blob: ffbb3a1105cc680128520e287203423222390337 [file] [log] [blame]
// Copyright 2015 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "aemu/base/files/Stream.h"
#include <assert.h>
#include <string.h>
namespace gfxstream {
namespace guest {
void Stream::putByte(uint8_t value) {
write(&value, 1U);
}
uint8_t Stream::getByte() {
uint8_t value[1] = { 0 };
read(value, 1U);
return value[0];
}
void Stream::putBe16(uint16_t value) {
uint8_t b[2] = { (uint8_t)(value >> 8), (uint8_t)value };
write(b, 2U);
}
uint16_t Stream::getBe16() {
uint8_t b[2] = { 0, 0 };
read(b, 2U);
return ((uint16_t)b[0] << 8) | (uint16_t)b[1];
}
void Stream::putBe32(uint32_t value) {
uint8_t b[4] = {
(uint8_t)(value >> 24),
(uint8_t)(value >> 16),
(uint8_t)(value >> 8),
(uint8_t)value };
write(b, 4U);
}
uint32_t Stream::getBe32() {
uint8_t b[4] = { 0, 0, 0, 0 };
read(b, 4U);
return ((uint32_t)b[0] << 24) |
((uint32_t)b[1] << 16) |
((uint32_t)b[2] << 8) |
(uint32_t)b[3];
}
void Stream::putBe64(uint64_t value) {
uint8_t b[8] = {
(uint8_t)(value >> 56),
(uint8_t)(value >> 48),
(uint8_t)(value >> 40),
(uint8_t)(value >> 32),
(uint8_t)(value >> 24),
(uint8_t)(value >> 16),
(uint8_t)(value >> 8),
(uint8_t)value };
write(b, 8U);
}
uint64_t Stream::getBe64() {
uint8_t b[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
read(b, 8U);
return ((uint64_t)b[0] << 56) |
((uint64_t)b[1] << 48) |
((uint64_t)b[2] << 40) |
((uint64_t)b[3] << 32) |
((uint64_t)b[4] << 24) |
((uint64_t)b[5] << 16) |
((uint64_t)b[6] << 8) |
(uint64_t)b[7];
}
void Stream::putFloat(float v) {
union {
float f;
uint8_t bytes[sizeof(float)];
} u;
u.f = v;
this->write(u.bytes, sizeof(u.bytes));
}
float Stream::getFloat() {
union {
float f;
uint8_t bytes[sizeof(float)];
} u;
this->read(u.bytes, sizeof(u.bytes));
return u.f;
}
void Stream::putString(const char* str) {
if (str) {
putString(str, strlen(str));
} else {
putString("", 0);
}
}
void Stream::putString(const std::string& str) {
putString(str.data(), str.size());
}
void Stream::putString(const char* str, size_t len) {
if (str) {
this->putBe32(len);
this->write(str, len);
}
}
std::string Stream::getString() {
std::string result;
size_t len = this->getBe32();
if (len > 0) {
result.resize(len);
if (this->read(&result[0], len) != static_cast<ssize_t>(len)) {
result.clear();
}
}
#ifdef _WIN32
else {
// std::string in GCC's STL still uses copy on write implementation
// with a single shared buffer for an empty string. Its dtor has
// a check for that shared buffer, and it deallocates memory only if
// the current string's instance address != shared empty string address
// Unfortunately, in Windows DLLs each DLL has its own copy of this
// empty string (that's just the way Windows DLLs work), so if this
// code creates an empty string and passes it over into another module,
// that module's std::string::~string() will compare address with its
// empty string object, find that they are different and will try to
// free() a static object.
// To mitigate it we make sure the string allocates something, so it
// isn't empty internally and dtor is OK to delete the storage.
result.reserve(1);
}
#endif
return result;
}
void Stream::putPackedNum(uint64_t num) {
do {
auto byte = uint8_t(num & 0x7f);
num >>= 7;
if (num) {
byte |= 0x80;
}
putByte(byte);
} while (num != 0);
}
uint64_t Stream::getPackedNum() {
uint64_t res = 0;
uint8_t byte;
int i = 0;
do {
byte = getByte();
res |= uint64_t(byte & 0x7f) << (i++ * 7);
} while (byte & 0x80 && i < 10);
return res;
}
void Stream::putPackedSignedNum(int64_t num) {
if (num >= 0) {
assert((uint64_t(num) & (1ULL << 63)) == 0);
putPackedNum(uint64_t(num) << 1);
} else {
assert((uint64_t(-num) & (1ULL << 63)) == 0);
putPackedNum((uint64_t(-num) << 1) | 1);
}
}
int64_t Stream::getPackedSignedNum() {
auto num = getPackedNum();
auto sign = num & 1;
return sign ? -int64_t(num >> 1) : (num >> 1);
}
// Static big-endian conversions
// the |v| pointer is unlikely to be aligned---use memcpy throughout
void Stream::toByte(uint8_t*) { } // no conversion
void Stream::toBe16(uint8_t* v) {
uint16_t value;
memcpy(&value, v, sizeof(uint16_t));
uint8_t b[2] = { (uint8_t)(value >> 8), (uint8_t)value };
memcpy(v, b, sizeof(uint16_t));
}
void Stream::toBe32(uint8_t* v) {
uint32_t value;
memcpy(&value, v, sizeof(uint32_t));
uint8_t b[4] = {
(uint8_t)(value >> 24),
(uint8_t)(value >> 16),
(uint8_t)(value >> 8),
(uint8_t)value };
memcpy(v, b, sizeof(uint32_t));
}
void Stream::toBe64(uint8_t* v) {
uint64_t value;
memcpy(&value, v, sizeof(uint64_t));
uint8_t b[8] = {
(uint8_t)(value >> 56),
(uint8_t)(value >> 48),
(uint8_t)(value >> 40),
(uint8_t)(value >> 32),
(uint8_t)(value >> 24),
(uint8_t)(value >> 16),
(uint8_t)(value >> 8),
(uint8_t)value };
memcpy(v, b, sizeof(uint64_t));
}
void Stream::fromByte(uint8_t*) { } // no conversion
void Stream::fromBe16(uint8_t* v) {
uint8_t b[2];
memcpy(b, v, sizeof(uint16_t));
uint16_t value = ((uint16_t)b[0] << 8) | (uint16_t)b[1];
memcpy(v, &value, sizeof(uint16_t));
}
void Stream::fromBe32(uint8_t* v) {
uint8_t b[4];
memcpy(b, v, sizeof(uint32_t));
uint32_t value =
((uint32_t)b[0] << 24) |
((uint32_t)b[1] << 16) |
((uint32_t)b[2] << 8) |
(uint32_t)b[3];
memcpy(v, &value, sizeof(uint32_t));
}
void Stream::fromBe64(uint8_t* v) {
uint8_t b[8];
memcpy(b, v, sizeof(uint64_t));
uint64_t value =
((uint64_t)b[0] << 56) |
((uint64_t)b[1] << 48) |
((uint64_t)b[2] << 40) |
((uint64_t)b[3] << 32) |
((uint64_t)b[4] << 24) |
((uint64_t)b[5] << 16) |
((uint64_t)b[6] << 8) |
(uint64_t)b[7];
memcpy(v, &value, sizeof(uint64_t));
}
} // namespace base
} // namespace android