/// @ref gtc_quaternion | |
/// @file glm/gtc/quaternion.inl | |
#include "../trigonometric.hpp" | |
#include "../geometric.hpp" | |
#include "../exponential.hpp" | |
#include <limits> | |
namespace glm{ | |
namespace detail | |
{ | |
template <typename T, precision P, bool Aligned> | |
struct compute_dot<tquat, T, P, Aligned> | |
{ | |
static GLM_FUNC_QUALIFIER T call(tquat<T, P> const& x, tquat<T, P> const& y) | |
{ | |
tvec4<T, P> tmp(x.x * y.x, x.y * y.y, x.z * y.z, x.w * y.w); | |
return (tmp.x + tmp.y) + (tmp.z + tmp.w); | |
} | |
}; | |
template <typename T, precision P, bool Aligned> | |
struct compute_quat_add | |
{ | |
static tquat<T, P> call(tquat<T, P> const& q, tquat<T, P> const& p) | |
{ | |
return tquat<T, P>(q.w + p.w, q.x + p.x, q.y + p.y, q.z + p.z); | |
} | |
}; | |
template <typename T, precision P, bool Aligned> | |
struct compute_quat_sub | |
{ | |
static tquat<T, P> call(tquat<T, P> const& q, tquat<T, P> const& p) | |
{ | |
return tquat<T, P>(q.w - p.w, q.x - p.x, q.y - p.y, q.z - p.z); | |
} | |
}; | |
template <typename T, precision P, bool Aligned> | |
struct compute_quat_mul_scalar | |
{ | |
static tquat<T, P> call(tquat<T, P> const& q, T s) | |
{ | |
return tquat<T, P>(q.w * s, q.x * s, q.y * s, q.z * s); | |
} | |
}; | |
template <typename T, precision P, bool Aligned> | |
struct compute_quat_div_scalar | |
{ | |
static tquat<T, P> call(tquat<T, P> const& q, T s) | |
{ | |
return tquat<T, P>(q.w / s, q.x / s, q.y / s, q.z / s); | |
} | |
}; | |
template <typename T, precision P, bool Aligned> | |
struct compute_quat_mul_vec4 | |
{ | |
static tvec4<T, P> call(tquat<T, P> const & q, tvec4<T, P> const & v) | |
{ | |
return tvec4<T, P>(q * tvec3<T, P>(v), v.w); | |
} | |
}; | |
}//namespace detail | |
// -- Component accesses -- | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER T & tquat<T, P>::operator[](typename tquat<T, P>::length_type i) | |
{ | |
assert(i >= 0 && i < this->length()); | |
return (&x)[i]; | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER T const & tquat<T, P>::operator[](typename tquat<T, P>::length_type i) const | |
{ | |
assert(i >= 0 && i < this->length()); | |
return (&x)[i]; | |
} | |
// -- Implicit basic constructors -- | |
# if !GLM_HAS_DEFAULTED_FUNCTIONS || !defined(GLM_FORCE_NO_CTOR_INIT) | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat() | |
# ifndef GLM_FORCE_NO_CTOR_INIT | |
: x(0), y(0), z(0), w(1) | |
# endif | |
{} | |
# endif | |
# if !GLM_HAS_DEFAULTED_FUNCTIONS | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(tquat<T, P> const & q) | |
: x(q.x), y(q.y), z(q.z), w(q.w) | |
{} | |
# endif//!GLM_HAS_DEFAULTED_FUNCTIONS | |
template <typename T, precision P> | |
template <precision Q> | |
GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(tquat<T, Q> const & q) | |
: x(q.x), y(q.y), z(q.z), w(q.w) | |
{} | |
// -- Explicit basic constructors -- | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER GLM_CONSTEXPR_CTOR tquat<T, P>::tquat(ctor) | |
{} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(T const & s, tvec3<T, P> const & v) | |
: x(v.x), y(v.y), z(v.z), w(s) | |
{} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(T const & w, T const & x, T const & y, T const & z) | |
: x(x), y(y), z(z), w(w) | |
{} | |
// -- Conversion constructors -- | |
template <typename T, precision P> | |
template <typename U, precision Q> | |
GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(tquat<U, Q> const & q) | |
: x(static_cast<T>(q.x)) | |
, y(static_cast<T>(q.y)) | |
, z(static_cast<T>(q.z)) | |
, w(static_cast<T>(q.w)) | |
{} | |
//template <typename valType> | |
//GLM_FUNC_QUALIFIER tquat<valType>::tquat | |
//( | |
// valType const & pitch, | |
// valType const & yaw, | |
// valType const & roll | |
//) | |
//{ | |
// tvec3<valType> eulerAngle(pitch * valType(0.5), yaw * valType(0.5), roll * valType(0.5)); | |
// tvec3<valType> c = glm::cos(eulerAngle * valType(0.5)); | |
// tvec3<valType> s = glm::sin(eulerAngle * valType(0.5)); | |
// | |
// this->w = c.x * c.y * c.z + s.x * s.y * s.z; | |
// this->x = s.x * c.y * c.z - c.x * s.y * s.z; | |
// this->y = c.x * s.y * c.z + s.x * c.y * s.z; | |
// this->z = c.x * c.y * s.z - s.x * s.y * c.z; | |
//} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tvec3<T, P> const & u, tvec3<T, P> const & v) | |
{ | |
tvec3<T, P> const LocalW(cross(u, v)); | |
T Dot = detail::compute_dot<tvec3, T, P, detail::is_aligned<P>::value>::call(u, v); | |
tquat<T, P> q(T(1) + Dot, LocalW.x, LocalW.y, LocalW.z); | |
*this = normalize(q); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tvec3<T, P> const & eulerAngle) | |
{ | |
tvec3<T, P> c = glm::cos(eulerAngle * T(0.5)); | |
tvec3<T, P> s = glm::sin(eulerAngle * T(0.5)); | |
this->w = c.x * c.y * c.z + s.x * s.y * s.z; | |
this->x = s.x * c.y * c.z - c.x * s.y * s.z; | |
this->y = c.x * s.y * c.z + s.x * c.y * s.z; | |
this->z = c.x * c.y * s.z - s.x * s.y * c.z; | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tmat3x3<T, P> const & m) | |
{ | |
*this = quat_cast(m); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tmat4x4<T, P> const & m) | |
{ | |
*this = quat_cast(m); | |
} | |
# if GLM_HAS_EXPLICIT_CONVERSION_OPERATORS | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P>::operator tmat3x3<T, P>() | |
{ | |
return mat3_cast(*this); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P>::operator tmat4x4<T, P>() | |
{ | |
return mat4_cast(*this); | |
} | |
# endif//GLM_HAS_EXPLICIT_CONVERSION_OPERATORS | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P> conjugate(tquat<T, P> const & q) | |
{ | |
return tquat<T, P>(q.w, -q.x, -q.y, -q.z); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P> inverse(tquat<T, P> const & q) | |
{ | |
return conjugate(q) / dot(q, q); | |
} | |
// -- Unary arithmetic operators -- | |
# if !GLM_HAS_DEFAULTED_FUNCTIONS | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator=(tquat<T, P> const & q) | |
{ | |
this->w = q.w; | |
this->x = q.x; | |
this->y = q.y; | |
this->z = q.z; | |
return *this; | |
} | |
# endif//!GLM_HAS_DEFAULTED_FUNCTIONS | |
template <typename T, precision P> | |
template <typename U> | |
GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator=(tquat<U, P> const & q) | |
{ | |
this->w = static_cast<T>(q.w); | |
this->x = static_cast<T>(q.x); | |
this->y = static_cast<T>(q.y); | |
this->z = static_cast<T>(q.z); | |
return *this; | |
} | |
template <typename T, precision P> | |
template <typename U> | |
GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator+=(tquat<U, P> const& q) | |
{ | |
return (*this = detail::compute_quat_add<T, P, detail::is_aligned<P>::value>::call(*this, tquat<T, P>(q))); | |
} | |
template <typename T, precision P> | |
template <typename U> | |
GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator-=(tquat<U, P> const& q) | |
{ | |
return (*this = detail::compute_quat_sub<T, P, detail::is_aligned<P>::value>::call(*this, tquat<T, P>(q))); | |
} | |
template <typename T, precision P> | |
template <typename U> | |
GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator*=(tquat<U, P> const & r) | |
{ | |
tquat<T, P> const p(*this); | |
tquat<T, P> const q(r); | |
this->w = p.w * q.w - p.x * q.x - p.y * q.y - p.z * q.z; | |
this->x = p.w * q.x + p.x * q.w + p.y * q.z - p.z * q.y; | |
this->y = p.w * q.y + p.y * q.w + p.z * q.x - p.x * q.z; | |
this->z = p.w * q.z + p.z * q.w + p.x * q.y - p.y * q.x; | |
return *this; | |
} | |
template <typename T, precision P> | |
template <typename U> | |
GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator*=(U s) | |
{ | |
return (*this = detail::compute_quat_mul_scalar<T, P, detail::is_aligned<P>::value>::call(*this, static_cast<U>(s))); | |
} | |
template <typename T, precision P> | |
template <typename U> | |
GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator/=(U s) | |
{ | |
return (*this = detail::compute_quat_div_scalar<T, P, detail::is_aligned<P>::value>::call(*this, static_cast<U>(s))); | |
} | |
// -- Unary bit operators -- | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P> operator+(tquat<T, P> const & q) | |
{ | |
return q; | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P> operator-(tquat<T, P> const & q) | |
{ | |
return tquat<T, P>(-q.w, -q.x, -q.y, -q.z); | |
} | |
// -- Binary operators -- | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P> operator+(tquat<T, P> const & q, tquat<T, P> const & p) | |
{ | |
return tquat<T, P>(q) += p; | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P> operator*(tquat<T, P> const & q, tquat<T, P> const & p) | |
{ | |
return tquat<T, P>(q) *= p; | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tvec3<T, P> operator*(tquat<T, P> const & q, tvec3<T, P> const & v) | |
{ | |
tvec3<T, P> const QuatVector(q.x, q.y, q.z); | |
tvec3<T, P> const uv(glm::cross(QuatVector, v)); | |
tvec3<T, P> const uuv(glm::cross(QuatVector, uv)); | |
return v + ((uv * q.w) + uuv) * static_cast<T>(2); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tvec3<T, P> operator*(tvec3<T, P> const & v, tquat<T, P> const & q) | |
{ | |
return glm::inverse(q) * v; | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tvec4<T, P> operator*(tquat<T, P> const& q, tvec4<T, P> const& v) | |
{ | |
return detail::compute_quat_mul_vec4<T, P, detail::is_aligned<P>::value>::call(q, v); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tvec4<T, P> operator*(tvec4<T, P> const & v, tquat<T, P> const & q) | |
{ | |
return glm::inverse(q) * v; | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P> operator*(tquat<T, P> const & q, T const & s) | |
{ | |
return tquat<T, P>( | |
q.w * s, q.x * s, q.y * s, q.z * s); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P> operator*(T const & s, tquat<T, P> const & q) | |
{ | |
return q * s; | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P> operator/(tquat<T, P> const & q, T const & s) | |
{ | |
return tquat<T, P>( | |
q.w / s, q.x / s, q.y / s, q.z / s); | |
} | |
// -- Boolean operators -- | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER bool operator==(tquat<T, P> const & q1, tquat<T, P> const & q2) | |
{ | |
return (q1.x == q2.x) && (q1.y == q2.y) && (q1.z == q2.z) && (q1.w == q2.w); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER bool operator!=(tquat<T, P> const & q1, tquat<T, P> const & q2) | |
{ | |
return (q1.x != q2.x) || (q1.y != q2.y) || (q1.z != q2.z) || (q1.w != q2.w); | |
} | |
// -- Operations -- | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER T length(tquat<T, P> const & q) | |
{ | |
return glm::sqrt(dot(q, q)); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P> normalize(tquat<T, P> const & q) | |
{ | |
T len = length(q); | |
if(len <= T(0)) // Problem | |
return tquat<T, P>(1, 0, 0, 0); | |
T oneOverLen = T(1) / len; | |
return tquat<T, P>(q.w * oneOverLen, q.x * oneOverLen, q.y * oneOverLen, q.z * oneOverLen); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P> cross(tquat<T, P> const & q1, tquat<T, P> const & q2) | |
{ | |
return tquat<T, P>( | |
q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z, | |
q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y, | |
q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z, | |
q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x); | |
} | |
/* | |
// (x * sin(1 - a) * angle / sin(angle)) + (y * sin(a) * angle / sin(angle)) | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T const & a) | |
{ | |
if(a <= T(0)) return x; | |
if(a >= T(1)) return y; | |
float fCos = dot(x, y); | |
tquat<T, P> y2(y); //BUG!!! tquat<T, P> y2; | |
if(fCos < T(0)) | |
{ | |
y2 = -y; | |
fCos = -fCos; | |
} | |
//if(fCos > 1.0f) // problem | |
float k0, k1; | |
if(fCos > T(0.9999)) | |
{ | |
k0 = T(1) - a; | |
k1 = T(0) + a; //BUG!!! 1.0f + a; | |
} | |
else | |
{ | |
T fSin = sqrt(T(1) - fCos * fCos); | |
T fAngle = atan(fSin, fCos); | |
T fOneOverSin = static_cast<T>(1) / fSin; | |
k0 = sin((T(1) - a) * fAngle) * fOneOverSin; | |
k1 = sin((T(0) + a) * fAngle) * fOneOverSin; | |
} | |
return tquat<T, P>( | |
k0 * x.w + k1 * y2.w, | |
k0 * x.x + k1 * y2.x, | |
k0 * x.y + k1 * y2.y, | |
k0 * x.z + k1 * y2.z); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P> mix2 | |
( | |
tquat<T, P> const & x, | |
tquat<T, P> const & y, | |
T const & a | |
) | |
{ | |
bool flip = false; | |
if(a <= static_cast<T>(0)) return x; | |
if(a >= static_cast<T>(1)) return y; | |
T cos_t = dot(x, y); | |
if(cos_t < T(0)) | |
{ | |
cos_t = -cos_t; | |
flip = true; | |
} | |
T alpha(0), beta(0); | |
if(T(1) - cos_t < 1e-7) | |
beta = static_cast<T>(1) - alpha; | |
else | |
{ | |
T theta = acos(cos_t); | |
T sin_t = sin(theta); | |
beta = sin(theta * (T(1) - alpha)) / sin_t; | |
alpha = sin(alpha * theta) / sin_t; | |
} | |
if(flip) | |
alpha = -alpha; | |
return normalize(beta * x + alpha * y); | |
} | |
*/ | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T a) | |
{ | |
T cosTheta = dot(x, y); | |
// Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator | |
if(cosTheta > T(1) - epsilon<T>()) | |
{ | |
// Linear interpolation | |
return tquat<T, P>( | |
mix(x.w, y.w, a), | |
mix(x.x, y.x, a), | |
mix(x.y, y.y, a), | |
mix(x.z, y.z, a)); | |
} | |
else | |
{ | |
// Essential Mathematics, page 467 | |
T angle = acos(cosTheta); | |
return (sin((T(1) - a) * angle) * x + sin(a * angle) * y) / sin(angle); | |
} | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P> lerp(tquat<T, P> const & x, tquat<T, P> const & y, T a) | |
{ | |
// Lerp is only defined in [0, 1] | |
assert(a >= static_cast<T>(0)); | |
assert(a <= static_cast<T>(1)); | |
return x * (T(1) - a) + (y * a); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P> slerp(tquat<T, P> const & x, tquat<T, P> const & y, T a) | |
{ | |
tquat<T, P> z = y; | |
T cosTheta = dot(x, y); | |
// If cosTheta < 0, the interpolation will take the long way around the sphere. | |
// To fix this, one quat must be negated. | |
if (cosTheta < T(0)) | |
{ | |
z = -y; | |
cosTheta = -cosTheta; | |
} | |
// Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator | |
if(cosTheta > T(1) - epsilon<T>()) | |
{ | |
// Linear interpolation | |
return tquat<T, P>( | |
mix(x.w, z.w, a), | |
mix(x.x, z.x, a), | |
mix(x.y, z.y, a), | |
mix(x.z, z.z, a)); | |
} | |
else | |
{ | |
// Essential Mathematics, page 467 | |
T angle = acos(cosTheta); | |
return (sin((T(1) - a) * angle) * x + sin(a * angle) * z) / sin(angle); | |
} | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P> rotate(tquat<T, P> const & q, T const & angle, tvec3<T, P> const & v) | |
{ | |
tvec3<T, P> Tmp = v; | |
// Axis of rotation must be normalised | |
T len = glm::length(Tmp); | |
if(abs(len - T(1)) > T(0.001)) | |
{ | |
T oneOverLen = static_cast<T>(1) / len; | |
Tmp.x *= oneOverLen; | |
Tmp.y *= oneOverLen; | |
Tmp.z *= oneOverLen; | |
} | |
T const AngleRad(angle); | |
T const Sin = sin(AngleRad * T(0.5)); | |
return q * tquat<T, P>(cos(AngleRad * T(0.5)), Tmp.x * Sin, Tmp.y * Sin, Tmp.z * Sin); | |
//return gtc::quaternion::cross(q, tquat<T, P>(cos(AngleRad * T(0.5)), Tmp.x * fSin, Tmp.y * fSin, Tmp.z * fSin)); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tvec3<T, P> eulerAngles(tquat<T, P> const & x) | |
{ | |
return tvec3<T, P>(pitch(x), yaw(x), roll(x)); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER T roll(tquat<T, P> const & q) | |
{ | |
return T(atan(T(2) * (q.x * q.y + q.w * q.z), q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z)); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER T pitch(tquat<T, P> const & q) | |
{ | |
return T(atan(T(2) * (q.y * q.z + q.w * q.x), q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z)); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER T yaw(tquat<T, P> const & q) | |
{ | |
return asin(clamp(T(-2) * (q.x * q.z - q.w * q.y), T(-1), T(1))); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tmat3x3<T, P> mat3_cast(tquat<T, P> const & q) | |
{ | |
tmat3x3<T, P> Result(T(1)); | |
T qxx(q.x * q.x); | |
T qyy(q.y * q.y); | |
T qzz(q.z * q.z); | |
T qxz(q.x * q.z); | |
T qxy(q.x * q.y); | |
T qyz(q.y * q.z); | |
T qwx(q.w * q.x); | |
T qwy(q.w * q.y); | |
T qwz(q.w * q.z); | |
Result[0][0] = T(1) - T(2) * (qyy + qzz); | |
Result[0][1] = T(2) * (qxy + qwz); | |
Result[0][2] = T(2) * (qxz - qwy); | |
Result[1][0] = T(2) * (qxy - qwz); | |
Result[1][1] = T(1) - T(2) * (qxx + qzz); | |
Result[1][2] = T(2) * (qyz + qwx); | |
Result[2][0] = T(2) * (qxz + qwy); | |
Result[2][1] = T(2) * (qyz - qwx); | |
Result[2][2] = T(1) - T(2) * (qxx + qyy); | |
return Result; | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tmat4x4<T, P> mat4_cast(tquat<T, P> const & q) | |
{ | |
return tmat4x4<T, P>(mat3_cast(q)); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P> quat_cast(tmat3x3<T, P> const & m) | |
{ | |
T fourXSquaredMinus1 = m[0][0] - m[1][1] - m[2][2]; | |
T fourYSquaredMinus1 = m[1][1] - m[0][0] - m[2][2]; | |
T fourZSquaredMinus1 = m[2][2] - m[0][0] - m[1][1]; | |
T fourWSquaredMinus1 = m[0][0] + m[1][1] + m[2][2]; | |
int biggestIndex = 0; | |
T fourBiggestSquaredMinus1 = fourWSquaredMinus1; | |
if(fourXSquaredMinus1 > fourBiggestSquaredMinus1) | |
{ | |
fourBiggestSquaredMinus1 = fourXSquaredMinus1; | |
biggestIndex = 1; | |
} | |
if(fourYSquaredMinus1 > fourBiggestSquaredMinus1) | |
{ | |
fourBiggestSquaredMinus1 = fourYSquaredMinus1; | |
biggestIndex = 2; | |
} | |
if(fourZSquaredMinus1 > fourBiggestSquaredMinus1) | |
{ | |
fourBiggestSquaredMinus1 = fourZSquaredMinus1; | |
biggestIndex = 3; | |
} | |
T biggestVal = sqrt(fourBiggestSquaredMinus1 + T(1)) * T(0.5); | |
T mult = static_cast<T>(0.25) / biggestVal; | |
tquat<T, P> Result(uninitialize); | |
switch(biggestIndex) | |
{ | |
case 0: | |
Result.w = biggestVal; | |
Result.x = (m[1][2] - m[2][1]) * mult; | |
Result.y = (m[2][0] - m[0][2]) * mult; | |
Result.z = (m[0][1] - m[1][0]) * mult; | |
break; | |
case 1: | |
Result.w = (m[1][2] - m[2][1]) * mult; | |
Result.x = biggestVal; | |
Result.y = (m[0][1] + m[1][0]) * mult; | |
Result.z = (m[2][0] + m[0][2]) * mult; | |
break; | |
case 2: | |
Result.w = (m[2][0] - m[0][2]) * mult; | |
Result.x = (m[0][1] + m[1][0]) * mult; | |
Result.y = biggestVal; | |
Result.z = (m[1][2] + m[2][1]) * mult; | |
break; | |
case 3: | |
Result.w = (m[0][1] - m[1][0]) * mult; | |
Result.x = (m[2][0] + m[0][2]) * mult; | |
Result.y = (m[1][2] + m[2][1]) * mult; | |
Result.z = biggestVal; | |
break; | |
default: // Silence a -Wswitch-default warning in GCC. Should never actually get here. Assert is just for sanity. | |
assert(false); | |
break; | |
} | |
return Result; | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P> quat_cast(tmat4x4<T, P> const & m4) | |
{ | |
return quat_cast(tmat3x3<T, P>(m4)); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER T angle(tquat<T, P> const & x) | |
{ | |
return acos(x.w) * T(2); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tvec3<T, P> axis(tquat<T, P> const & x) | |
{ | |
T tmp1 = static_cast<T>(1) - x.w * x.w; | |
if(tmp1 <= static_cast<T>(0)) | |
return tvec3<T, P>(0, 0, 1); | |
T tmp2 = static_cast<T>(1) / sqrt(tmp1); | |
return tvec3<T, P>(x.x * tmp2, x.y * tmp2, x.z * tmp2); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tquat<T, P> angleAxis(T const & angle, tvec3<T, P> const & v) | |
{ | |
tquat<T, P> Result(uninitialize); | |
T const a(angle); | |
T const s = glm::sin(a * static_cast<T>(0.5)); | |
Result.w = glm::cos(a * static_cast<T>(0.5)); | |
Result.x = v.x * s; | |
Result.y = v.y * s; | |
Result.z = v.z * s; | |
return Result; | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tvec4<bool, P> lessThan(tquat<T, P> const & x, tquat<T, P> const & y) | |
{ | |
tvec4<bool, P> Result(uninitialize); | |
for(length_t i = 0; i < x.length(); ++i) | |
Result[i] = x[i] < y[i]; | |
return Result; | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tvec4<bool, P> lessThanEqual(tquat<T, P> const & x, tquat<T, P> const & y) | |
{ | |
tvec4<bool, P> Result(uninitialize); | |
for(length_t i = 0; i < x.length(); ++i) | |
Result[i] = x[i] <= y[i]; | |
return Result; | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tvec4<bool, P> greaterThan(tquat<T, P> const & x, tquat<T, P> const & y) | |
{ | |
tvec4<bool, P> Result(uninitialize); | |
for(length_t i = 0; i < x.length(); ++i) | |
Result[i] = x[i] > y[i]; | |
return Result; | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tvec4<bool, P> greaterThanEqual(tquat<T, P> const & x, tquat<T, P> const & y) | |
{ | |
tvec4<bool, P> Result(uninitialize); | |
for(length_t i = 0; i < x.length(); ++i) | |
Result[i] = x[i] >= y[i]; | |
return Result; | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tvec4<bool, P> equal(tquat<T, P> const & x, tquat<T, P> const & y) | |
{ | |
tvec4<bool, P> Result(uninitialize); | |
for(length_t i = 0; i < x.length(); ++i) | |
Result[i] = x[i] == y[i]; | |
return Result; | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tvec4<bool, P> notEqual(tquat<T, P> const & x, tquat<T, P> const & y) | |
{ | |
tvec4<bool, P> Result(uninitialize); | |
for(length_t i = 0; i < x.length(); ++i) | |
Result[i] = x[i] != y[i]; | |
return Result; | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tvec4<bool, P> isnan(tquat<T, P> const& q) | |
{ | |
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'isnan' only accept floating-point inputs"); | |
return tvec4<bool, P>(isnan(q.x), isnan(q.y), isnan(q.z), isnan(q.w)); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tvec4<bool, P> isinf(tquat<T, P> const& q) | |
{ | |
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'isinf' only accept floating-point inputs"); | |
return tvec4<bool, P>(isinf(q.x), isinf(q.y), isinf(q.z), isinf(q.w)); | |
} | |
}//namespace glm | |
#if GLM_ARCH != GLM_ARCH_PURE && GLM_HAS_ALIGNED_TYPE | |
# include "quaternion_simd.inl" | |
#endif | |