommands =
android::base::getEnvironmentVariable("ANDROID_EMU_VK_DISABLE_DEFERRED_COMMANDS")
.empty(),
.createResourceWithRequirements =
android::base::getEnvironmentVariable(
"ANDROID_EMU_VK_DISABLE_USE_CREATE_RESOURCES_WITH_REQUIREMENTS")
.empty(),
.useVulkanComposition = fb->m_useVulkanComposition,
.useVulkanNativeSwapchain = fb->m_features.VulkanNativeSwapchain.enabled,
.guestRenderDoc = std::move(renderDocMultipleVkInstances),
.astcLdrEmulationMode = AstcEmulationMode::Gpu,
.enableEtc2Emulation = true,
.enableYcbcrEmulation = false,
.guestVulkanOnly = fb->m_features.GuestVulkanOnly.enabled,
.useDedicatedAllocations = false, // Set later.
});
//
// Cache the GL strings so we don't have to think about threading or
// current-context when asked for them.
//
bool useVulkanGraphicsDiagInfo =
vkEmu && fb->m_features.VulkanNativeSwapchain.enabled && fb->m_features.GuestVulkanOnly.enabled;
if (useVulkanGraphicsDiagInfo) {
fb->m_graphicsAdapterVendor = vkEmu->deviceInfo.driverVendor;
fb->m_graphicsAdapterName = vkEmu->deviceInfo.physdevProps.deviceName;
uint32_t vkVersion = vkEmu->vulkanInstanceVersion;
std::stringstream versionStringBuilder;
versionStringBuilder << "Vulkan " << VK_API_VERSION_MAJOR(vkVersion) << "."
<< VK_API_VERSION_MINOR(vkVersion) << "."
<< VK_API_VERSION_PATCH(vkVersion) << " "
<< vkEmu->deviceInfo.driverVendor << " "
<< vkEmu->deviceInfo.driverVersion;
fb->m_graphicsApiVersion = versionStringBuilder.str();
std::stringstream instanceExtensionsStringBuilder;
for (auto& ext : vkEmu->instanceExtensions) {
if (instanceExtensionsStringBuilder.tellp() != 0) {
instanceExtensionsStringBuilder << " ";
}
instanceExtensionsStringBuilder << ext.extensionName;
}
fb->m_graphicsApiExtensions = instanceExtensionsStringBuilder.str();
std::stringstream deviceExtensionsStringBuilder;
for (auto& ext : vkEmu->deviceInfo.extensions) {
if (deviceExtensionsStringBuilder.tellp() != 0) {
deviceExtensionsStringBuilder << " ";
}
deviceExtensionsStringBuilder << ext.extensionName;
}
fb->m_graphicsDeviceExtensions = deviceExtensionsStringBuilder.str();
} else if (fb->m_emulationGl) {
#if GFXSTREAM_ENABLE_HOST_GLES
fb->m_graphicsAdapterVendor = fb->m_emulationGl->getGlesVendor();
fb->m_graphicsAdapterName = fb->m_emulationGl->getGlesRenderer();
fb->m_graphicsApiVersion = fb->m_emulationGl->getGlesVersionString();
fb->m_graphicsApiExtensions = fb->m_emulationGl->getGlesExtensionsString();
fb->m_graphicsDeviceExtensions = "N/A";
#endif
} else {
fb->m_graphicsAdapterVendor = "N/A";
fb->m_graphicsAdapterName = "N/A";
fb->m_graphicsApiVersion = "N/A";
fb->m_graphicsApiExtensions = "N/A";
fb->m_graphicsDeviceExtensions = "N/A";
}
// Attempt to get the device UUID of the gles and match with Vulkan. If
// they match, interop is possible. If they don't, then don't trust the
// result of interop query to egl and fall back to CPU copy, as we might
// have initialized Vulkan devices and GLES contexts from different
// physical devices.
bool vulkanInteropSupported = true;
// First, if the VkEmulation instance doesn't support ext memory capabilities,
// it won't support uuids.
if (!vkEmu || !vkEmu->instanceSupportsPhysicalDeviceIDProperties) {
vulkanInteropSupported = false;
}
if (!fb->m_emulationGl) {
vulkanInteropSupported = false;
} else {
#if GFXSTREAM_ENABLE_HOST_GLES
if (!fb->m_emulationGl->isGlesVulkanInteropSupported()) {
vulkanInteropSupported = false;
}
const auto& glesDeviceUuid = fb->m_emulationGl->getGlesDeviceUuid();
if (!glesDeviceUuid || glesDeviceUuid != fb->m_vulkanUUID) {
vulkanInteropSupported = false;
}
#endif
}
// TODO: 0-copy gl interop on swiftshader vk
if (android::base::getEnvironmentVariable("ANDROID_EMU_VK_ICD") == "swiftshader") {
vulkanInteropSupported = false;
GL_LOG("vk icd swiftshader, disable interop");
}
fb->m_vulkanInteropSupported = vulkanInteropSupported;
GL_LOG("interop? %d", fb->m_vulkanInteropSupported);
#if GFXSTREAM_ENABLE_HOST_GLES
if (vulkanInteropSupported && fb->m_emulationGl && fb->m_emulationGl->isMesa()) {
// Mesa currently expects dedicated allocations for external memory sharing
// between GL and VK. See b/265186355.
vkEmulationFeatures->useDedicatedAllocations = true;
}
#endif
GL_LOG("glvk interop final: %d", fb->m_vulkanInteropSupported);
vkEmulationFeatures->glInteropSupported = fb->m_vulkanInteropSupported;
if (fb->m_features.Vulkan.enabled) {
vk::initVkEmulationFeatures(std::move(vkEmulationFeatures));
if (vkEmu && vkEmu->displayVk) {
fb->m_displayVk = vkEmu->displayVk.get();
fb->m_displaySurfaceUsers.push_back(fb->m_displayVk);
}
}
if (fb->m_useVulkanComposition) {
if (!vkEmu->compositorVk) {
ERR("Failed to get CompositorVk from VkEmulation.");
return false;
}
GL_LOG("Performing composition using CompositorVk.");
fb->m_compositor = vkEmu->compositorVk.get();
} else {
GL_LOG("Performing composition using CompositorGl.");
#if GFXSTREAM_ENABLE_HOST_GLES
auto compositorGl = fb->m_emulationGl->getCompositor();
fb->m_compositor = compositorGl;
#endif
}
#if GFXSTREAM_ENABLE_HOST_GLES
if (fb->m_emulationGl) {
auto displayGl = fb->m_emulationGl->getDisplay();
fb->m_displayGl = displayGl;
fb->m_displaySurfaceUsers.push_back(displayGl);
}
#endif
INFO("Graphics Adapter Vendor %s", fb->m_graphicsAdapterVendor.c_str());
INFO("Graphics Adapter %s", fb->m_graphicsAdapterName.c_str());
INFO("Graphics API Version %s", fb->m_graphicsApiVersion.c_str());
INFO("Graphics API Extensions %s", fb->m_graphicsApiExtensions.c_str());
INFO("Graphics Device Extensions %s", fb->m_graphicsDeviceExtensions.c_str());
if (fb->m_useVulkanComposition) {
fb->m_postWorker.reset(new PostWorkerVk(fb.get(), fb->m_compositor, fb->m_displayVk));
} else {
const bool shouldPostOnlyOnMainThread = postOnlyOnMainThread();
#if GFXSTREAM_ENABLE_HOST_GLES
PostWorkerGl* postWorkerGl =
new PostWorkerGl(shouldPostOnlyOnMainThread, fb.get(), fb->m_compositor,
fb->m_displayGl, fb->m_emulationGl.get());
fb->m_postWorker.reset(postWorkerGl);
fb->m_displaySurfaceUsers.push_back(postWorkerGl);
#endif
}
// Start up the single sync thread. If we are using Vulkan native
// swapchain, then don't initialize SyncThread worker threads with EGL
// contexts.
SyncThread::initialize(
/* hasGL */ fb->m_emulationGl != nullptr, fb->getHealthMonitor());
// Start the vsync thread
const uint64_t kOneSecondNs = 1000000000ULL;
fb->m_vsyncThread.reset(new VsyncThread((uint64_t)kOneSecondNs / (uint64_t)fb->m_vsyncHz));
//
// Keep the singleton framebuffer pointer
//
s_theFrameBuffer = fb.release();
{
AutoLock lock(sGlobals()->lock);
sInitialized.store(true, std::memory_order_release);
sGlobals()->condVar.broadcastAndUnlock(&lock);
}
// Nothing else to do - we're ready to rock!
return true;
}
void FrameBuffer::finalize() {
FrameBuffer* fb = s_theFrameBuffer;
s_theFrameBuffer = nullptr;
if (fb) {
delete fb;
}
}
FrameBuffer::FrameBuffer(int p_width, int p_height, gfxstream::host::FeatureSet features, bool useSubWindow)
: m_features(features),
m_framebufferWidth(p_width),
m_framebufferHeight(p_height),
m_windowWidth(p_width),
m_windowHeight(p_height),
m_useSubWindow(useSubWindow),
m_fpsStats(getenv("SHOW_FPS_STATS") != nullptr),
m_perfStats(!android::base::getEnvironmentVariable("SHOW_PERF_STATS").empty()),
m_perfThread(new PerfStatThread(&m_perfStats)),
m_readbackThread(
[this](FrameBuffer::Readback&& readback) { return sendReadbackWorkerCmd(readback); }),
m_refCountPipeEnabled(features.RefCountPipe.enabled),
m_noDelayCloseColorBufferEnabled(features.NoDelayCloseColorBuffer.enabled ||
features.Minigbm.enabled),
m_postThread([this](Post&& post) { return postWorkerFunc(post); }),
m_logger(CreateMetricsLogger()),
m_healthMonitor(CreateHealthMonitor(*m_logger)) {
mDisplayActiveConfigId = 0;
mDisplayConfigs[0] = {p_width, p_height, 160, 160};
uint32_t displayId = 0;
if (createDisplay(&displayId) < 0) {
fprintf(stderr, "Failed to create default display\n");
}
setDisplayPose(displayId, 0, 0, getWidth(), getHeight(), 0);
m_perfThread->start();
}
FrameBuffer::~FrameBuffer() {
AutoLock fbLock(m_lock);
m_perfStats = false;
m_perfThread->wait(NULL);
m_postThread.enqueue({PostCmd::Exit});
m_postThread.join();
m_postWorker.reset();
// Run other cleanup callbacks
// Avoid deadlock by first storing a separate list of callbacks
std::vector<std::function<void()>> callbacks;
for (auto procIte : m_procOwnedCleanupCallbacks)
{
for (auto it : procIte.second) {
callbacks.push_back(it.second);
}
}
m_procOwnedCleanupCallbacks.clear();
fbLock.unlock();
for (auto cb : callbacks) {
cb();
}
fbLock.lock();
if (m_useSubWindow) {
removeSubWindow_locked();
}
m_readbackThread.enqueue({ReadbackCmd::Exit});
m_readbackThread.join();
m_vsyncThread.reset();
delete m_perfThread;
SyncThread::destroy();
sweepColorBuffersLocked();
m_buffers.clear();
{
AutoLock lock(m_colorBufferMapLock);
m_colorbuffers.clear();
}
m_colorBufferDelayedCloseList.clear();
#if GFXSTREAM_ENABLE_HOST_GLES
m_windows.clear();
m_contexts.clear();
for (auto it : m_platformEglContexts) {
destroySharedTrivialContext(it.second.context, it.second.surface);
}
#endif
vk::teardownGlobalVkEmulation();
sInitialized.store(false, std::memory_order_relaxed);
}
WorkerProcessingResult
FrameBuffer::sendReadbackWorkerCmd(const Readback& readback) {
ensureReadbackWorker();
switch (readback.cmd) {
case ReadbackCmd::Init:
m_readbackWorker->init();
return WorkerProcessingResult::Continue;
case ReadbackCmd::GetPixels:
m_readbackWorker->getPixels(readback.displayId, readback.pixelsOut, readback.bytes);
return WorkerProcessingResult::Continue;
case ReadbackCmd::AddRecordDisplay:
m_readbackWorker->initReadbackForDisplay(readback.displayId, readback.width, readback.height);
return WorkerProcessingResult::Continue;
case ReadbackCmd::DelRecordDisplay:
m_readbackWorker->deinitReadbackForDisplay(readback.displayId);
return WorkerProcessingResult::Continue;
case ReadbackCmd::Exit:
return WorkerProcessingResult::Stop;
}
return WorkerProcessingResult::Stop;
}
WorkerProcessingResult FrameBuffer::postWorkerFunc(Post& post) {
auto annotations = std::make_unique<EventHangMetadata::HangAnnotations>();
if (m_healthMonitor)
annotations->insert(
{"Post command opcode", std::to_string(static_cast<uint64_t>(post.cmd))});
auto watchdog = WATCHDOG_BUILDER(m_healthMonitor.get(), "PostWorker main function")
.setAnnotations(std::move(annotations))
.build();
switch (post.cmd) {
case PostCmd::Post: {
// We wrap the callback like this to workaround a bug in the MS STL implementation.
auto packagePostCmdCallback =
std::shared_ptr<Post::CompletionCallback>(std::move(post.completionCallback));
std::unique_ptr<Post::CompletionCallback> postCallback =
std::make_unique<Post::CompletionCallback>(
[packagePostCmdCallback](std::shared_future<void> waitForGpu) {
SyncThread::get()->triggerGeneral(
[composeCallback = std::move(packagePostCmdCallback), waitForGpu] {
(*composeCallback)(waitForGpu);
},
"Wait for post");
});
m_postWorker->post(post.cb, std::move(postCallback));
decColorBufferRefCountNoDestroy(post.cbHandle);
break;
}
case PostCmd::Viewport:
m_postWorker->viewport(post.viewport.width,
post.viewport.height);
break;
case PostCmd::Compose: {
std::unique_ptr<FlatComposeRequest> composeRequest;
std::unique_ptr<Post::CompletionCallback> composeCallback;
if (post.composeVersion <= 1) {
composeCallback = std::move(post.completionCallback);
composeRequest = ToFlatComposeRequest((ComposeDevice*)post.composeBuffer.data());
} else {
// std::shared_ptr(std::move(...)) is WA for MSFT STL implementation bug:
// https://developercommunity.visualstudio.com/t/unable-to-move-stdpackaged-task-into-any-stl-conta/108672
auto packageComposeCallback =
std::shared_ptr<Post::CompletionCallback>(std::move(post.completionCallback));
composeCallback = std::make_unique<Post::CompletionCallback>(
[packageComposeCallback](
std::shared_future<void> waitForGpu) {
SyncThread::get()->triggerGeneral(
[composeCallback = std::move(packageComposeCallback), waitForGpu] {
(*composeCallback)(waitForGpu);
},
"Wait for host composition");
});
composeRequest = ToFlatComposeRequest((ComposeDevice_v2*)post.composeBuffer.data());
}
m_postWorker->compose(std::move(composeRequest), std::move(composeCallback));
break;
}
case PostCmd::Clear:
m_postWorker->clear();
break;
case PostCmd::Screenshot:
m_postWorker->screenshot(
post.screenshot.cb, post.screenshot.screenwidth,
post.screenshot.screenheight, post.screenshot.format,
post.screenshot.type, post.screenshot.rotation,
post.screenshot.pixels, post.screenshot.rect);
decColorBufferRefCountNoDestroy(post.cbHandle);
break;
case PostCmd::Block:
m_postWorker->block(std::move(post.block->scheduledSignal),
std::move(post.block->continueSignal));
break;
case PostCmd::Exit:
m_postWorker->exit();
return WorkerProcessingResult::Stop;
default:
break;
}
return WorkerProcessingResult::Continue;
}
std::future<void> FrameBuffer::sendPostWorkerCmd(Post post) {
bool expectedPostThreadStarted = false;
if (m_postThreadStarted.compare_exchange_strong(expectedPostThreadStarted, true)) {
m_postThread.start();
}
bool shouldPostOnlyOnMainThread = postOnlyOnMainThread();
// If we want to run only in the main thread and we are actually running
// in the main thread already, don't use the PostWorker thread. Ideally,
// PostWorker should handle this and dispatch directly, but we'll need to
// transfer ownership of the thread to PostWorker.
// TODO(lfy): do that refactor
// For now, this fixes a screenshot issue on macOS.
std::future<void> res = std::async(std::launch::deferred, [] {});
res.wait();
if (shouldPostOnlyOnMainThread && (PostCmd::Screenshot == post.cmd) &&
emugl::get_emugl_window_operations().isRunningInUiThread()) {
post.cb->readToBytesScaled(post.screenshot.screenwidth, post.screenshot.screenheight,
post.screenshot.format, post.screenshot.type,
post.screenshot.rotation, post.screenshot.rect,
post.screenshot.pixels);
} else {
std::future<void> completeFuture =
m_postThread.enqueue(Post(std::move(post)));
if (!shouldPostOnlyOnMainThread ||
(PostCmd::Screenshot == post.cmd &&
!emugl::get_emugl_window_operations().isRunningInUiThread())) {
res = std::move(completeFuture);
}
}
return res;
}
void FrameBuffer::setPostCallback(Renderer::OnPostCallback onPost, void* onPostContext,
uint32_t displayId, bool useBgraReadback) {
AutoLock lock(m_lock);
if (onPost) {
uint32_t w, h;
if (!emugl::get_emugl_multi_display_operations().getMultiDisplay(displayId,
nullptr,
nullptr,
&w, &h,
nullptr,
nullptr,
nullptr)) {
ERR("display %d not exist, cancelling OnPost callback", displayId);
return;
}
if (m_onPost.find(displayId) != m_onPost.end()) {
ERR("display %d already configured for recording", displayId);
return;
}
m_onPost[displayId].cb = onPost;
m_onPost[displayId].context = onPostContext;
m_onPost[displayId].displayId = displayId;
m_onPost[displayId].width = w;
m_onPost[displayId].height = h;
m_onPost[displayId].img = new unsigned char[4 * w * h];
m_onPost[displayId].readBgra = useBgraReadback;
bool expectedReadbackThreadStarted = false;
if (m_readbackThreadStarted.compare_exchange_strong(expectedReadbackThreadStarted, true)) {
m_readbackThread.start();
m_readbackThread.enqueue({ ReadbackCmd::Init });
}
std::future<void> completeFuture = m_readbackThread.enqueue(
{ReadbackCmd::AddRecordDisplay, displayId, nullptr, 0, w, h});
completeFuture.wait();
} else {
std::future<void> completeFuture = m_readbackThread.enqueue(
{ReadbackCmd::DelRecordDisplay, displayId});
completeFuture.wait();
m_onPost.erase(displayId);
}
}
static void subWindowRepaint(void* param) {
GL_LOG("call repost from subWindowRepaint callback");
auto fb = static_cast<FrameBuffer*>(param);
fb->repost();
}
bool FrameBuffer::setupSubWindow(FBNativeWindowType p_window,
int wx,
int wy,
int ww,
int wh,
int fbw,
int fbh,
float dpr,
float zRot,
bool deleteExisting,
bool hideWindow) {
GL_LOG("Begin setupSubWindow");
if (!m_useSubWindow) {
ERR("%s: Cannot create native sub-window in this configuration\n",
__FUNCTION__);
return false;
}
// Do a quick check before even taking the lock - maybe we don't need to
// do anything here.
const bool shouldCreateSubWindow = !m_subWin || deleteExisting;
// On Mac, since window coordinates are Y-up and not Y-down, the
// subwindow may not change dimensions, but because the main window
// did, the subwindow technically needs to be re-positioned. This
// can happen on rotation, so a change in Z-rotation can be checked
// for this case. However, this *should not* be done on Windows/Linux,
// because the functions used to resize a native window on those hosts
// will block if the shape doesn't actually change, freezing the
// emulator.
const bool shouldMoveSubWindow =
!shouldCreateSubWindow &&
!(m_x == wx && m_y == wy && m_windowWidth == ww && m_windowHeight == wh
#if defined(__APPLE__)
&& m_zRot == zRot
#endif
);
const bool redrawSubwindow =
shouldCreateSubWindow || shouldMoveSubWindow || m_zRot != zRot || m_dpr != dpr ||
m_windowContentFullWidth != fbw || m_windowContentFullHeight != fbh;
if (!shouldCreateSubWindow && !shouldMoveSubWindow && !redrawSubwindow) {
assert(sInitialized.load(std::memory_order_relaxed));
GL_LOG("Exit setupSubWindow (nothing to do)");
#if SNAPSHOT_PROFILE > 1
// printf("FrameBuffer::%s(): nothing to do at %lld ms\n", __func__,
// (long long)System::get()->getProcessTimes().wallClockMs);
#endif
return true;
}
#if SNAPSHOT_PROFILE > 1
// printf("FrameBuffer::%s(%s): start at %lld ms\n", __func__,
// deleteExisting ? "deleteExisting" : "keepExisting",
// (long long)System::get()->getProcessTimes().wallClockMs);
#endif
class ScopedPromise {
public:
~ScopedPromise() { mPromise.set_value(); }
std::future<void> getFuture() { return mPromise.get_future(); }
DISALLOW_COPY_ASSIGN_AND_MOVE(ScopedPromise);
static std::tuple<std::unique_ptr<ScopedPromise>, std::future<void>> create() {
auto scopedPromise = std::unique_ptr<ScopedPromise>(new ScopedPromise());
auto future = scopedPromise->mPromise.get_future();
return std::make_tuple(std::move(scopedPromise), std::move(future));
}
private:
ScopedPromise() = default;
std::promise<void> mPromise;
};
std::unique_ptr<ScopedPromise> postWorkerContinueSignal;
std::future<void> postWorkerContinueSignalFuture;
std::tie(postWorkerContinueSignal, postWorkerContinueSignalFuture) = ScopedPromise::create();
{
auto watchdog =
WATCHDOG_BUILDER(m_healthMonitor.get(), "Wait for other tasks on PostWorker")
.setTimeoutMs(6000)
.build();
blockPostWorker(std::move(postWorkerContinueSignalFuture)).wait();
}
if (m_displayVk) {
auto watchdog = WATCHDOG_BUILDER(m_healthMonitor.get(), "Draining the VkQueue")
.setTimeoutMs(6000)
.build();
m_displayVk->drainQueues();
}
auto lockWatchdog =
WATCHDOG_BUILDER(m_healthMonitor.get(), "Wait for the FrameBuffer global lock").build();
auto lockWatchdogId = lockWatchdog->release();
AutoLock mutex(m_lock);
if (lockWatchdogId.has_value()) {
m_healthMonitor->stopMonitoringTask(lockWatchdogId.value());
}
#if SNAPSHOT_PROFILE > 1
// printf("FrameBuffer::%s(): got lock at %lld ms\n", __func__,
// (long long)System::get()->getProcessTimes().wallClockMs);
#endif
if (deleteExisting) {
removeSubWindow_locked();
}
bool success = false;
// If the subwindow doesn't exist, create it with the appropriate dimensions
if (!m_subWin) {
// Create native subwindow for FB display output
m_x = wx;
m_y = wy;
m_windowWidth = ww;
m_windowHeight = wh;
if (!hideWindow) {
m_subWin = createSubWindow(p_window, m_x, m_y, m_windowWidth, m_windowHeight, dpr,
subWindowRepaint, this, hideWindow);
}
if (m_subWin) {
m_nativeWindow = p_window;
if (m_displayVk) {
m_displaySurface =
vk::createDisplaySurface(m_subWin, m_windowWidth * dpr, m_windowHeight * dpr);
} else if (m_emulationGl) {
#if GFXSTREAM_ENABLE_HOST_GLES
m_displaySurface = m_emulationGl->createWindowSurface(m_windowWidth * dpr,
m_windowHeight * dpr,
m_subWin);
#endif
} else {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER))
<< "Unhandled window surface creation.";
}
if (m_displaySurface) {
// Some backends use a default display surface. Unbind from that before
// binding the new display surface. which potentially needs to be unbound.
for (auto* displaySurfaceUser : m_displaySurfaceUsers) {
displaySurfaceUser->unbindFromSurface();
}
// TODO: Make RenderDoc a DisplaySurfaceUser.
if (m_displayVk) {
if (m_renderDoc) {
m_renderDoc->call(emugl::RenderDoc::kSetActiveWindow,
RENDERDOC_DEVICEPOINTER_FROM_VKINSTANCE(m_vkInstance),
reinterpret_cast<RENDERDOC_WindowHandle>(m_subWin));
}
}
m_px = 0;
m_py = 0;
for (auto* displaySurfaceUser : m_displaySurfaceUsers) {
displaySurfaceUser->bindToSurface(m_displaySurface.get());
}
success = true;
} else {
// Display surface creation failed.
if (m_emulationGl) {
// NOTE: This can typically happen with software-only renderers like OSMesa.
destroySubWindow(m_subWin);
m_subWin = (EGLNativeWindowType)0;
} else {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER))
<< "Failed to create DisplaySurface.";
}
}
}
}
auto watchdog = WATCHDOG_BUILDER(m_healthMonitor.get(), "Updating subwindow state").build();
// At this point, if the subwindow doesn't exist, it is because it either
// couldn't be created
// in the first place or the EGLSurface couldn't be created.
if (m_subWin) {
if (!shouldMoveSubWindow) {
// Ensure that at least viewport parameters are properly updated.
success = true;
} else {
// Only attempt to update window geometry if anything has actually
// changed.
m_x = wx;
m_y = wy;
m_windowWidth = ww;
m_windowHeight = wh;
{
auto watchdog = WATCHDOG_BUILDER(m_healthMonitor.get(), "Moving subwindow").build();
success = moveSubWindow(m_nativeWindow, m_subWin, m_x, m_y, m_windowWidth,
m_windowHeight, dpr);
}
m_displaySurface->updateSize(m_windowWidth * dpr, m_windowHeight * dpr);
}
// We are safe to unblock the PostWorker thread now, because we have completed all the
// operations that could modify the state of the m_subWin. We need to unblock the PostWorker
// here because we may need to send and wait for other tasks dispatched to the PostWorker
// later, e.g. the viewport command or the post command issued later.
postWorkerContinueSignal.reset();
if (success && redrawSubwindow) {
// Subwin creation or movement was successful,
// update viewport and z rotation and draw
// the last posted color buffer.
m_dpr = dpr;
m_zRot = zRot;
if (m_displayVk == nullptr) {
Post postCmd;
postCmd.cmd = PostCmd::Viewport;
postCmd.viewport.width = fbw;
postCmd.viewport.height = fbh;
sendPostWorkerCmd(std::move(postCmd));
if (m_lastPostedColorBuffer) {
GL_LOG("setupSubwindow: draw last posted cb");
postImpl(m_lastPostedColorBuffer,
[](std::shared_future<void> waitForGpu) {}, false);
} else {
Post postCmd;
postCmd.cmd = PostCmd::Clear;
sendPostWorkerCmd(std::move(postCmd));
}
}
m_windowContentFullWidth = fbw;
m_windowContentFullHeight = fbh;
}
}
mutex.unlock();
// Nobody ever checks for the return code, so there will be no retries or
// even aborted run; if we don't mark the framebuffer as initialized here
// its users will hang forever; if we do mark it, they will crash - which
// is a better outcome (crash report == bug fixed).
AutoLock lock(sGlobals()->lock);
sInitialized.store(true, std::memory_order_relaxed);
sGlobals()->condVar.broadcastAndUnlock(&lock);
#if SNAPSHOT_PROFILE > 1
// printf("FrameBuffer::%s(): end at %lld ms\n", __func__,
// (long long)System::get()->getProcessTimes().wallClockMs);
#endif
GL_LOG("Exit setupSubWindow (successful setup)");
return success;
}
bool FrameBuffer::removeSubWindow() {
if (!m_useSubWindow) {
ERR("Cannot remove native sub-window in this configuration");
return false;
}
AutoLock lock(sGlobals()->lock);
sInitialized.store(false, std::memory_order_relaxed);
sGlobals()->condVar.broadcastAndUnlock(&lock);
AutoLock mutex(m_lock);
return removeSubWindow_locked();
}
bool FrameBuffer::removeSubWindow_locked() {
if (!m_useSubWindow) {
ERR("Cannot remove native sub-window in this configuration");
return false;
}
bool removed = false;
if (m_subWin) {
for (auto* displaySurfaceUser : m_displaySurfaceUsers) {
displaySurfaceUser->unbindFromSurface();
}
m_displaySurface.reset();
destroySubWindow(m_subWin);
m_subWin = (EGLNativeWindowType)0;
removed = true;
}
return removed;
}
HandleType FrameBuffer::genHandle_locked() {
HandleType id;
do {
id = ++s_nextHandle;
} while (id == 0 ||
#if GFXSTREAM_ENABLE_HOST_GLES
m_contexts.find(id) != m_contexts.end() || m_windows.find(id) != m_windows.end() ||
#endif
m_colorbuffers.find(id) != m_colorbuffers.end() ||
m_buffers.find(id) != m_buffers.end());
return id;
}
bool FrameBuffer::isFormatSupported(GLenum format) {
bool supported = true;
if (m_emulationGl) {
supported &= m_emulationGl->isFormatSupported(format);
}
if (m_emulationVk) {
supported &= vk::isFormatSupported(format);
}
return supported;
}
HandleType FrameBuffer::createColorBuffer(int p_width,
int p_height,
GLenum p_internalFormat,
FrameworkFormat p_frameworkFormat) {
AutoLock mutex(m_lock);
sweepColorBuffersLocked();
AutoLock colorBufferMapLock(m_colorBufferMapLock);
return createColorBufferWithHandleLocked(p_width, p_height, p_internalFormat, p_frameworkFormat,
genHandle_locked());
}
void FrameBuffer::createColorBufferWithHandle(int p_width, int p_height, GLenum p_internalFormat,
FrameworkFormat p_frameworkFormat, HandleType handle,
bool p_linear) {
{
AutoLock mutex(m_lock);
sweepColorBuffersLocked();
AutoLock colorBufferMapLock(m_colorBufferMapLock);
// Check for handle collision
if (m_colorbuffers.count(handle) != 0) {
// emugl::emugl_crash_reporter(
// "FATAL: color buffer with handle %u already exists",
// handle);
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER));
}
createColorBufferWithHandleLocked(p_width, p_height, p_internalFormat, p_frameworkFormat,
handle, p_linear);
}
}
HandleType FrameBuffer::createColorBufferWithHandleLocked(int p_width, int p_height,
GLenum p_internalFormat,
FrameworkFormat p_frameworkFormat,
HandleType handle, bool p_linear) {
ColorBufferPtr cb =
ColorBuffer::create(m_emulationGl.get(), m_emulationVk, p_width, p_height, p_internalFormat,
p_frameworkFormat, handle, nullptr /*stream*/, p_linear);
if (cb.get() == nullptr) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER))
<< "Failed to create ColorBuffer:" << handle << " format:" << p_internalFormat
<< " framework-format:" << p_frameworkFormat << " width:" << p_width
<< " height:" << p_height;
}
assert(m_colorbuffers.count(handle) == 0);
// When guest feature flag RefCountPipe is on, no reference counting is
// needed. We only memoize the mapping from handle to ColorBuffer.
// Explicitly set refcount to 1 to avoid the colorbuffer being added to
// m_colorBufferDelayedCloseList in FrameBuffer::onLoad().
if (m_refCountPipeEnabled) {
m_colorbuffers.try_emplace(handle, ColorBufferRef{std::move(cb), 1, false, 0});
GL_LOG("RefCountPipeEnabled in createColorBufferWithHandleLocked for cb with handle %d", handle);
} else {
// Android master default api level is 1000
int apiLevel = 1000;
emugl::getAvdInfo(nullptr, &apiLevel);
// pre-O and post-O use different color buffer memory management
// logic
if (apiLevel > 0 && apiLevel < 26) {
m_colorbuffers.try_emplace(handle, ColorBufferRef{std::move(cb), 1, false, 0});
RenderThreadInfo* tInfo = RenderThreadInfo::get();
uint64_t puid = tInfo->m_puid;
if (puid) {
m_procOwnedColorBuffers[puid].insert(handle);
}
} else {
m_colorbuffers.try_emplace(handle, ColorBufferRef{std::move(cb), 0, false, 0});
GL_LOG("Added cb in createColorBufferWithHandleLocked for cb with handle %d", handle);
}
}
emugl::getGraphicsObjectCounter()->incCount(android::base::toIndex(android::base::GraphicsObjectType::COLORBUFFER));
return handle;
}
HandleType FrameBuffer::createBuffer(uint64_t p_size, uint32_t memoryProperty) {
AutoLock mutex(m_lock);
AutoLock colorBufferMapLock(m_colorBufferMapLock);
return createBufferWithHandleLocked(p_size, genHandle_locked(), memoryProperty);
}
void FrameBuffer::createBufferWithHandle(uint64_t size, HandleType handle) {
AutoLock mutex(m_lock);
AutoLock colorBufferMapLock(m_colorBufferMapLock);
if (m_buffers.count(handle) != 0) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER))
<< "Buffer already exists with handle " << handle;
}
createBufferWithHandleLocked(size, handle, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
}
HandleType FrameBuffer::createBufferWithHandleLocked(int p_size, HandleType handle,
uint32_t memoryProperty) {
if (m_buffers.count(handle) != 0) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER))
<< "Buffer already exists with handle " << handle;
}
BufferPtr buffer(Buffer::create(m_emulationGl.get(), m_emulationVk, p_size, handle));
if (!buffer) {
ERR("Create buffer failed.\n");
return 0;
}
m_buffers[handle] = {std::move(buffer)};
return handle;
}
int FrameBuffer::openColorBuffer(HandleType p_colorbuffer) {
// When guest feature flag RefCountPipe is on, no reference counting is
// needed.
if (m_refCountPipeEnabled) return 0;
RenderThreadInfo* tInfo = RenderThreadInfo::get();
AutoLock mutex(m_lock);
ColorBufferMap::iterator c;
{
AutoLock colorBuffermapLock(m_colorBufferMapLock);
c = m_colorbuffers.find(p_colorbuffer);
if (c == m_colorbuffers.end()) {
// bad colorbuffer handle
ERR("FB: openColorBuffer cb handle %#x not found", p_colorbuffer);
return -1;
}
c->second.refcount++;
markOpened(&c->second);
}
uint64_t puid = tInfo ? tInfo->m_puid : 0;
if (puid) {
m_procOwnedColorBuffers[puid].insert(p_colorbuffer);
}
return 0;
}
void FrameBuffer::closeColorBuffer(HandleType p_colorbuffer) {
// When guest feature flag RefCountPipe is on, no reference counting is
// needed.
if (m_refCountPipeEnabled) {
GL_LOG("RefCountPipeEnabled so closeColorBuffer doesn't run");
return;
}
RenderThreadInfo* tInfo = RenderThreadInfo::get();
std::vector<HandleType> toCleanup;
AutoLock mutex(m_lock);
uint64_t puid = tInfo ? tInfo->m_puid : 0;
if (puid) {
auto ite = m_procOwnedColorBuffers.find(puid);
if (ite != m_procOwnedColorBuffers.end()) {
const auto& cb = ite->second.find(p_colorbuffer);
if (cb != ite->second.end()) {
ite->second.erase(cb);
if (closeColorBufferLocked(p_colorbuffer)) {
toCleanup.push_back(p_colorbuffer);
}
}
}
} else {
if (closeColorBufferLocked(p_colorbuffer)) {
toCleanup.push_back(p_colorbuffer);
}
}
}
void FrameBuffer::closeBuffer(HandleType p_buffer) {
AutoLock mutex(m_lock);
auto it = m_buffers.find(p_buffer);
if (it == m_buffers.end()) {
ERR("Failed to find Buffer:%d", p_buffer);
return;
}
m_buffers.erase(it);
}
bool FrameBuffer::closeColorBufferLocked(HandleType p_colorbuffer, bool forced) {
// When guest feature flag RefCountPipe is on, no reference counting is
// needed.
if (m_refCountPipeEnabled) {
return false;
}
bool deleted = false;
{
AutoLock colorBufferMapLock(m_colorBufferMapLock);
if (m_noDelayCloseColorBufferEnabled) forced = true;
ColorBufferMap::iterator c(m_colorbuffers.find(p_colorbuffer));
if (c == m_colorbuffers.end()) {
// This is harmless: it is normal for guest system to issue
// closeColorBuffer command when the color buffer is already
// garbage collected on the host. (we don't have a mechanism
// to give guest a notice yet)
return false;
}
// The guest can and will gralloc_alloc/gralloc_free and then
// gralloc_register a buffer, due to API level (O+) or
// timing issues.
// So, we don't actually close the color buffer when refcount
// reached zero, unless it has been opened at least once already.
// Instead, put it on a 'delayed close' list to return to it later.
if (--c->second.refcount == 0) {
if (forced) {
eraseDelayedCloseColorBufferLocked(c->first, c->second.closedTs);
m_colorbuffers.erase(c);
emugl::getGraphicsObjectCounter()->decCount(
android::base::toIndex(android::base::GraphicsObjectType::COLORBUFFER));
deleted = true;
} else {
c->second.closedTs = android::base::getUnixTimeUs();
m_colorBufferDelayedCloseList.push_back({c->second.closedTs, p_colorbuffer});
}
}
}
performDelayedColorBufferCloseLocked(false);
return deleted;
}
void FrameBuffer::decColorBufferRefCountNoDestroy(HandleType p_colorbuffer) {
AutoLock colorBufferMapLock(m_colorBufferMapLock);
ColorBufferMap::iterator c(m_colorbuffers.find(p_colorbuffer));
if (c == m_colorbuffers.end()) {
return;
}
if (--c->second.refcount == 0) {
c->second.closedTs = android::base::getUnixTimeUs();
m_colorBufferDelayedCloseList.push_back({c->second.closedTs, p_colorbuffer});
}
}
void FrameBuffer::performDelayedColorBufferCloseLocked(bool forced) {
// Let's wait just long enough to make sure it's not because of instant
// timestamp change (end of previous second -> beginning of a next one),
// but not for long - this is a workaround for race conditions, and they
// are quick.
static constexpr uint64_t kColorBufferClosingDelayUs = 1000000LL;
const auto now = android::base::getUnixTimeUs();
auto it = m_colorBufferDelayedCloseList.begin();
while (it != m_colorBufferDelayedCloseList.end() &&
(forced ||
it->ts + kColorBufferClosingDelayUs <= now)) {
if (it->cbHandle != 0) {
AutoLock colorBufferMapLock(m_colorBufferMapLock);
const auto& cb = m_colorbuffers.find(it->cbHandle);
if (cb != m_colorbuffers.end()) {
m_colorbuffers.erase(cb);
emugl::getGraphicsObjectCounter()->decCount(
android::base::toIndex(android::base::GraphicsObjectType::COLORBUFFER));
}
}
++it;
}
m_colorBufferDelayedCloseList.erase(
m_colorBufferDelayedCloseList.begin(), it);
}
void FrameBuffer::eraseDelayedCloseColorBufferLocked(
HandleType cb, uint64_t ts)
{
// Find the first delayed buffer with a timestamp <= |ts|
auto it = std::lower_bound(
m_colorBufferDelayedCloseList.begin(),
m_colorBufferDelayedCloseList.end(), ts,
[](const ColorBufferCloseInfo& ci, uint64_t ts) {
return ci.ts < ts;
});
while (it != m_colorBufferDelayedCloseList.end() &&
it->ts == ts) {
// if this is the one we need - clear it out.
if (it->cbHandle == cb) {
it->cbHandle = 0;
break;
}
++it;
}
}
void FrameBuffer::createGraphicsProcessResources(uint64_t puid) {
AutoLock mutex(m_lock);
bool inserted = m_procOwnedResources.try_emplace(puid, ProcessResources::create()).second;
if (!inserted) {
WARN("Failed to create process resource for puid %" PRIu64 ".", puid);
}
}
std::unique_ptr<ProcessResources> FrameBuffer::removeGraphicsProcessResources(uint64_t puid) {
std::unordered_map<uint64_t, std::unique_ptr<ProcessResources>>::node_type node;
{
AutoLock mutex(m_lock);
node = m_procOwnedResources.extract(puid);
}
if (node.empty()) {
WARN("Failed to find process resource for puid %" PRIu64 ".", puid);
return nullptr;
}
std::unique_ptr<ProcessResources> res = std::move(node.mapped());
return res;
}
void FrameBuffer::cleanupProcGLObjects(uint64_t puid) {
bool renderThreadWithThisPuidExists = false;
do {
renderThreadWithThisPuidExists = false;
RenderThreadInfo::forAllRenderThreadInfos(
[puid, &renderThreadWithThisPuidExists](RenderThreadInfo* i) {
if (i->m_puid == puid) {
renderThreadWithThisPuidExists = true;
}
});
android::base::sleepUs(10000);
} while (renderThreadWithThisPuidExists);
AutoLock mutex(m_lock);
cleanupProcGLObjects_locked(puid);
// Run other cleanup callbacks
// Avoid deadlock by first storing a separate list of callbacks
std::vector<std::function<void()>> callbacks;
{
auto procIte = m_procOwnedCleanupCallbacks.find(puid);
if (procIte != m_procOwnedCleanupCallbacks.end()) {
for (auto it : procIte->second) {
callbacks.push_back(it.second);
}
m_procOwnedCleanupCallbacks.erase(procIte);
}
}
mutex.unlock();
for (auto cb : callbacks) {
cb();
}
}
std::vector<HandleType> FrameBuffer::cleanupProcGLObjects_locked(uint64_t puid, bool forced) {
std::vector<HandleType> colorBuffersToCleanup;
{
std::unique_ptr<RecursiveScopedContextBind> bind = nullptr;
#if GFXSTREAM_ENABLE_HOST_GLES
if (m_emulationGl) {
bind = std::make_unique<RecursiveScopedContextBind>(getPbufferSurfaceContextHelper());
}
// Clean up window surfaces
if (m_emulationGl) {
auto procIte = m_procOwnedEmulatedEglWindowSurfaces.find(puid);
if (procIte != m_procOwnedEmulatedEglWindowSurfaces.end()) {
for (auto whndl : procIte->second) {
auto w = m_windows.find(whndl);
// TODO(b/265186226): figure out if we are leaking?
if (w == m_windows.end()) {
continue;
}
if (!m_guestManagedColorBufferLifetime) {
if (m_refCountPipeEnabled) {
if (decColorBufferRefCountLocked(w->second.second)) {
colorBuffersToCleanup.push_back(w->second.second);
}
} else {
if (closeColorBufferLocked(w->second.second, forced)) {
colorBuffersToCleanup.push_back(w->second.second);
}
}
}
m_windows.erase(w);
}
m_procOwnedEmulatedEglWindowSurfaces.erase(procIte);
}
}
#endif
// Clean up color buffers.
// A color buffer needs to be closed as many times as it is opened by
// the guest process, to give the correct reference count.
// (Note that a color buffer can be shared across guest processes.)
{
if (!m_guestManagedColorBufferLifetime) {
auto procIte = m_procOwnedColorBuffers.find(puid);
if (procIte != m_procOwnedColorBuffers.end()) {
for (auto cb : procIte->second) {
if (closeColorBufferLocked(cb, forced)) {
colorBuffersToCleanup.push_back(cb);
}
}
m_procOwnedColorBuffers.erase(procIte);
}
}
}
#if GFXSTREAM_ENABLE_HOST_GLES
// Clean up EGLImage handles
if (m_emulationGl) {
auto procImagesIt = m_procOwnedEmulatedEglImages.find(puid);
if (procImagesIt != m_procOwnedEmulatedEglImages.end()) {
for (auto image : procImagesIt->second) {
m_images.erase(image);
}
m_procOwnedEmulatedEglImages.erase(procImagesIt);
}
}
#endif
}
#if GFXSTREAM_ENABLE_HOST_GLES
// Unbind before cleaning up contexts
// Cleanup render contexts
if (m_emulationGl) {
auto procIte = m_procOwnedEmulatedEglContexts.find(puid);
if (procIte != m_procOwnedEmulatedEglContexts.end()) {
for (auto ctx : procIte->second) {
m_contexts.erase(ctx);
}
m_procOwnedEmulatedEglContexts.erase(procIte);
}
}
#endif
return colorBuffersToCleanup;
}
void FrameBuffer::markOpened(ColorBufferRef* cbRef) {
cbRef->opened = true;
eraseDelayedCloseColorBufferLocked(cbRef->cb->getHndl(), cbRef->closedTs);
cbRef->closedTs = 0;
}
void FrameBuffer::readBuffer(HandleType handle, uint64_t offset, uint64_t size, void* bytes) {
AutoLock mutex(m_lock);
BufferPtr buffer = findBuffer(handle);
if (!buffer) {
ERR("Failed to read buffer: buffer %d not found.", handle);
return;
}
buffer->readToBytes(offset, size, bytes);
}
void FrameBuffer::readColorBuffer(HandleType p_colorbuffer, int x, int y, int width, int height,
GLenum format, GLenum type, void* pixels) {
AutoLock mutex(m_lock);
ColorBufferPtr colorBuffer = findColorBuffer(p_colorbuffer);
if (!colorBuffer) {
// bad colorbuffer handle
return;
}
colorBuffer->readToBytes(x, y, width, height, format, type, pixels);
}
void FrameBuffer::readColorBufferYUV(HandleType p_colorbuffer, int x, int y, int width, int height,
void* pixels, uint32_t pixels_size) {
AutoLock mutex(m_lock);
ColorBufferPtr colorBuffer = findColorBuffer(p_colorbuffer);
if (!colorBuffer) {
// bad colorbuffer handle
return;
}
colorBuffer->readYuvToBytes(x, y, width, height, pixels, pixels_size);
}
bool FrameBuffer::updateBuffer(HandleType p_buffer, uint64_t offset, uint64_t size, void* bytes) {
AutoLock mutex(m_lock);
BufferPtr buffer = findBuffer(p_buffer);
if (!buffer) {
ERR("Failed to update buffer: buffer %d not found.", p_buffer);
return false;
}
return buffer->updateFromBytes(offset, size, bytes);
}
bool FrameBuffer::updateColorBuffer(HandleType p_colorbuffer,
int x,
int y,
int width,
int height,
GLenum format,
GLenum type,
void* pixels) {
if (width == 0 || height == 0) {
return false;
}
AutoLock mutex(m_lock);
ColorBufferPtr colorBuffer = findColorBuffer(p_colorbuffer);
if (!colorBuffer) {
// bad colorbuffer handle
return false;
}
colorBuffer->updateFromBytes(x, y, width, height, format, type, pixels);
return true;
}
bool FrameBuffer::updateColorBufferFromFrameworkFormat(HandleType p_colorbuffer, int x, int y,
int width, int height,
FrameworkFormat fwkFormat, GLenum format,
GLenum type, void* pixels, void* metadata) {
if (width == 0 || height == 0) {
return false;
}
AutoLock mutex(m_lock);
ColorBufferMap::iterator c(m_colorbuffers.find(p_colorbuffer));
if (c == m_colorbuffers.end()) {
// bad colorbuffer handle
return false;
}
(*c).second.cb->updateFromBytes(x, y, width, height, fwkFormat, format, type, pixels, metadata);
return true;
}
bool FrameBuffer::getColorBufferInfo(
HandleType p_colorbuffer, int* width, int* height, GLint* internalformat,
FrameworkFormat* frameworkFormat) {
AutoLock mutex(m_lock);
ColorBufferPtr colorBuffer = findColorBuffer(p_colorbuffer);
if (!colorBuffer) {
// bad colorbuffer handle
return false;
}
*width = colorBuffer->getWidth();
*height = colorBuffer->getHeight();
*internalformat = colorBuffer->getFormat();
if (frameworkFormat) {
*frameworkFormat = colorBuffer->getFrameworkFormat();
}
return true;
}
bool FrameBuffer::getBufferInfo(HandleType p_buffer, int* size) {
AutoLock mutex(m_lock);
BufferMap::iterator c(m_buffers.find(p_buffer));
if (c == m_buffers.end()) {
// Bad buffer handle.
return false;
}
auto buf = (*c).second.buffer;
*size = buf->getSize();
return true;
}
bool FrameBuffer::post(HandleType p_colorbuffer, bool needLockAndBind) {
#if GFXSTREAM_ENABLE_HOST_GLES
if (m_features.GuestVulkanOnly.enabled) {
flushColorBufferFromGl(p_colorbuffer);
}
#endif
auto res = postImplSync(p_colorbuffer, needLockAndBind);
if (res) setGuestPostedAFrame();
return res;
}
void FrameBuffer::postWithCallback(HandleType p_colorbuffer, Post::CompletionCallback callback,
bool needLockAndBind) {
#if GFXSTREAM_ENABLE_HOST_GLES
if (m_features.GuestVulkanOnly.enabled) {
flushColorBufferFromGl(p_colorbuffer);
}
#endif
AsyncResult res = postImpl(p_colorbuffer, callback, needLockAndBind);
if (res.Succeeded()) {
setGuestPostedAFrame();
}
if (!res.CallbackScheduledOrFired()) {
// If postImpl fails, we have not fired the callback. postWithCallback
// should always ensure the callback fires.
std::shared_future<void> callbackRes = std::async(std::launch::deferred, [] {});
callback(callbackRes);
}
}
bool FrameBuffer::postImplSync(HandleType p_colorbuffer, bool needLockAndBind, bool repaint) {
std::promise<void> promise;
std::future<void> completeFuture = promise.get_future();
auto posted = postImpl(
p_colorbuffer,
[&](std::shared_future<void> waitForGpu) {
waitForGpu.wait();
promise.set_value();
},
needLockAndBind, repaint);
if (posted.CallbackScheduledOrFired()) {
completeFuture.wait();
}
return posted.Succeeded();
}
AsyncResult FrameBuffer::postImpl(HandleType p_colorbuffer, Post::CompletionCallback callback,
bool needLockAndBind, bool repaint) {
std::unique_ptr<RecursiveScopedContextBind> bind;
if (needLockAndBind) {
m_lock.lock();
#if GFXSTREAM_ENABLE_HOST_GLES
if (m_emulationGl) {
bind = std::make_unique<RecursiveScopedContextBind>(getPbufferSurfaceContextHelper());
}
#endif
}
AsyncResult ret = AsyncResult::FAIL_AND_CALLBACK_NOT_SCHEDULED;
ColorBufferPtr colorBuffer = nullptr;
{
AutoLock colorBufferMapLock(m_colorBufferMapLock);
ColorBufferMap::iterator c = m_colorbuffers.find(p_colorbuffer);
if (c != m_colorbuffers.end()) {
colorBuffer = c->second.cb;
c->second.refcount++;
markOpened(&c->second);
}
}
if (!colorBuffer) {
goto EXIT;
}
m_lastPostedColorBuffer = p_colorbuffer;
colorBuffer->touch();
if (m_subWin) {
Post postCmd;
postCmd.cmd = PostCmd::Post;
postCmd.cb = colorBuffer.get();
postCmd.cbHandle = p_colorbuffer;
postCmd.completionCallback = std::make_unique<Post::CompletionCallback>(callback);
sendPostWorkerCmd(std::move(postCmd));
ret = AsyncResult::OK_AND_CALLBACK_SCHEDULED;
} else {
// If there is no sub-window, don't display anything, the client will
// rely on m_onPost to get the pixels instead.
ret = AsyncResult::OK_AND_CALLBACK_NOT_SCHEDULED;
}
//
// output FPS and performance usage statistics
//
if (m_fpsStats) {
long long currTime = android::base::getHighResTimeUs() / 1000;
m_statsNumFrames++;
if (currTime - m_statsStartTime >= 1000) {
if (m_fpsStats) {
float dt = (float)(currTime - m_statsStartTime) / 1000.0f;
printf("FPS: %5.3f \n", (float)m_statsNumFrames / dt);
m_statsNumFrames = 0;
}
m_statsStartTime = currTime;
}
}
//
// Send framebuffer (without FPS overlay) to callback
//
if (m_onPost.size() == 0) {
goto DEC_REFCOUNT_AND_EXIT;
}
for (auto& iter : m_onPost) {
ColorBufferPtr cb;
if (iter.first == 0) {
cb = colorBuffer;
} else {
uint32_t colorBuffer;
if (getDisplayColorBuffer(iter.first, &colorBuffer) < 0) {
ERR("Failed to get color buffer for display %d, skip onPost", iter.first);
continue;
}
cb = findColorBuffer(colorBuffer);
if (!cb) {
ERR("Failed to find colorbuffer %d, skip onPost", colorBuffer);
continue;
}
}
if (asyncReadbackSupported()) {
ensureReadbackWorker();
const auto status = m_readbackWorker->doNextReadback(
iter.first, cb.get(), iter.second.img, repaint, iter.second.readBgra);
if (status == ReadbackWorker::DoNextReadbackResult::OK_READY_FOR_READ) {
doPostCallback(iter.second.img, iter.first);
}
} else {
#if GFXSTREAM_ENABLE_HOST_GLES
cb->glOpReadback(iter.second.img, iter.second.readBgra);
#endif
doPostCallback(iter.second.img, iter.first);
}
}
DEC_REFCOUNT_AND_EXIT:
if (!m_subWin) { // m_subWin is supposed to be false
decColorBufferRefCountLocked(p_colorbuffer);
}
EXIT:
if (needLockAndBind) {
bind.reset();
m_lock.unlock();
}
return ret;
}
void FrameBuffer::doPostCallback(void* pixels, uint32_t displayId) {
const auto& iter = m_onPost.find(displayId);
if (iter == m_onPost.end()) {
ERR("Cannot find post callback function for display %d", displayId);
return;
}
iter->second.cb(iter->second.context, displayId, iter->second.width, iter->second.height, -1,
GL_RGBA, GL_UNSIGNED_BYTE, (unsigned char*)pixels);
}
void FrameBuffer::getPixels(void* pixels, uint32_t bytes, uint32_t displayId) {
const auto& iter = m_onPost.find(displayId);
if (iter == m_onPost.end()) {
ERR("Display %d not configured for recording yet", displayId);
return;
}
std::future<void> completeFuture =
m_readbackThread.enqueue({ReadbackCmd::GetPixels, displayId, pixels, bytes});
completeFuture.wait();
}
void FrameBuffer::flushReadPipeline(int displayId) {
const auto& iter = m_onPost.find(displayId);
if (iter == m_onPost.end()) {
ERR("Cannot find onPost pixels for display %d", displayId);
return;
}
ensureReadbackWorker();
const auto status = m_readbackWorker->flushPipeline(displayId);
if (status == ReadbackWorker::FlushResult::OK_READY_FOR_READ) {
doPostCallback(nullptr, displayId);
}
}
void FrameBuffer::ensureReadbackWorker() {
#if GFXSTREAM_ENABLE_HOST_GLES
if (!m_readbackWorker) {
if (!m_emulationGl) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "GL/EGL emulation not enabled.";
}
m_readbackWorker = m_emulationGl->getReadbackWorker();
}
#endif
}
static void sFrameBuffer_ReadPixelsCallback(void* pixels, uint32_t bytes, uint32_t displayId) {
FrameBuffer::getFB()->getPixels(pixels, bytes, displayId);
}
static void sFrameBuffer_FlushReadPixelPipeline(int displayId) {
FrameBuffer::getFB()->flushReadPipeline(displayId);
}
bool FrameBuffer::asyncReadbackSupported() {
#if GFXSTREAM_ENABLE_HOST_GLES
return m_emulationGl && m_emulationGl->isAsyncReadbackSupported();
#else
return false;
#endif
}
Renderer::ReadPixelsCallback FrameBuffer::getReadPixelsCallback() {
return sFrameBuffer_ReadPixelsCallback;
}
Renderer::FlushReadPixelPipeline FrameBuffer::getFlushReadPixelPipeline() {
return sFrameBuffer_FlushReadPixelPipeline;
}
bool FrameBuffer::repost(bool needLockAndBind) {
GL_LOG("Reposting framebuffer.");
if (m_displayVk) {
setGuestPostedAFrame();
return true;
}
if (m_lastPostedColorBuffer && sInitialized.load(std::memory_order_relaxed)) {
GL_LOG("Has last posted colorbuffer and is initialized; post.");
auto res = postImplSync(m_lastPostedColorBuffer, needLockAndBind, true);
if (res) setGuestPostedAFrame();
return res;
} else {
GL_LOG("No repost: no last posted color buffer");
if (!sInitialized.load(std::memory_order_relaxed)) {
GL_LOG("No repost: initialization is not finished.");
}
}
return false;
}
template <class Collection>
static void saveProcOwnedCollection(Stream* stream, const Collection& c) {
// Exclude empty handle lists from saving as they add no value but only
// increase the snapshot size; keep the format compatible with
// android::base::saveCollection() though.
const int count = std::count_if(
c.begin(), c.end(),
[](const typename Collection::value_type& pair) { return !pair.second.empty(); });
stream->putBe32(count);
for (const auto& pair : c) {
if (pair.second.empty()) {
continue;
}
stream->putBe64(pair.first);
saveCollection(stream, pair.second, [](Stream* s, HandleType h) { s->putBe32(h); });
}
}
template <class Collection>
static void loadProcOwnedCollection(Stream* stream, Collection* c) {
loadCollection(stream, c, [](Stream* stream) -> typename Collection::value_type {
const int processId = stream->getBe64();
typename Collection::mapped_type handles;
loadCollection(stream, &handles, [](Stream* s) { return s->getBe32(); });
return {processId, std::move(handles)};
});
}
int FrameBuffer::getScreenshot(unsigned int nChannels, unsigned int* width, unsigned int* height,
uint8_t* pixels, size_t* cPixels, int displayId, int desiredWidth,
int desiredHeight, int desiredRotation, Rect rect) {
#ifdef CONFIG_AEMU
if (emugl::shouldSkipDraw()) {
*width = 0;
*height = 0;
*cPixels = 0;
return -1;
}
#endif
AutoLock mutex(m_lock);
uint32_t w, h, cb, screenWidth, screenHeight;
if (!emugl::get_emugl_multi_display_operations().getMultiDisplay(
displayId, nullptr, nullptr, &w, &h, nullptr, nullptr, nullptr)) {
ERR("Screenshot of invalid display %d", displayId);
*width = 0;
*height = 0;
*cPixels = 0;
return -1;
}
if (nChannels != 3 && nChannels != 4) {
ERR("Screenshot only support 3(RGB) or 4(RGBA) channels");
*width = 0;
*height = 0;
*cPixels = 0;
return -1;
}
emugl::get_emugl_multi_display_operations().getDisplayColorBuffer(displayId, &cb);
if (displayId == 0) {
cb = m_lastPostedColorBuffer;
}
ColorBufferPtr colorBuffer = findColorBuffer(cb);
if (!colorBuffer) {
*width = 0;
*height = 0;
*cPixels = 0;
return -1;
}
screenWidth = (desiredWidth == 0) ? w : desiredWidth;
screenHeight = (desiredHeight == 0) ? h : desiredHeight;
bool useSnipping = (rect.size.w != 0 && rect.size.h != 0);
if (useSnipping) {
if (desiredWidth == 0 || desiredHeight == 0) {
ERR("Must provide non-zero desiredWidth and desireRectanlge "
"when using rectangle snipping");
*width = 0;
*height = 0;
*cPixels = 0;
return -1;
}
if ((rect.pos.x < 0 || rect.pos.y < 0) ||
(desiredWidth < rect.pos.x + rect.size.w || desiredHeight < rect.pos.y + rect.size.h)) {
return -1;
}
}
if (useSnipping) {
*width = rect.size.w;
*height = rect.size.h;
} else {
*width = screenWidth;
*height = screenHeight;
}
int needed =
useSnipping ? (nChannels * rect.size.w * rect.size.h) : (nChannels * (*width) * (*height));
if (*cPixels < needed) {
*cPixels = needed;
return -2;
}
*cPixels = needed;
if (desiredRotation == SKIN_ROTATION_90 || desiredRotation == SKIN_ROTATION_270) {
std::swap(*width, *height);
std::swap(screenWidth, screenHeight);
std::swap(rect.size.w, rect.size.h);
}
// Transform the x, y coordinates given the rotation.
// Assume (0, 0) represents the top left corner of the screen.
if (useSnipping) {
int x, y;
switch (desiredRotation) {
case SKIN_ROTATION_0:
x = rect.pos.x;
y = rect.pos.y;
break;
case SKIN_ROTATION_90:
x = rect.pos.y;
y = rect.pos.x;
break;
case SKIN_ROTATION_180:
x = screenWidth - rect.pos.x - rect.size.w;
y = rect.pos.y;
break;
case SKIN_ROTATION_270:
x = rect.pos.y;
y = screenHeight - rect.pos.x - rect.size.h;
break;
}
rect.pos.x = x;
rect.pos.y = y;
}
GLenum format = nChannels == 3 ? GL_RGB : GL_RGBA;
Post scrCmd;
scrCmd.cmd = PostCmd::Screenshot;
scrCmd.screenshot.cb = colorBuffer.get();
scrCmd.screenshot.screenwidth = screenWidth;
scrCmd.screenshot.screenheight = screenHeight;
scrCmd.screenshot.format = format;
scrCmd.screenshot.type = GL_UNSIGNED_BYTE;
scrCmd.screenshot.rotation = desiredRotation;
scrCmd.screenshot.pixels = pixels;
scrCmd.screenshot.rect = rect;
std::future<void> completeFuture = sendPostWorkerCmd(std::move(scrCmd));
mutex.unlock();
completeFuture.wait();
return 0;
}
void FrameBuffer::onLastColorBufferRef(uint32_t handle) {
if (!mOutstandingColorBufferDestroys.trySend((HandleType)handle)) {
ERR("warning: too many outstanding "
"color buffer destroys. leaking handle 0x%x",
handle);
}
}
bool FrameBuffer::decColorBufferRefCountLocked(HandleType p_colorbuffer) {
AutoLock colorBufferMapLock(m_colorBufferMapLock);
const auto& it = m_colorbuffers.find(p_colorbuffer);
if (it != m_colorbuffers.end()) {
it->second.refcount -= 1;
if (it->second.refcount == 0) {
m_colorbuffers.erase(p_colorbuffer);
emugl::getGraphicsObjectCounter()->decCount(
android::base::toIndex(android::base::GraphicsObjectType::COLORBUFFER));
return true;
}
}
return false;
}
bool FrameBuffer::compose(uint32_t bufferSize, void* buffer, bool needPost) {
std::promise<void> promise;
std::future<void> completeFuture = promise.get_future();
auto composeRes =
composeWithCallback(bufferSize, buffer, [&](std::shared_future<void> waitForGpu) {
waitForGpu.wait();
promise.set_value();
});
if (!composeRes.Succeeded()) {
return false;
}
if (composeRes.CallbackScheduledOrFired()) {
completeFuture.wait();
}
const auto& multiDisplay = emugl::get_emugl_multi_display_operations();
const bool is_pixel_fold = multiDisplay.isPixelFold();
if (needPost) {
// AEMU with -no-window mode uses this code path.
ComposeDevice* composeDevice = (ComposeDevice*)buffer;
switch (composeDevice->version) {
case 1: {
post(composeDevice->targetHandle, true);
break;
}
case 2: {
ComposeDevice_v2* composeDeviceV2 = (ComposeDevice_v2*)buffer;
if (is_pixel_fold || composeDeviceV2->displayId == 0) {
post(composeDeviceV2->targetHandle, true);
}
break;
}
default: {
return false;
}
}
}
return true;
}
AsyncResult FrameBuffer::composeWithCallback(uint32_t bufferSize, void* buffer,
Post::CompletionCallback callback) {
ComposeDevice* p = (ComposeDevice*)buffer;
AutoLock mutex(m_lock);
switch (p->version) {
case 1: {
Post composeCmd;
composeCmd.composeVersion = 1;
composeCmd.composeBuffer.resize(bufferSize);
memcpy(composeCmd.composeBuffer.data(), buffer, bufferSize);
composeCmd.completionCallback = std::make_unique<Post::CompletionCallback>(callback);
composeCmd.cmd = PostCmd::Compose;
sendPostWorkerCmd(std::move(composeCmd));
return AsyncResult::OK_AND_CALLBACK_SCHEDULED;
}
case 2: {
// support for multi-display
ComposeDevice_v2* p2 = (ComposeDevice_v2*)buffer;
if (p2->displayId != 0) {
mutex.unlock();
setDisplayColorBuffer(p2->displayId, p2->targetHandle);
mutex.lock();
}
Post composeCmd;
composeCmd.composeVersion = 2;
composeCmd.composeBuffer.resize(bufferSize);
memcpy(composeCmd.composeBuffer.data(), buffer, bufferSize);
composeCmd.completionCallback = std::make_unique<Post::CompletionCallback>(callback);
composeCmd.cmd = PostCmd::Compose;
sendPostWorkerCmd(std::move(composeCmd));
return AsyncResult::OK_AND_CALLBACK_SCHEDULED;
}
default:
ERR("yet to handle composition device version: %d", p->version);
return AsyncResult::FAIL_AND_CALLBACK_NOT_SCHEDULED;
}
}
void FrameBuffer::onSave(Stream* stream, const android::snapshot::ITextureSaverPtr& textureSaver) {
// Things we do not need to snapshot:
// m_eglSurface
// m_eglContext
// m_pbufSurface
// m_pbufContext
// m_prevContext
// m_prevReadSurf
// m_prevDrawSurf
AutoLock mutex(m_lock);
std::unique_ptr<RecursiveScopedContextBind> bind;
#if GFXSTREAM_ENABLE_HOST_GLES
if (m_emulationGl) {
// Some snapshot commands try using GL.
bind = std::make_unique<RecursiveScopedContextBind>(getPbufferSurfaceContextHelper());
if (!bind->isOk()) {
ERR("Failed to make context current for saving snapshot.");
}
// eglPreSaveContext labels all guest context textures to be saved
// (textures created by the host are not saved!)
// eglSaveAllImages labels all EGLImages (both host and guest) to be saved
// and save all labeled textures and EGLImages.
if (s_egl.eglPreSaveContext && s_egl.eglSaveAllImages) {
for (const auto& ctx : m_contexts) {
s_egl.eglPreSaveContext(getDisplay(), ctx.second->getEGLContext(), stream);
}
s_egl.eglSaveAllImages(getDisplay(), stream, &textureSaver);
}
}
#endif
// Don't save subWindow's x/y/w/h here - those are related to the current
// emulator UI state, not guest state that we're saving.
stream->putBe32(m_framebufferWidth);
stream->putBe32(m_framebufferHeight);
stream->putFloat(m_dpr);
stream->putBe32(mDisplayActiveConfigId);
saveCollection(stream, mDisplayConfigs,
[](Stream* s, const std::map<int, DisplayConfig>::value_type& pair) {
s->putBe32(pair.first);
s->putBe32(pair.second.w);
s->putBe32(pair.second.h);
s->putBe32(pair.second.dpiX);
s->putBe32(pair.second.dpiY);
});
stream->putBe32(m_useSubWindow);
stream->putBe32(/*Obsolete m_eglContextInitialized =*/1);
stream->putBe32(m_fpsStats);
stream->putBe32(m_statsNumFrames);
stream->putBe64(m_statsStartTime);
// Save all contexts.
// Note: some of the contexts might not be restored yet. In such situation
// we skip reading from GPU (for non-texture objects) or force a restore in
// previous eglPreSaveContext and eglSaveAllImages calls (for texture
// objects).
// TODO: skip reading from GPU even for texture objects.
#if GFXSTREAM_ENABLE_HOST_GLES
saveCollection(
stream, m_contexts,
[](Stream* s, const EmulatedEglContextMap::value_type& pair) { pair.second->onSave(s); });
#endif
// We don't need to save |m_colorBufferCloseTsMap| here - there's enough
// information to reconstruct it when loading.
uint64_t now = android::base::getUnixTimeUs();
{
AutoLock colorBufferMapLock(m_colorBufferMapLock);
stream->putByte(m_guestManagedColorBufferLifetime);
saveCollection(stream, m_colorbuffers,
[now](Stream* s, const ColorBufferMap::value_type& pair) {
pair.second.cb->onSave(s);
s->putBe32(pair.second.refcount);
s->putByte(pair.second.opened);
s->putBe32(std::max<uint64_t>(0, now - pair.second.closedTs));
});
}
stream->putBe32(m_lastPostedColorBuffer);
#if GFXSTREAM_ENABLE_HOST_GLES
saveCollection(stream, m_windows,
[](Stream* s, const EmulatedEglWindowSurfaceMap::value_type& pair) {
pair.second.first->onSave(s);
s->putBe32(pair.second.second); // Color buffer handle.
});
#endif
#if GFXSTREAM_ENABLE_HOST_GLES
saveProcOwnedCollection(stream, m_procOwnedEmulatedEglWindowSurfaces);
#endif
saveProcOwnedCollection(stream, m_procOwnedColorBuffers);
#if GFXSTREAM_ENABLE_HOST_GLES
saveProcOwnedCollection(stream, m_procOwnedEmulatedEglImages);
saveProcOwnedCollection(stream, m_procOwnedEmulatedEglContexts);
#endif
// TODO(b/309858017): remove if when ready to bump snapshot version
if (m_features.VulkanSnapshots.enabled) {
stream->putBe64(m_procOwnedResources.size());
for (const auto& element : m_procOwnedResources) {
stream->putBe64(element.first);
stream->putBe32(element.second->getSequenceNumberPtr()->load());
}
}
// Save Vulkan state
if (m_features.VulkanSnapshots.enabled && vk::VkDecoderGlobalState::get()) {
vk::VkDecoderGlobalState::get()->save(stream);
}
#if GFXSTREAM_ENABLE_HOST_GLES
if (m_emulationGl) {
if (s_egl.eglPostSaveContext) {
for (const auto& ctx : m_contexts) {
s_egl.eglPostSaveContext(getDisplay(), ctx.second->getEGLContext(), stream);
}
// We need to run the post save step for m_eglContext
// to mark their texture handles dirty
if (getContext() != EGL_NO_CONTEXT) {
s_egl.eglPostSaveContext(getDisplay(), getContext(), stream);
}
}
EmulatedEglFenceSync::onSave(stream);
}
#endif
}
bool FrameBuffer::onLoad(Stream* stream,
const android::snapshot::ITextureLoaderPtr& textureLoader) {
AutoLock lock(m_lock);
// cleanups
{
sweepColorBuffersLocked();
std::unique_ptr<RecursiveScopedContextBind> bind;
#if GFXSTREAM_ENABLE_HOST_GLES
if (m_emulationGl) {
// Some snapshot commands try using GL.
bind = std::make_unique<RecursiveScopedContextBind>(getPbufferSurfaceContextHelper());
if (!bind->isOk()) {
ERR("Failed to make context current for loading snapshot.");
}
}
#endif
bool cleanupComplete = false;
{
AutoLock colorBufferMapLock(m_colorBufferMapLock);
if (m_procOwnedCleanupCallbacks.empty() && m_procOwnedColorBuffers.empty() &&
#if GFXSTREAM_ENABLE_HOST_GLES
m_procOwnedEmulatedEglContexts.empty() && m_procOwnedEmulatedEglImages.empty() &&
m_procOwnedEmulatedEglWindowSurfaces.empty() &&
#endif
(
#if GFXSTREAM_ENABLE_HOST_GLES
!m_contexts.empty() || !m_windows.empty() ||
#endif
m_colorbuffers.size() > m_colorBufferDelayedCloseList.size())) {
// we are likely on a legacy system image, which does not have
// process owned objects. We need to force cleanup everything
#if GFXSTREAM_ENABLE_HOST_GLES
m_contexts.clear();
m_windows.clear();
#endif
m_colorbuffers.clear();
cleanupComplete = true;
}
}
if (!cleanupComplete) {
std::vector<HandleType> colorBuffersToCleanup;
#if GFXSTREAM_ENABLE_HOST_GLES
while (m_procOwnedEmulatedEglWindowSurfaces.size()) {
auto cleanupHandles = cleanupProcGLObjects_locked(
m_procOwnedEmulatedEglWindowSurfaces.begin()->first, true);
colorBuffersToCleanup.insert(colorBuffersToCleanup.end(), cleanupHandles.begin(),
cleanupHandles.end());
}
#endif
while (m_procOwnedColorBuffers.size()) {
auto cleanupHandles =
cleanupProcGLObjects_locked(m_procOwnedColorBuffers.begin()->first, true);
colorBuffersToCleanup.insert(colorBuffersToCleanup.end(), cleanupHandles.begin(),
cleanupHandles.end());
}
#if GFXSTREAM_ENABLE_HOST_GLES
while (m_procOwnedEmulatedEglImages.size()) {
auto cleanupHandles =
cleanupProcGLObjects_locked(m_procOwnedEmulatedEglImages.begin()->first, true);
colorBuffersToCleanup.insert(colorBuffersToCleanup.end(), cleanupHandles.begin(),
cleanupHandles.end());
}
while (m_procOwnedEmulatedEglContexts.size()) {
auto cleanupHandles = cleanupProcGLObjects_locked(
m_procOwnedEmulatedEglContexts.begin()->first, true);
colorBuffersToCleanup.insert(colorBuffersToCleanup.end(), cleanupHandles.begin(),
cleanupHandles.end());
}
#endif
std::vector<std::function<void()>> cleanupCallbacks;
while (m_procOwnedCleanupCallbacks.size()) {
auto it = m_procOwnedCleanupCallbacks.begin();
while (it != m_procOwnedCleanupCallbacks.end()) {
for (auto it2 : it->second) {
cleanupCallbacks.push_back(it2.second);
}
it = m_procOwnedCleanupCallbacks.erase(it);
}
}
m_procOwnedResources.clear();
performDelayedColorBufferCloseLocked(true);
lock.unlock();
for (auto cb : cleanupCallbacks) {
cb();
}
lock.lock();
cleanupComplete = true;
}
m_colorBufferDelayedCloseList.clear();
#if GFXSTREAM_ENABLE_HOST_GLES
assert(m_contexts.empty());
assert(m_windows.empty());
#endif
{
AutoLock colorBufferMapLock(m_colorBufferMapLock);
if (!m_colorbuffers.empty()) {
ERR("warning: on load, stale colorbuffers: %zu", m_colorbuffers.size());
m_colorbuffers.clear();
}
assert(m_colorbuffers.empty());
}
#ifdef SNAPSHOT_PROFILE
uint64_t texTime = android::base::getUnixTimeUs();
#endif
#if GFXSTREAM_ENABLE_HOST_GLES
if (m_emulationGl) {
if (s_egl.eglLoadAllImages) {
s_egl.eglLoadAllImages(getDisplay(), stream, &textureLoader);
}
}
#endif
#ifdef SNAPSHOT_PROFILE
printf("Texture load time: %lld ms\n",
(long long)(android::base::getUnixTimeUs() - texTime) / 1000);
#endif
}
// See comment about subwindow position in onSave().
m_framebufferWidth = stream->getBe32();
m_framebufferHeight = stream->getBe32();
m_dpr = stream->getFloat();
mDisplayActiveConfigId = stream->getBe32();
loadCollection(stream, &mDisplayConfigs,
[](Stream* s) -> std::map<int, DisplayConfig>::value_type {
int idx = static_cast<int>(s->getBe32());
int w = static_cast<int>(s->getBe32());
int h = static_cast<int>(s->getBe32());
int dpiX = static_cast<int>(s->getBe32());
int dpiY = static_cast<int>(s->getBe32());
return {idx, {w, h, dpiX, dpiY}};
});
// TODO: resize the window
//
m_useSubWindow = stream->getBe32();
/*Obsolete m_eglContextInitialized =*/stream->getBe32();
m_fpsStats = stream->getBe32();
m_statsNumFrames = stream->getBe32();
m_statsStartTime = stream->getBe64();
#if GFXSTREAM_ENABLE_HOST_GLES
loadCollection(
stream, &m_contexts, [this](Stream* stream) -> EmulatedEglContextMap::value_type {
if (!m_emulationGl) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "GL/EGL emulation not enabled.";
}
auto context = m_emulationGl->loadEmulatedEglContext(stream);
auto contextHandle = context ? context->getHndl() : 0;
return {contextHandle, std::move(context)};
});
assert(!android::base::find(m_contexts, 0));
#endif
auto now = android::base::getUnixTimeUs();
{
AutoLock colorBufferMapLock(m_colorBufferMapLock);
m_guestManagedColorBufferLifetime = stream->getByte();
loadCollection(
stream, &m_colorbuffers, [this, now](Stream* stream) -> ColorBufferMap::value_type {
ColorBufferPtr cb = ColorBuffer::onLoad(m_emulationGl.get(), m_emulationVk, stream);
const HandleType handle = cb->getHndl();
const unsigned refCount = stream->getBe32();
const bool opened = stream->getByte();
const uint64_t closedTs = now - stream->getBe32();
if (refCount == 0) {
m_colorBufferDelayedCloseList.push_back({closedTs, handle});
}
return {handle, ColorBufferRef{std::move(cb), refCount, opened, closedTs}};
});
}
m_lastPostedColorBuffer = static_cast<HandleType>(stream->getBe32());
GL_LOG("Got lasted posted color buffer from snapshot");
{
AutoLock colorBufferMapLock(m_colorBufferMapLock);
#if GFXSTREAM_ENABLE_HOST_GLES
loadCollection(
stream, &m_windows, [this](Stream* stream) -> EmulatedEglWindowSurfaceMap::value_type {
if (!m_emulationGl) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER))
<< "GL/EGL emulation not enabled.";
}
auto window =
m_emulationGl->loadEmulatedEglWindowSurface(stream, m_colorbuffers, m_contexts);
HandleType handle = window->getHndl();
HandleType colorBufferHandle = stream->getBe32();
return {handle, {std::move(window), colorBufferHandle}};
});
#endif
}
#if GFXSTREAM_ENABLE_HOST_GLES
loadProcOwnedCollection(stream, &m_procOwnedEmulatedEglWindowSurfaces);
#endif
loadProcOwnedCollection(stream, &m_procOwnedColorBuffers);
#if GFXSTREAM_ENABLE_HOST_GLES
loadProcOwnedCollection(stream, &m_procOwnedEmulatedEglImages);
loadProcOwnedCollection(stream, &m_procOwnedEmulatedEglContexts);
#endif
// TODO(b/309858017): remove if when ready to bump snapshot version
if (m_features.VulkanSnapshots.enabled) {
size_t resourceCount = stream->getBe64();
for (size_t i = 0; i < resourceCount; i++) {
uint64_t puid = stream->getBe64();
uint32_t sequenceNumber = stream->getBe32();
std::unique_ptr<ProcessResources> processResources = ProcessResources::create();
processResources->getSequenceNumberPtr()->store(sequenceNumber);
m_procOwnedResources.emplace(puid, std::move(processResources));
}
}
#if GFXSTREAM_ENABLE_HOST_GLES
if (m_emulationGl) {
if (s_egl.eglPostLoadAllImages) {
s_egl.eglPostLoadAllImages(getDisplay(), stream);
}
}
registerTriggerWait();
#endif
{
std::unique_ptr<RecursiveScopedContextBind> bind;
#if GFXSTREAM_ENABLE_HOST_GLES
if (m_emulationGl) {
// Some snapshot commands try using GL.
bind = std::make_unique<RecursiveScopedContextBind>(getPbufferSurfaceContextHelper());
if (!bind->isOk()) {
ERR("Failed to make context current for loading snapshot.");
}
}
#endif
AutoLock colorBufferMapLock(m_colorBufferMapLock);
for (auto& it : m_colorbuffers) {
if (it.second.cb) {
it.second.cb->touch();
}
}
}
// Restore Vulkan state
if (m_features.VulkanSnapshots.enabled && vk::VkDecoderGlobalState::get()) {
lock.unlock();
GfxApiLogger gfxLogger;
vk::VkDecoderGlobalState::get()->load(stream, gfxLogger, m_healthMonitor.get());
lock.lock();
}
repost(false);
#if GFXSTREAM_ENABLE_HOST_GLES
if (m_emulationGl) {
EmulatedEglFenceSync::onLoad(stream);
}
#endif
return true;
// TODO: restore memory management
}
void FrameBuffer::lock() { m_lock.lock(); }
void FrameBuffer::unlock() { m_lock.unlock(); }
ColorBufferPtr FrameBuffer::findColorBuffer(HandleType p_colorbuffer) {
AutoLock colorBufferMapLock(m_colorBufferMapLock);
ColorBufferMap::iterator c(m_colorbuffers.find(p_colorbuffer));
if (c == m_colorbuffers.end()) {
return nullptr;
} else {
return c->second.cb;
}
}
BufferPtr FrameBuffer::findBuffer(HandleType p_buffer) {
AutoLock colorBufferMapLock(m_colorBufferMapLock);
BufferMap::iterator b(m_buffers.find(p_buffer));
if (b == m_buffers.end()) {
return nullptr;
} else {
return b->second.buffer;
}
}
void FrameBuffer::registerProcessCleanupCallback(void* key, std::function<void()> cb) {
AutoLock mutex(m_lock);
RenderThreadInfo* tInfo = RenderThreadInfo::get();
if (!tInfo) return;
auto& callbackMap = m_procOwnedCleanupCallbacks[tInfo->m_puid];
callbackMap[key] = cb;
}
void FrameBuffer::unregisterProcessCleanupCallback(void* key) {
AutoLock mutex(m_lock);
RenderThreadInfo* tInfo = RenderThreadInfo::get();
if (!tInfo) return;
auto& callbackMap = m_procOwnedCleanupCallbacks[tInfo->m_puid];
if (callbackMap.find(key) == callbackMap.end()) {
ERR("warning: tried to erase nonexistent key %p "
"associated with process %llu",
key, (unsigned long long)(tInfo->m_puid));
}
callbackMap.erase(key);
}
const ProcessResources* FrameBuffer::getProcessResources(uint64_t puid) {
AutoLock mutex(m_lock);
auto i = m_procOwnedResources.find(puid);
if (i == m_procOwnedResources.end()) {
ERR("Failed to find process owned resources for puid %" PRIu64 ".", puid);
return nullptr;
}
return i->second.get();
}
int FrameBuffer::createDisplay(uint32_t* displayId) {
return emugl::get_emugl_multi_display_operations().createDisplay(displayId);
}
int FrameBuffer::createDisplay(uint32_t displayId) {
return emugl::get_emugl_multi_display_operations().createDisplay(&displayId);
}
int FrameBuffer::destroyDisplay(uint32_t displayId) {
return emugl::get_emugl_multi_display_operations().destroyDisplay(displayId);
}
int FrameBuffer::setDisplayColorBuffer(uint32_t displayId, uint32_t colorBuffer) {
return emugl::get_emugl_multi_display_operations().setDisplayColorBuffer(displayId,
colorBuffer);
}
int FrameBuffer::getDisplayColorBuffer(uint32_t displayId, uint32_t* colorBuffer) {
return emugl::get_emugl_multi_display_operations().getDisplayColorBuffer(displayId,
colorBuffer);
}
int FrameBuffer::getColorBufferDisplay(uint32_t colorBuffer, uint32_t* displayId) {
return emugl::get_emugl_multi_display_operations().getColorBufferDisplay(colorBuffer,
displayId);
}
int FrameBuffer::getDisplayPose(uint32_t displayId, int32_t* x, int32_t* y, uint32_t* w,
uint32_t* h) {
return emugl::get_emugl_multi_display_operations().getDisplayPose(displayId, x, y, w, h);
}
int FrameBuffer::setDisplayPose(uint32_t displayId, int32_t x, int32_t y, uint32_t w, uint32_t h,
uint32_t dpi) {
return emugl::get_emugl_multi_display_operations().setDisplayPose(displayId, x, y, w, h, dpi);
}
void FrameBuffer::sweepColorBuffersLocked() {
HandleType handleToDestroy;
while (mOutstandingColorBufferDestroys.tryReceive(&handleToDestroy)) {
decColorBufferRefCountLocked(handleToDestroy);
}
}
std::future<void> FrameBuffer::blockPostWorker(std::future<void> continueSignal) {
std::promise<void> scheduled;
std::future<void> scheduledFuture = scheduled.get_future();
Post postCmd = {
.cmd = PostCmd::Block,
.block = std::make_unique<Post::Block>(Post::Block{
.scheduledSignal = std::move(scheduled),
.continueSignal = std::move(continueSignal),
}),
};
sendPostWorkerCmd(std::move(postCmd));
return scheduledFuture;
}
void FrameBuffer::waitForGpuVulkan(uint64_t deviceHandle, uint64_t fenceHandle) {
(void)deviceHandle;
if (!m_emulationGl) {
// Guest ANGLE should always use the asyncWaitForGpuVulkanWithCb call. EmulatedEglFenceSync
// is a wrapper over EGLSyncKHR and should not be used for pure Vulkan environment.
return;
}
#if GFXSTREAM_ENABLE_HOST_GLES
// Note: this will always be nullptr.
EmulatedEglFenceSync* fenceSync = EmulatedEglFenceSync::getFromHandle(fenceHandle);
// Note: This will always signal right away.
SyncThread::get()->triggerBlockedWaitNoTimeline(fenceSync);
#endif
}
void FrameBuffer::asyncWaitForGpuVulkanWithCb(uint64_t deviceHandle, uint64_t fenceHandle,
FenceCompletionCallback cb) {
(void)deviceHandle;
SyncThread::get()->triggerWaitVkWithCompletionCallback((VkFence)fenceHandle, std::move(cb));
}
void FrameBuffer::asyncWaitForGpuVulkanQsriWithCb(uint64_t image, FenceCompletionCallback cb) {
SyncThread::get()->triggerWaitVkQsriWithCompletionCallback((VkImage)image, std::move(cb));
}
void FrameBuffer::waitForGpuVulkanQsri(uint64_t image) {
(void)image;
// Signal immediately, because this was a sync wait and it's vulkan.
#if GFXSTREAM_ENABLE_HOST_GLES
SyncThread::get()->triggerBlockedWaitNoTimeline(nullptr);
#endif
}
void FrameBuffer::setGuestManagedColorBufferLifetime(bool guestManaged) {
m_guestManagedColorBufferLifetime = guestManaged;
}
bool FrameBuffer::platformImportResource(uint32_t handle, uint32_t info, void* resource) {
if (!resource) {
ERR("Error: resource was null");
}
AutoLock mutex(m_lock);
ColorBufferPtr colorBuffer = findColorBuffer(handle);
if (!colorBuffer) {
ERR("Error: resource %u not found as a ColorBuffer", handle);
return false;
}
uint32_t type = (info & RESOURCE_TYPE_MASK);
bool preserveContent = (info & RESOURCE_USE_PRESERVE);
switch (type) {
#if GFXSTREAM_ENABLE_HOST_GLES
case RESOURCE_TYPE_EGL_NATIVE_PIXMAP:
return colorBuffer->glOpImportEglNativePixmap(resource, preserveContent);
case RESOURCE_TYPE_EGL_IMAGE:
return colorBuffer->glOpImportEglImage(resource, preserveContent);
#endif
// Note: Additional non-EGL resource-types can be added here, and will
// be propagated through color-buffer import functionality
case RESOURCE_TYPE_VK_EXT_MEMORY_HANDLE:
return colorBuffer->importNativeResource(resource, type, preserveContent);
default:
ERR("Error: unsupported resource type: %u", type);
return false;
}
return true;
}
std::unique_ptr<BorrowedImageInfo> FrameBuffer::borrowColorBufferForComposition(
uint32_t colorBufferHandle, bool colorBufferIsTarget) {
ColorBufferPtr colorBufferPtr = findColorBuffer(colorBufferHandle);
if (!colorBufferPtr) {
ERR("Failed to get borrowed image info for ColorBuffer:%d", colorBufferHandle);
return nullptr;
}
if (m_useVulkanComposition) {
invalidateColorBufferForVk(colorBufferHandle);
} else {
#if GFXSTREAM_ENABLE_HOST_GLES
invalidateColorBufferForGl(colorBufferHandle);
#endif
}
const auto api = m_useVulkanComposition ? ColorBuffer::UsedApi::kVk : ColorBuffer::UsedApi::kGl;
return colorBufferPtr->borrowForComposition(api, colorBufferIsTarget);
}
std::unique_ptr<BorrowedImageInfo> FrameBuffer::borrowColorBufferForDisplay(
uint32_t colorBufferHandle) {
ColorBufferPtr colorBufferPtr = findColorBuffer(colorBufferHandle);
if (!colorBufferPtr) {
ERR("Failed to get borrowed image info for ColorBuffer:%d", colorBufferHandle);
return nullptr;
}
if (m_useVulkanComposition) {
invalidateColorBufferForVk(colorBufferHandle);
} else {
#if GFXSTREAM_ENABLE_HOST_GLES
invalidateColorBufferForGl(colorBufferHandle);
#else
ERR("Failed to invalidate ColorBuffer:%d", colorBufferHandle);
#endif
}
const auto api = m_useVulkanComposition ? ColorBuffer::UsedApi::kVk : ColorBuffer::UsedApi::kGl;
return colorBufferPtr->borrowForDisplay(api);
}
void FrameBuffer::logVulkanDeviceLost() {
if (!m_emulationVk) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "Device lost without VkEmulation?";
}
vk::onVkDeviceLost();
}
void FrameBuffer::logVulkanOutOfMemory(VkResult result, const char* function, int line,
std::optional<uint64_t> allocationSize) {
m_logger->logMetricEvent(MetricEventVulkanOutOfMemory{
.vkResultCode = result,
.function = function,
.line = std::make_optional(line),
.allocationSize = allocationSize,
});
}
void FrameBuffer::setVsyncHz(int vsyncHz) {
const uint64_t kOneSecondNs = 1000000000ULL;
m_vsyncHz = vsyncHz;
if (m_vsyncThread) {
m_vsyncThread->setPeriod(kOneSecondNs / (uint64_t)m_vsyncHz);
}
}
void FrameBuffer::scheduleVsyncTask(VsyncThread::VsyncTask task) {
if (!m_vsyncThread) {
fprintf(stderr, "%s: warning: no vsync thread exists\n", __func__);
task(0);
return;
}
m_vsyncThread->schedule(task);
}
void FrameBuffer::setDisplayConfigs(int configId, int w, int h, int dpiX, int dpiY) {
AutoLock mutex(m_lock);
mDisplayConfigs[configId] = {w, h, dpiX, dpiY};
INFO("Setting display: %d configuration to: %dx%d, dpi: %dx%d ", configId,
w, h, dpiX, dpiY);
}
void FrameBuffer::setDisplayActiveConfig(int configId) {
AutoLock mutex(m_lock);
if (mDisplayConfigs.find(configId) == mDisplayConfigs.end()) {
ERR("config %d not set", configId);
return;
}
mDisplayActiveConfigId = configId;
m_framebufferWidth = mDisplayConfigs[configId].w;
m_framebufferHeight = mDisplayConfigs[configId].h;
setDisplayPose(0, 0, 0, getWidth(), getHeight(), 0);
INFO("setDisplayActiveConfig %d", configId);
}
const int FrameBuffer::getDisplayConfigsCount() {
AutoLock mutex(m_lock);
return mDisplayConfigs.size();
}
const int FrameBuffer::getDisplayConfigsParam(int configId, EGLint param) {
AutoLock mutex(m_lock);
if (mDisplayConfigs.find(configId) == mDisplayConfigs.end()) {
return -1;
}
switch (param) {
case FB_WIDTH:
return mDisplayConfigs[configId].w;
case FB_HEIGHT:
return mDisplayConfigs[configId].h;
case FB_XDPI:
return mDisplayConfigs[configId].dpiX;
case FB_YDPI:
return mDisplayConfigs[configId].dpiY;
case FB_FPS:
return 60;
case FB_MIN_SWAP_INTERVAL:
return -1;
case FB_MAX_SWAP_INTERVAL:
return -1;
default:
return -1;
}
}
const int FrameBuffer::getDisplayActiveConfig() {
AutoLock mutex(m_lock);
return mDisplayActiveConfigId >= 0 ? mDisplayActiveConfigId : -1;
}
bool FrameBuffer::flushColorBufferFromVk(HandleType colorBufferHandle) {
AutoLock mutex(m_lock);
auto colorBuffer = findColorBuffer(colorBufferHandle);
if (!colorBuffer) {
ERR("Failed to find ColorBuffer:%d", colorBufferHandle);
return false;
}
return colorBuffer->flushFromVk();
}
bool FrameBuffer::flushColorBufferFromVkBytes(HandleType colorBufferHandle, const void* bytes,
size_t bytesSize) {
AutoLock mutex(m_lock);
auto colorBuffer = findColorBuffer(colorBufferHandle);
if (!colorBuffer) {
ERR("Failed to find ColorBuffer:%d", colorBufferHandle);
return false;
}
return colorBuffer->flushFromVkBytes(bytes, bytesSize);
}
bool FrameBuffer::invalidateColorBufferForVk(HandleType colorBufferHandle) {
// It reads contents from GL, which requires a context lock.
// Also we should not do this in PostWorkerGl, otherwise it will deadlock.
//
// b/283524158
// b/273986739
AutoLock mutex(m_lock);
auto colorBuffer = findColorBuffer(colorBufferHandle);
if (!colorBuffer) {
ERR("Failed to find ColorBuffer:%d", colorBufferHandle);
return false;
}
return colorBuffer->invalidateForVk();
}
int FrameBuffer::waitSyncColorBuffer(HandleType colorBufferHandle) {
AutoLock mutex(m_lock);
ColorBufferPtr colorBuffer = findColorBuffer(colorBufferHandle);
if (!colorBuffer) {
return -1;
}
return colorBuffer->waitSync();
}
std::optional<BlobDescriptorInfo> FrameBuffer::exportColorBuffer(HandleType colorBufferHandle) {
AutoLock mutex(m_lock);
ColorBufferPtr colorBuffer = findColorBuffer(colorBufferHandle);
if (!colorBuffer) {
return std::nullopt;
}
return colorBuffer->exportBlob();
}
std::optional<BlobDescriptorInfo> FrameBuffer::exportBuffer(HandleType bufferHandle) {
AutoLock mutex(m_lock);
BufferPtr buffer = findBuffer(bufferHandle);
if (!buffer) {
return std::nullopt;
}
return buffer->exportBlob();
}
#if GFXSTREAM_ENABLE_HOST_GLES
HandleType FrameBuffer::getEmulatedEglWindowSurfaceColorBufferHandle(HandleType p_surface) {
AutoLock mutex(m_lock);
auto it = m_EmulatedEglWindowSurfaceToColorBuffer.find(p_surface);
if (it == m_EmulatedEglWindowSurfaceToColorBuffer.end()) {
return 0;
}
return it->second;
}
void FrameBuffer::createTrivialContext(HandleType shared, HandleType* contextOut,
HandleType* surfOut) {
assert(contextOut);
assert(surfOut);
*contextOut = createEmulatedEglContext(0, shared, GLESApi_2);
// Zero size is formally allowed here, but SwiftShader doesn't like it and
// fails.
*surfOut = createEmulatedEglWindowSurface(0, 1, 1);
}
void FrameBuffer::createSharedTrivialContext(EGLContext* contextOut, EGLSurface* surfOut) {
assert(contextOut);
assert(surfOut);
const EmulatedEglConfig* config = getConfigs()->get(0 /* p_config */);
if (!config) return;
int maj, min;
emugl::getGlesVersion(&maj, &min);
const EGLint contextAttribs[] = {EGL_CONTEXT_MAJOR_VERSION_KHR, maj,
EGL_CONTEXT_MINOR_VERSION_KHR, min, EGL_NONE};
*contextOut = s_egl.eglCreateContext(getDisplay(), config->getHostEglConfig(),
getGlobalEGLContext(), contextAttribs);
const EGLint pbufAttribs[] = {EGL_WIDTH, 1, EGL_HEIGHT, 1, EGL_NONE};
*surfOut = s_egl.eglCreatePbufferSurface(getDisplay(), config->getHostEglConfig(), pbufAttribs);
}
void FrameBuffer::destroySharedTrivialContext(EGLContext context, EGLSurface surface) {
if (getDisplay() != EGL_NO_DISPLAY) {
s_egl.eglDestroyContext(getDisplay(), context);
s_egl.eglDestroySurface(getDisplay(), surface);
}
}
const EmulatedEglConfigList* FrameBuffer::getConfigs() const {
if (!m_emulationGl) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "EGL emulation not enabled.";
}
return &m_emulationGl->getEmulationEglConfigs();
}
bool FrameBuffer::setEmulatedEglWindowSurfaceColorBuffer(HandleType p_surface,
HandleType p_colorbuffer) {
AutoLock mutex(m_lock);
EmulatedEglWindowSurfaceMap::iterator w(m_windows.find(p_surface));
if (w == m_windows.end()) {
// bad surface handle
ERR("bad window surface handle %#x", p_surface);
return false;
}
{
AutoLock colorBufferMapLock(m_colorBufferMapLock);
ColorBufferMap::iterator c(m_colorbuffers.find(p_colorbuffer));
if (c == m_colorbuffers.end()) {
ERR("bad color buffer handle %#x", p_colorbuffer);
// bad colorbuffer handle
return false;
}
(*w).second.first->setColorBuffer((*c).second.cb);
markOpened(&c->second);
if (!m_guestManagedColorBufferLifetime) {
c->second.refcount++;
}
}
if (w->second.second) {
if (!m_guestManagedColorBufferLifetime) {
if (m_refCountPipeEnabled) {
decColorBufferRefCountLocked(w->second.second);
} else {
closeColorBufferLocked(w->second.second);
}
}
}
(*w).second.second = p_colorbuffer;
m_EmulatedEglWindowSurfaceToColorBuffer[p_surface] = p_colorbuffer;
return true;
}
HandleType FrameBuffer::createEmulatedEglContext(int config, HandleType shareContextHandle,
GLESApi version) {
if (!m_emulationGl) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "EGL emulation unavailable.";
}
AutoLock mutex(m_lock);
android::base::AutoWriteLock contextLock(m_contextStructureLock);
// Hold the ColorBuffer map lock so that the new handle won't collide with a ColorBuffer handle.
AutoLock colorBufferMapLock(m_colorBufferMapLock);
EmulatedEglContextPtr shareContext = nullptr;
if (shareContextHandle != 0) {
auto shareContextIt = m_contexts.find(shareContextHandle);
if (shareContextIt == m_contexts.end()) {
ERR("Failed to find share EmulatedEglContext:%d", shareContextHandle);
return 0;
}
shareContext = shareContextIt->second;
}
HandleType contextHandle = genHandle_locked();
auto context =
m_emulationGl->createEmulatedEglContext(config, shareContext.get(), version, contextHandle);
if (!context) {
ERR("Failed to create EmulatedEglContext.");
return 0;
}
m_contexts[contextHandle] = std::move(context);
RenderThreadInfo* tinfo = RenderThreadInfo::get();
uint64_t puid = tinfo->m_puid;
// The new emulator manages render contexts per guest process.
// Fall back to per-thread management if the system image does not
// support it.
if (puid) {
m_procOwnedEmulatedEglContexts[puid].insert(contextHandle);
} else { // legacy path to manage context lifetime by threads
if (!tinfo->m_glInfo) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "Render thread GL not available.";
}
tinfo->m_glInfo->m_contextSet.insert(contextHandle);
}
return contextHandle;
}
void FrameBuffer::destroyEmulatedEglContext(HandleType contextHandle) {
AutoLock mutex(m_lock);
sweepColorBuffersLocked();
android::base::AutoWriteLock contextLock(m_contextStructureLock);
m_contexts.erase(contextHandle);
RenderThreadInfo* tinfo = RenderThreadInfo::get();
uint64_t puid = tinfo->m_puid;
// The new emulator manages render contexts per guest process.
// Fall back to per-thread management if the system image does not
// support it.
if (puid) {
auto it = m_procOwnedEmulatedEglContexts.find(puid);
if (it != m_procOwnedEmulatedEglContexts.end()) {
it->second.erase(contextHandle);
}
} else {
if (!tinfo->m_glInfo) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "Render thread GL not available.";
}
tinfo->m_glInfo->m_contextSet.erase(contextHandle);
}
}
HandleType FrameBuffer::createEmulatedEglWindowSurface(int p_config, int p_width, int p_height) {
if (!m_emulationGl) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "EGL emulation unavailable.";
}
AutoLock mutex(m_lock);
// Hold the ColorBuffer map lock so that the new handle won't collide with a ColorBuffer handle.
AutoLock colorBufferMapLock(m_colorBufferMapLock);
HandleType handle = genHandle_locked();
auto window =
m_emulationGl->createEmulatedEglWindowSurface(p_config, p_width, p_height, handle);
if (!window) {
ERR("Failed to create EmulatedEglWindowSurface.");
return 0;
}
m_windows[handle] = {std::move(window), 0};
RenderThreadInfo* info = RenderThreadInfo::get();
if (!info->m_glInfo) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "RRenderThreadInfoGl not available.";
}
uint64_t puid = info->m_puid;
if (puid) {
m_procOwnedEmulatedEglWindowSurfaces[puid].insert(handle);
} else { // legacy path to manage window surface lifetime by threads
info->m_glInfo->m_windowSet.insert(handle);
}
return handle;
}
void FrameBuffer::destroyEmulatedEglWindowSurface(HandleType p_surface) {
if (m_shuttingDown) {
return;
}
AutoLock mutex(m_lock);
destroyEmulatedEglWindowSurfaceLocked(p_surface);
}
std::vector<HandleType> FrameBuffer::destroyEmulatedEglWindowSurfaceLocked(HandleType p_surface) {
std::vector<HandleType> colorBuffersToCleanUp;
const auto w = m_windows.find(p_surface);
if (w != m_windows.end()) {
RecursiveScopedContextBind bind(getPbufferSurfaceContextHelper());
if (!m_guestManagedColorBufferLifetime) {
if (m_refCountPipeEnabled) {
if (decColorBufferRefCountLocked(w->second.second)) {
colorBuffersToCleanUp.push_back(w->second.second);
}
} else {
if (closeColorBufferLocked(w->second.second)) {
colorBuffersToCleanUp.push_back(w->second.second);
}
}
}
m_windows.erase(w);
RenderThreadInfo* tinfo = RenderThreadInfo::get();
uint64_t puid = tinfo->m_puid;
if (puid) {
auto ite = m_procOwnedEmulatedEglWindowSurfaces.find(puid);
if (ite != m_procOwnedEmulatedEglWindowSurfaces.end()) {
ite->second.erase(p_surface);
}
} else {
if (!tinfo->m_glInfo) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER))
<< "Render thread GL not available.";
}
tinfo->m_glInfo->m_windowSet.erase(p_surface);
}
}
return colorBuffersToCleanUp;
}
void FrameBuffer::createEmulatedEglFenceSync(EGLenum type, int destroyWhenSignaled,
uint64_t* outSync, uint64_t* outSyncThread) {
if (!m_emulationGl) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "GL/EGL emulation not available.";
}
// TODO(b/233939967): move RenderThreadInfoGl usage to EmulationGl.
RenderThreadInfoGl* const info = RenderThreadInfoGl::get();
if (!info) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "RenderThreadInfoGl not available.";
}
if (!info->currContext) {
auto fb = FrameBuffer::getFB();
uint32_t syncContext;
uint32_t syncSurface;
createTrivialContext(0, // There is no context to share.
&syncContext, &syncSurface);
bindContext(syncContext, syncSurface, syncSurface);
// This context is then cleaned up when the render thread exits.
}
auto sync = m_emulationGl->createEmulatedEglFenceSync(type, destroyWhenSignaled);
if (!sync) {
return;
}
if (outSync) {
*outSync = (uint64_t)(uintptr_t)sync.release();
}
if (outSyncThread) {
*outSyncThread = reinterpret_cast<uint64_t>(SyncThread::get());
}
}
void FrameBuffer::drainGlRenderThreadResources() {
// If we're already exiting then snapshot should not contain
// this thread information at all.
if (isShuttingDown()) {
return;
}
// Release references to the current thread's context/surfaces if any
bindContext(0, 0, 0);
drainGlRenderThreadSurfaces();
drainGlRenderThreadContexts();
if (!s_egl.eglReleaseThread()) {
ERR("Error: RenderThread @%p failed to eglReleaseThread()", this);
}
}
void FrameBuffer::drainGlRenderThreadContexts() {
if (isShuttingDown()) {
return;
}
RenderThreadInfoGl* const tinfo = RenderThreadInfoGl::get();
if (!tinfo) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "Render thread GL not available.";
}
if (tinfo->m_contextSet.empty()) {
return;
}
AutoLock mutex(m_lock);
android::base::AutoWriteLock contextLock(m_contextStructureLock);
for (const HandleType contextHandle : tinfo->m_contextSet) {
m_contexts.erase(contextHandle);
}
tinfo->m_contextSet.clear();
}
void FrameBuffer::drainGlRenderThreadSurfaces() {
if (isShuttingDown()) {
return;
}
RenderThreadInfoGl* const tinfo = RenderThreadInfoGl::get();
if (!tinfo) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "Render thread GL not available.";
}
if (tinfo->m_windowSet.empty()) {
return;
}
std::vector<HandleType> colorBuffersToCleanup;
AutoLock mutex(m_lock);
RecursiveScopedContextBind bind(getPbufferSurfaceContextHelper());
for (const HandleType winHandle : tinfo->m_windowSet) {
const auto winIt = m_windows.find(winHandle);
if (winIt != m_windows.end()) {
if (const HandleType oldColorBufferHandle = winIt->second.second) {
if (!m_guestManagedColorBufferLifetime) {
if (m_refCountPipeEnabled) {
if (decColorBufferRefCountLocked(oldColorBufferHandle)) {
colorBuffersToCleanup.push_back(oldColorBufferHandle);
}
} else {
if (closeColorBufferLocked(oldColorBufferHandle)) {
colorBuffersToCleanup.push_back(oldColorBufferHandle);
}
}
}
m_windows.erase(winIt);
}
}
}
tinfo->m_windowSet.clear();
}
EmulationGl& FrameBuffer::getEmulationGl() {
if (!m_emulationGl) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "GL/EGL emulation not enabled.";
}
return *m_emulationGl;
}
EGLDisplay FrameBuffer::getDisplay() const {
if (!m_emulationGl) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "EGL emulation not enabled.";
}
return m_emulationGl->mEglDisplay;
}
EGLSurface FrameBuffer::getWindowSurface() const {
if (!m_emulationGl) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "EGL emulation not enabled.";
}
if (!m_emulationGl->mWindowSurface) {
return EGL_NO_SURFACE;
}
const auto* displaySurfaceGl =
reinterpret_cast<const DisplaySurfaceGl*>(m_emulationGl->mWindowSurface->getImpl());
return displaySurfaceGl->getSurface();
}
EGLContext FrameBuffer::getContext() const {
if (!m_emulationGl) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "EGL emulation not enabled.";
}
return m_emulationGl->mEglContext;
}
EGLContext FrameBuffer::getConfig() const {
if (!m_emulationGl) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "EGL emulation not enabled.";
}
return m_emulationGl->mEglConfig;
}
EGLContext FrameBuffer::getGlobalEGLContext() const {
if (!m_emulationGl) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "EGL emulation not enabled.";
}
if (!m_emulationGl->mPbufferSurface) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER))
<< "FrameBuffer pbuffer surface not available.";
}
const auto* displaySurfaceGl =
reinterpret_cast<const DisplaySurfaceGl*>(m_emulationGl->mPbufferSurface->getImpl());
return displaySurfaceGl->getContextForShareContext();
}
EmulatedEglContextPtr FrameBuffer::getContext_locked(HandleType p_context) {
return android::base::findOrDefault(m_contexts, p_context);
}
EmulatedEglWindowSurfacePtr FrameBuffer::getWindowSurface_locked(HandleType p_windowsurface) {
return android::base::findOrDefault(m_windows, p_windowsurface).first;
}
TextureDraw* FrameBuffer::getTextureDraw() const {
if (!m_emulationGl) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "EGL emulation not enabled.";
}
return m_emulationGl->mTextureDraw.get();
}
bool FrameBuffer::isFastBlitSupported() const {
if (!m_emulationGl) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "EGL emulation not enabled.";
}
return m_emulationGl->isFastBlitSupported();
}
void FrameBuffer::disableFastBlitForTesting() {
if (!m_emulationGl) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "EGL emulation not enabled.";
}
m_emulationGl->disableFastBlitForTesting();
}
HandleType FrameBuffer::createEmulatedEglImage(HandleType contextHandle, EGLenum target,
GLuint buffer) {
if (!m_emulationGl) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "GL/EGL emulation not enabled.";
}
AutoLock mutex(m_lock);
EmulatedEglContext* context = nullptr;
if (contextHandle) {
android::base::AutoWriteLock contextLock(m_contextStructureLock);
auto it = m_contexts.find(contextHandle);
if (it == m_contexts.end()) {
ERR("Failed to find EmulatedEglContext:%d", contextHandle);
return false;
}
context = it->second.get();
}
auto image = m_emulationGl->createEmulatedEglImage(context, target,
reinterpret_cast<EGLClientBuffer>(buffer));
if (!image) {
ERR("Failed to create EmulatedEglImage");
return false;
}
HandleType imageHandle = image->getHandle();
m_images[imageHandle] = std::move(image);
RenderThreadInfo* tInfo = RenderThreadInfo::get();
uint64_t puid = tInfo->m_puid;
if (puid) {
m_procOwnedEmulatedEglImages[puid].insert(imageHandle);
}
return imageHandle;
}
EGLBoolean FrameBuffer::destroyEmulatedEglImage(HandleType imageHandle) {
if (!m_emulationGl) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "GL/EGL emulation not enabled.";
}
AutoLock mutex(m_lock);
auto imageIt = m_images.find(imageHandle);
if (imageIt == m_images.end()) {
ERR("Failed to find EmulatedEglImage:%d", imageHandle);
return false;
}
auto& image = imageIt->second;
EGLBoolean success = image->destroy();
m_images.erase(imageIt);
RenderThreadInfo* tInfo = RenderThreadInfo::get();
uint64_t puid = tInfo->m_puid;
if (puid) {
m_procOwnedEmulatedEglImages[puid].erase(imageHandle);
// We don't explicitly call m_procOwnedEmulatedEglImages.erase(puid) when the
// size reaches 0, since it could go between zero and one many times in
// the lifetime of a process. It will be cleaned up by
// cleanupProcGLObjects(puid) when the process is dead.
}
return success;
}
bool FrameBuffer::flushEmulatedEglWindowSurfaceColorBuffer(HandleType p_surface) {
AutoLock mutex(m_lock);
auto it = m_windows.find(p_surface);
if (it == m_windows.end()) {
ERR("FB::flushEmulatedEglWindowSurfaceColorBuffer: window handle %#x not found", p_surface);
// bad surface handle
return false;
}
EmulatedEglWindowSurface* surface = it->second.first.get();
surface->flushColorBuffer();
return true;
}
GLESDispatchMaxVersion FrameBuffer::getMaxGLESVersion() {
if (!m_emulationGl) {
return GLES_DISPATCH_MAX_VERSION_2;
}
return m_emulationGl->getGlesMaxDispatchVersion();
}
void FrameBuffer::fillGLESUsages(android_studio::EmulatorGLESUsages* usages) {
if (s_egl.eglFillUsages) {
s_egl.eglFillUsages(usages);
}
}
void* FrameBuffer::platformCreateSharedEglContext(void) {
AutoLock lock(m_lock);
EGLContext context = 0;
EGLSurface surface = 0;
createSharedTrivialContext(&context, &surface);
void* underlyingContext = s_egl.eglGetNativeContextANDROID(getDisplay(), context);
if (!underlyingContext) {
ERR("Error: Underlying egl backend could not produce a native EGL context.");
return nullptr;
}
m_platformEglContexts[underlyingContext] = {context, surface};
#if defined(__QNX__)
EGLDisplay currDisplay = eglGetCurrentDisplay();
EGLSurface currRead = eglGetCurrentSurface(EGL_READ);
EGLSurface currDraw = eglGetCurrentSurface(EGL_DRAW);
EGLSurface currContext = eglGetCurrentContext();
// Make this context current to ensure thread-state is initialized
s_egl.eglMakeCurrent(getDisplay(), surface, surface, context);
// Revert back to original state
s_egl.eglMakeCurrent(currDisplay, currRead, currDraw, currContext);
#endif
return underlyingContext;
}
bool FrameBuffer::platformDestroySharedEglContext(void* underlyingContext) {
AutoLock lock(m_lock);
auto it = m_platformEglContexts.find(underlyingContext);
if (it == m_platformEglContexts.end()) {
ERR("Error: Could not find underlying egl context %p (perhaps already destroyed?)",
underlyingContext);
return false;
}
destroySharedTrivialContext(it->second.context, it->second.surface);
m_platformEglContexts.erase(it);
return true;
}
bool FrameBuffer::flushColorBufferFromGl(HandleType colorBufferHandle) {
auto colorBuffer = findColorBuffer(colorBufferHandle);
if (!colorBuffer) {
ERR("Failed to find ColorBuffer:%d", colorBufferHandle);
return false;
}
return colorBuffer->flushFromGl();
}
bool FrameBuffer::invalidateColorBufferForGl(HandleType colorBufferHandle) {
auto colorBuffer = findColorBuffer(colorBufferHandle);
if (!colorBuffer) {
ERR("Failed to find ColorBuffer:%d", colorBufferHandle);
return false;
}
return colorBuffer->invalidateForGl();
}
ContextHelper* FrameBuffer::getPbufferSurfaceContextHelper() const {
if (!m_emulationGl) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "EGL emulation not enabled.";
}
if (!m_emulationGl->mPbufferSurface) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER))
<< "EGL emulation pbuffer surface not available.";
}
const auto* displaySurfaceGl =
reinterpret_cast<const DisplaySurfaceGl*>(m_emulationGl->mPbufferSurface->getImpl());
return displaySurfaceGl->getContextHelper();
}
bool FrameBuffer::bindColorBufferToTexture(HandleType p_colorbuffer) {
AutoLock mutex(m_lock);
ColorBufferPtr colorBuffer = findColorBuffer(p_colorbuffer);
if (!colorBuffer) {
// bad colorbuffer handle
return false;
}
return colorBuffer->glOpBindToTexture();
}
bool FrameBuffer::bindColorBufferToTexture2(HandleType p_colorbuffer) {
// This is only called when using multi window display
// It will deadlock when posting from main thread.
std::unique_ptr<AutoLock> mutex;
if (!postOnlyOnMainThread()) {
mutex = std::make_unique<AutoLock>(m_lock);
}
ColorBufferPtr colorBuffer = findColorBuffer(p_colorbuffer);
if (!colorBuffer) {
// bad colorbuffer handle
return false;
}
return colorBuffer->glOpBindToTexture2();
}
bool FrameBuffer::bindColorBufferToRenderbuffer(HandleType p_colorbuffer) {
AutoLock mutex(m_lock);
ColorBufferPtr colorBuffer = findColorBuffer(p_colorbuffer);
if (!colorBuffer) {
// bad colorbuffer handle
return false;
}
return colorBuffer->glOpBindToRenderbuffer();
}
bool FrameBuffer::bindContext(HandleType p_context, HandleType p_drawSurface,
HandleType p_readSurface) {
if (m_shuttingDown) {
return false;
}
AutoLock mutex(m_lock);
EmulatedEglWindowSurfacePtr draw, read;
EmulatedEglContextPtr ctx;
//
// if this is not an unbind operation - make sure all handles are good
//
if (p_context || p_drawSurface || p_readSurface) {
ctx = getContext_locked(p_context);
if (!ctx) return false;
EmulatedEglWindowSurfaceMap::iterator w(m_windows.find(p_drawSurface));
if (w == m_windows.end()) {
// bad surface handle
return false;
}
draw = (*w).second.first;
if (p_readSurface != p_drawSurface) {
EmulatedEglWindowSurfaceMap::iterator w(m_windows.find(p_readSurface));
if (w == m_windows.end()) {
// bad surface handle
return false;
}
read = (*w).second.first;
} else {
read = draw;
}
} else {
// if unbind operation, sweep color buffers
sweepColorBuffersLocked();
}
if (!s_egl.eglMakeCurrent(getDisplay(), draw ? draw->getEGLSurface() : EGL_NO_SURFACE,
read ? read->getEGLSurface() : EGL_NO_SURFACE,
ctx ? ctx->getEGLContext() : EGL_NO_CONTEXT)) {
ERR("eglMakeCurrent failed");
return false;
}
//
// Bind the surface(s) to the context
//
RenderThreadInfoGl* const tinfo = RenderThreadInfoGl::get();
if (!tinfo) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "Render thread GL not available.";
}
EmulatedEglWindowSurfacePtr bindDraw, bindRead;
if (draw.get() == NULL && read.get() == NULL) {
// Unbind the current read and draw surfaces from the context
bindDraw = tinfo->currDrawSurf;
bindRead = tinfo->currReadSurf;
} else {
bindDraw = draw;
bindRead = read;
}
if (bindDraw.get() != NULL && bindRead.get() != NULL) {
if (bindDraw.get() != bindRead.get()) {
bindDraw->bind(ctx, EmulatedEglWindowSurface::BIND_DRAW);
bindRead->bind(ctx, EmulatedEglWindowSurface::BIND_READ);
} else {
bindDraw->bind(ctx, EmulatedEglWindowSurface::BIND_READDRAW);
}
}
//
// update thread info with current bound context
//
tinfo->currContext = ctx;
tinfo->currDrawSurf = draw;
tinfo->currReadSurf = read;
if (ctx) {
if (ctx->clientVersion() > GLESApi_CM)
tinfo->m_gl2Dec.setContextData(&ctx->decoderContextData());
else
tinfo->m_glDec.setContextData(&ctx->decoderContextData());
} else {
tinfo->m_glDec.setContextData(NULL);
tinfo->m_gl2Dec.setContextData(NULL);
}
return true;
}
void FrameBuffer::createYUVTextures(uint32_t type, uint32_t count, int width, int height,
uint32_t* output) {
FrameworkFormat format = static_cast<FrameworkFormat>(type);
AutoLock mutex(m_lock);
RecursiveScopedContextBind bind(getPbufferSurfaceContextHelper());
for (uint32_t i = 0; i < count; ++i) {
if (format == FRAMEWORK_FORMAT_NV12) {
YUVConverter::createYUVGLTex(GL_TEXTURE0, width, height, format, m_features.Yuv420888ToNv21.enabled,
YUVPlane::Y, &output[2 * i]);
YUVConverter::createYUVGLTex(GL_TEXTURE1, width / 2, height / 2, format, m_features.Yuv420888ToNv21.enabled, YUVPlane::UV,
&output[2 * i + 1]);
} else if (format == FRAMEWORK_FORMAT_YUV_420_888) {
YUVConverter::createYUVGLTex(GL_TEXTURE0, width, height, format, m_features.Yuv420888ToNv21.enabled, YUVPlane::Y,
&output[3 * i]);
YUVConverter::createYUVGLTex(GL_TEXTURE1, width / 2, height / 2, format, m_features.Yuv420888ToNv21.enabled, YUVPlane::U,
&output[3 * i + 1]);
YUVConverter::createYUVGLTex(GL_TEXTURE2, width / 2, height / 2, format, m_features.Yuv420888ToNv21.enabled, YUVPlane::V,
&output[3 * i + 2]);
}
}
}
void FrameBuffer::destroyYUVTextures(uint32_t type, uint32_t count, uint32_t* textures) {
AutoLock mutex(m_lock);
RecursiveScopedContextBind bind(getPbufferSurfaceContextHelper());
if (type == FRAMEWORK_FORMAT_NV12) {
s_gles2.glDeleteTextures(2 * count, textures);
} else if (type == FRAMEWORK_FORMAT_YUV_420_888) {
s_gles2.glDeleteTextures(3 * count, textures);
}
}
void FrameBuffer::updateYUVTextures(uint32_t type, uint32_t* textures, void* privData, void* func) {
AutoLock mutex(m_lock);
RecursiveScopedContextBind bind(getPbufferSurfaceContextHelper());
yuv_updater_t updater = (yuv_updater_t)func;
uint32_t gtextures[3] = {0, 0, 0};
if (type == FRAMEWORK_FORMAT_NV12) {
gtextures[0] = s_gles2.glGetGlobalTexName(textures[0]);
gtextures[1] = s_gles2.glGetGlobalTexName(textures[1]);
} else if (type == FRAMEWORK_FORMAT_YUV_420_888) {
gtextures[0] = s_gles2.glGetGlobalTexName(textures[0]);
gtextures[1] = s_gles2.glGetGlobalTexName(textures[1]);
gtextures[2] = s_gles2.glGetGlobalTexName(textures[2]);
}
#ifdef __APPLE__
EGLContext prevContext = s_egl.eglGetCurrentContext();
auto mydisp = EglGlobalInfo::getInstance()->getDisplayFromDisplayType(EGL_DEFAULT_DISPLAY);
void* nativecontext = mydisp->getLowLevelContext(prevContext);
struct MediaNativeCallerData callerdata;
callerdata.ctx = nativecontext;
callerdata.converter = nsConvertVideoFrameToNV12Textures;
void* pcallerdata = &callerdata;
#else
void* pcallerdata = nullptr;
#endif
updater(privData, type, gtextures, pcallerdata);
}
void FrameBuffer::swapTexturesAndUpdateColorBuffer(uint32_t p_colorbuffer, int x, int y, int width,
int height, uint32_t format, uint32_t type,
uint32_t texture_type, uint32_t* textures) {
{
AutoLock mutex(m_lock);
ColorBufferPtr colorBuffer = findColorBuffer(p_colorbuffer);
if (!colorBuffer) {
// bad colorbuffer handle
return;
}
colorBuffer->glOpSwapYuvTexturesAndUpdate(
format, type, static_cast<FrameworkFormat>(texture_type), textures);
}
}
bool FrameBuffer::readColorBufferContents(HandleType p_colorbuffer, size_t* numBytes,
void* pixels) {
AutoLock mutex(m_lock);
ColorBufferPtr colorBuffer = findColorBuffer(p_colorbuffer);
if (!colorBuffer) {
// bad colorbuffer handle
return false;
}
return colorBuffer->glOpReadContents(numBytes, pixels);
}
void FrameBuffer::waitForGpu(uint64_t eglsync) {
EmulatedEglFenceSync* fenceSync = EmulatedEglFenceSync::getFromHandle(eglsync);
if (!fenceSync) {
ERR("err: fence sync 0x%llx not found", (unsigned long long)eglsync);
return;
}
SyncThread::get()->triggerBlockedWaitNoTimeline(fenceSync);
}
void FrameBuffer::asyncWaitForGpuWithCb(uint64_t eglsync, FenceCompletionCallback cb) {
EmulatedEglFenceSync* fenceSync = EmulatedEglFenceSync::getFromHandle(eglsync);
if (!fenceSync) {
ERR("err: fence sync 0x%llx not found", (unsigned long long)eglsync);
return;
}
SyncThread::get()->triggerWaitWithCompletionCallback(fenceSync, std::move(cb));
}
const gl::GLESv2Dispatch* FrameBuffer::getGles2Dispatch() {
if (!m_emulationGl) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "EGL emulation not enabled.";
}
return m_emulationGl->getGles2Dispatch();
}
const gl::EGLDispatch* FrameBuffer::getEglDispatch() {
if (!m_emulationGl) {
GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "EGL emulation not enabled.";
}
return m_emulationGl->getEglDispatch();
}
#endif
} // namespace gfxstream