/// @ref gtc_quaternion | |
/// @file glm/gtc/quaternion.hpp | |
/// | |
/// @see core (dependence) | |
/// @see gtc_half_float (dependence) | |
/// @see gtc_constants (dependence) | |
/// | |
/// @defgroup gtc_quaternion GLM_GTC_quaternion | |
/// @ingroup gtc | |
/// | |
/// @brief Defines a templated quaternion type and several quaternion operations. | |
/// | |
/// <glm/gtc/quaternion.hpp> need to be included to use these functionalities. | |
#pragma once | |
// Dependency: | |
#include "../mat3x3.hpp" | |
#include "../mat4x4.hpp" | |
#include "../vec3.hpp" | |
#include "../vec4.hpp" | |
#include "../gtc/constants.hpp" | |
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) | |
# pragma message("GLM: GLM_GTC_quaternion extension included") | |
#endif | |
namespace glm | |
{ | |
/// @addtogroup gtc_quaternion | |
/// @{ | |
template <typename T, precision P = defaultp> | |
struct tquat | |
{ | |
// -- Implementation detail -- | |
typedef tquat<T, P> type; | |
typedef T value_type; | |
// -- Data -- | |
# if GLM_HAS_ALIGNED_TYPE | |
# if GLM_COMPILER & GLM_COMPILER_GCC | |
# pragma GCC diagnostic push | |
# pragma GCC diagnostic ignored "-Wpedantic" | |
# endif | |
# if GLM_COMPILER & GLM_COMPILER_CLANG | |
# pragma clang diagnostic push | |
# pragma clang diagnostic ignored "-Wgnu-anonymous-struct" | |
# pragma clang diagnostic ignored "-Wnested-anon-types" | |
# endif | |
union | |
{ | |
struct { T x, y, z, w;}; | |
typename detail::storage<T, sizeof(T) * 4, detail::is_aligned<P>::value>::type data; | |
}; | |
# if GLM_COMPILER & GLM_COMPILER_CLANG | |
# pragma clang diagnostic pop | |
# endif | |
# if GLM_COMPILER & GLM_COMPILER_GCC | |
# pragma GCC diagnostic pop | |
# endif | |
# else | |
T x, y, z, w; | |
# endif | |
// -- Component accesses -- | |
typedef length_t length_type; | |
/// Return the count of components of a quaternion | |
GLM_FUNC_DECL static length_type length(){return 4;} | |
GLM_FUNC_DECL T & operator[](length_type i); | |
GLM_FUNC_DECL T const & operator[](length_type i) const; | |
// -- Implicit basic constructors -- | |
GLM_FUNC_DECL GLM_CONSTEXPR tquat() GLM_DEFAULT_CTOR; | |
GLM_FUNC_DECL GLM_CONSTEXPR tquat(tquat<T, P> const & q) GLM_DEFAULT; | |
template <precision Q> | |
GLM_FUNC_DECL GLM_CONSTEXPR tquat(tquat<T, Q> const & q); | |
// -- Explicit basic constructors -- | |
GLM_FUNC_DECL GLM_CONSTEXPR_CTOR explicit tquat(ctor); | |
GLM_FUNC_DECL GLM_CONSTEXPR tquat(T const & s, tvec3<T, P> const & v); | |
GLM_FUNC_DECL GLM_CONSTEXPR tquat(T const & w, T const & x, T const & y, T const & z); | |
// -- Conversion constructors -- | |
template <typename U, precision Q> | |
GLM_FUNC_DECL GLM_CONSTEXPR GLM_EXPLICIT tquat(tquat<U, Q> const & q); | |
/// Explicit conversion operators | |
# if GLM_HAS_EXPLICIT_CONVERSION_OPERATORS | |
GLM_FUNC_DECL explicit operator tmat3x3<T, P>(); | |
GLM_FUNC_DECL explicit operator tmat4x4<T, P>(); | |
# endif | |
/// Create a quaternion from two normalized axis | |
/// | |
/// @param u A first normalized axis | |
/// @param v A second normalized axis | |
/// @see gtc_quaternion | |
/// @see http://lolengine.net/blog/2013/09/18/beautiful-maths-quaternion-from-vectors | |
GLM_FUNC_DECL tquat(tvec3<T, P> const & u, tvec3<T, P> const & v); | |
/// Build a quaternion from euler angles (pitch, yaw, roll), in radians. | |
GLM_FUNC_DECL GLM_EXPLICIT tquat(tvec3<T, P> const & eulerAngles); | |
GLM_FUNC_DECL GLM_EXPLICIT tquat(tmat3x3<T, P> const & m); | |
GLM_FUNC_DECL GLM_EXPLICIT tquat(tmat4x4<T, P> const & m); | |
// -- Unary arithmetic operators -- | |
GLM_FUNC_DECL tquat<T, P> & operator=(tquat<T, P> const & m) GLM_DEFAULT; | |
template <typename U> | |
GLM_FUNC_DECL tquat<T, P> & operator=(tquat<U, P> const & m); | |
template <typename U> | |
GLM_FUNC_DECL tquat<T, P> & operator+=(tquat<U, P> const & q); | |
template <typename U> | |
GLM_FUNC_DECL tquat<T, P> & operator-=(tquat<U, P> const & q); | |
template <typename U> | |
GLM_FUNC_DECL tquat<T, P> & operator*=(tquat<U, P> const & q); | |
template <typename U> | |
GLM_FUNC_DECL tquat<T, P> & operator*=(U s); | |
template <typename U> | |
GLM_FUNC_DECL tquat<T, P> & operator/=(U s); | |
}; | |
// -- Unary bit operators -- | |
template <typename T, precision P> | |
GLM_FUNC_DECL tquat<T, P> operator+(tquat<T, P> const & q); | |
template <typename T, precision P> | |
GLM_FUNC_DECL tquat<T, P> operator-(tquat<T, P> const & q); | |
// -- Binary operators -- | |
template <typename T, precision P> | |
GLM_FUNC_DECL tquat<T, P> operator+(tquat<T, P> const & q, tquat<T, P> const & p); | |
template <typename T, precision P> | |
GLM_FUNC_DECL tquat<T, P> operator*(tquat<T, P> const & q, tquat<T, P> const & p); | |
template <typename T, precision P> | |
GLM_FUNC_DECL tvec3<T, P> operator*(tquat<T, P> const & q, tvec3<T, P> const & v); | |
template <typename T, precision P> | |
GLM_FUNC_DECL tvec3<T, P> operator*(tvec3<T, P> const & v, tquat<T, P> const & q); | |
template <typename T, precision P> | |
GLM_FUNC_DECL tvec4<T, P> operator*(tquat<T, P> const & q, tvec4<T, P> const & v); | |
template <typename T, precision P> | |
GLM_FUNC_DECL tvec4<T, P> operator*(tvec4<T, P> const & v, tquat<T, P> const & q); | |
template <typename T, precision P> | |
GLM_FUNC_DECL tquat<T, P> operator*(tquat<T, P> const & q, T const & s); | |
template <typename T, precision P> | |
GLM_FUNC_DECL tquat<T, P> operator*(T const & s, tquat<T, P> const & q); | |
template <typename T, precision P> | |
GLM_FUNC_DECL tquat<T, P> operator/(tquat<T, P> const & q, T const & s); | |
// -- Boolean operators -- | |
template <typename T, precision P> | |
GLM_FUNC_DECL bool operator==(tquat<T, P> const & q1, tquat<T, P> const & q2); | |
template <typename T, precision P> | |
GLM_FUNC_DECL bool operator!=(tquat<T, P> const & q1, tquat<T, P> const & q2); | |
/// Returns the length of the quaternion. | |
/// | |
/// @see gtc_quaternion | |
template <typename T, precision P> | |
GLM_FUNC_DECL T length(tquat<T, P> const & q); | |
/// Returns the normalized quaternion. | |
/// | |
/// @see gtc_quaternion | |
template <typename T, precision P> | |
GLM_FUNC_DECL tquat<T, P> normalize(tquat<T, P> const & q); | |
/// Returns dot product of q1 and q2, i.e., q1[0] * q2[0] + q1[1] * q2[1] + ... | |
/// | |
/// @see gtc_quaternion | |
template <typename T, precision P, template <typename, precision> class quatType> | |
GLM_FUNC_DECL T dot(quatType<T, P> const & x, quatType<T, P> const & y); | |
/// Spherical linear interpolation of two quaternions. | |
/// The interpolation is oriented and the rotation is performed at constant speed. | |
/// For short path spherical linear interpolation, use the slerp function. | |
/// | |
/// @param x A quaternion | |
/// @param y A quaternion | |
/// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1]. | |
/// @tparam T Value type used to build the quaternion. Supported: half, float or double. | |
/// @see gtc_quaternion | |
/// @see - slerp(tquat<T, P> const & x, tquat<T, P> const & y, T const & a) | |
template <typename T, precision P> | |
GLM_FUNC_DECL tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T a); | |
/// Linear interpolation of two quaternions. | |
/// The interpolation is oriented. | |
/// | |
/// @param x A quaternion | |
/// @param y A quaternion | |
/// @param a Interpolation factor. The interpolation is defined in the range [0, 1]. | |
/// @tparam T Value type used to build the quaternion. Supported: half, float or double. | |
/// @see gtc_quaternion | |
template <typename T, precision P> | |
GLM_FUNC_DECL tquat<T, P> lerp(tquat<T, P> const & x, tquat<T, P> const & y, T a); | |
/// Spherical linear interpolation of two quaternions. | |
/// The interpolation always take the short path and the rotation is performed at constant speed. | |
/// | |
/// @param x A quaternion | |
/// @param y A quaternion | |
/// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1]. | |
/// @tparam T Value type used to build the quaternion. Supported: half, float or double. | |
/// @see gtc_quaternion | |
template <typename T, precision P> | |
GLM_FUNC_DECL tquat<T, P> slerp(tquat<T, P> const & x, tquat<T, P> const & y, T a); | |
/// Returns the q conjugate. | |
/// | |
/// @see gtc_quaternion | |
template <typename T, precision P> | |
GLM_FUNC_DECL tquat<T, P> conjugate(tquat<T, P> const & q); | |
/// Returns the q inverse. | |
/// | |
/// @see gtc_quaternion | |
template <typename T, precision P> | |
GLM_FUNC_DECL tquat<T, P> inverse(tquat<T, P> const & q); | |
/// Rotates a quaternion from a vector of 3 components axis and an angle. | |
/// | |
/// @param q Source orientation | |
/// @param angle Angle expressed in radians. | |
/// @param axis Axis of the rotation | |
/// | |
/// @see gtc_quaternion | |
template <typename T, precision P> | |
GLM_FUNC_DECL tquat<T, P> rotate(tquat<T, P> const & q, T const & angle, tvec3<T, P> const & axis); | |
/// Returns euler angles, pitch as x, yaw as y, roll as z. | |
/// The result is expressed in radians if GLM_FORCE_RADIANS is defined or degrees otherwise. | |
/// | |
/// @see gtc_quaternion | |
template <typename T, precision P> | |
GLM_FUNC_DECL tvec3<T, P> eulerAngles(tquat<T, P> const & x); | |
/// Returns roll value of euler angles expressed in radians. | |
/// | |
/// @see gtx_quaternion | |
template <typename T, precision P> | |
GLM_FUNC_DECL T roll(tquat<T, P> const & x); | |
/// Returns pitch value of euler angles expressed in radians. | |
/// | |
/// @see gtx_quaternion | |
template <typename T, precision P> | |
GLM_FUNC_DECL T pitch(tquat<T, P> const & x); | |
/// Returns yaw value of euler angles expressed in radians. | |
/// | |
/// @see gtx_quaternion | |
template <typename T, precision P> | |
GLM_FUNC_DECL T yaw(tquat<T, P> const & x); | |
/// Converts a quaternion to a 3 * 3 matrix. | |
/// | |
/// @see gtc_quaternion | |
template <typename T, precision P> | |
GLM_FUNC_DECL tmat3x3<T, P> mat3_cast(tquat<T, P> const & x); | |
/// Converts a quaternion to a 4 * 4 matrix. | |
/// | |
/// @see gtc_quaternion | |
template <typename T, precision P> | |
GLM_FUNC_DECL tmat4x4<T, P> mat4_cast(tquat<T, P> const & x); | |
/// Converts a 3 * 3 matrix to a quaternion. | |
/// | |
/// @see gtc_quaternion | |
template <typename T, precision P> | |
GLM_FUNC_DECL tquat<T, P> quat_cast(tmat3x3<T, P> const & x); | |
/// Converts a 4 * 4 matrix to a quaternion. | |
/// | |
/// @see gtc_quaternion | |
template <typename T, precision P> | |
GLM_FUNC_DECL tquat<T, P> quat_cast(tmat4x4<T, P> const & x); | |
/// Returns the quaternion rotation angle. | |
/// | |
/// @see gtc_quaternion | |
template <typename T, precision P> | |
GLM_FUNC_DECL T angle(tquat<T, P> const & x); | |
/// Returns the q rotation axis. | |
/// | |
/// @see gtc_quaternion | |
template <typename T, precision P> | |
GLM_FUNC_DECL tvec3<T, P> axis(tquat<T, P> const & x); | |
/// Build a quaternion from an angle and a normalized axis. | |
/// | |
/// @param angle Angle expressed in radians. | |
/// @param axis Axis of the quaternion, must be normalized. | |
/// | |
/// @see gtc_quaternion | |
template <typename T, precision P> | |
GLM_FUNC_DECL tquat<T, P> angleAxis(T const & angle, tvec3<T, P> const & axis); | |
/// Returns the component-wise comparison result of x < y. | |
/// | |
/// @tparam quatType Floating-point quaternion types. | |
/// | |
/// @see gtc_quaternion | |
template <typename T, precision P> | |
GLM_FUNC_DECL tvec4<bool, P> lessThan(tquat<T, P> const & x, tquat<T, P> const & y); | |
/// Returns the component-wise comparison of result x <= y. | |
/// | |
/// @tparam quatType Floating-point quaternion types. | |
/// | |
/// @see gtc_quaternion | |
template <typename T, precision P> | |
GLM_FUNC_DECL tvec4<bool, P> lessThanEqual(tquat<T, P> const & x, tquat<T, P> const & y); | |
/// Returns the component-wise comparison of result x > y. | |
/// | |
/// @tparam quatType Floating-point quaternion types. | |
/// | |
/// @see gtc_quaternion | |
template <typename T, precision P> | |
GLM_FUNC_DECL tvec4<bool, P> greaterThan(tquat<T, P> const & x, tquat<T, P> const & y); | |
/// Returns the component-wise comparison of result x >= y. | |
/// | |
/// @tparam quatType Floating-point quaternion types. | |
/// | |
/// @see gtc_quaternion | |
template <typename T, precision P> | |
GLM_FUNC_DECL tvec4<bool, P> greaterThanEqual(tquat<T, P> const & x, tquat<T, P> const & y); | |
/// Returns the component-wise comparison of result x == y. | |
/// | |
/// @tparam quatType Floating-point quaternion types. | |
/// | |
/// @see gtc_quaternion | |
template <typename T, precision P> | |
GLM_FUNC_DECL tvec4<bool, P> equal(tquat<T, P> const & x, tquat<T, P> const & y); | |
/// Returns the component-wise comparison of result x != y. | |
/// | |
/// @tparam quatType Floating-point quaternion types. | |
/// | |
/// @see gtc_quaternion | |
template <typename T, precision P> | |
GLM_FUNC_DECL tvec4<bool, P> notEqual(tquat<T, P> const & x, tquat<T, P> const & y); | |
/// Returns true if x holds a NaN (not a number) | |
/// representation in the underlying implementation's set of | |
/// floating point representations. Returns false otherwise, | |
/// including for implementations with no NaN | |
/// representations. | |
/// | |
/// /!\ When using compiler fast math, this function may fail. | |
/// | |
/// @tparam genType Floating-point scalar or vector types. | |
template <typename T, precision P> | |
GLM_FUNC_DECL tvec4<bool, P> isnan(tquat<T, P> const & x); | |
/// Returns true if x holds a positive infinity or negative | |
/// infinity representation in the underlying implementation's | |
/// set of floating point representations. Returns false | |
/// otherwise, including for implementations with no infinity | |
/// representations. | |
/// | |
/// @tparam genType Floating-point scalar or vector types. | |
template <typename T, precision P> | |
GLM_FUNC_DECL tvec4<bool, P> isinf(tquat<T, P> const & x); | |
/// @} | |
} //namespace glm | |
#include "quaternion.inl" |