/// @ref gtx_matrix_interpolation | |
/// @file glm/gtx/matrix_interpolation.hpp | |
namespace glm | |
{ | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER void axisAngle | |
( | |
tmat4x4<T, P> const & mat, | |
tvec3<T, P> & axis, | |
T & angle | |
) | |
{ | |
T epsilon = (T)0.01; | |
T epsilon2 = (T)0.1; | |
if((abs(mat[1][0] - mat[0][1]) < epsilon) && (abs(mat[2][0] - mat[0][2]) < epsilon) && (abs(mat[2][1] - mat[1][2]) < epsilon)) | |
{ | |
if ((abs(mat[1][0] + mat[0][1]) < epsilon2) && (abs(mat[2][0] + mat[0][2]) < epsilon2) && (abs(mat[2][1] + mat[1][2]) < epsilon2) && (abs(mat[0][0] + mat[1][1] + mat[2][2] - (T)3.0) < epsilon2)) | |
{ | |
angle = (T)0.0; | |
axis.x = (T)1.0; | |
axis.y = (T)0.0; | |
axis.z = (T)0.0; | |
return; | |
} | |
angle = static_cast<T>(3.1415926535897932384626433832795); | |
T xx = (mat[0][0] + (T)1.0) / (T)2.0; | |
T yy = (mat[1][1] + (T)1.0) / (T)2.0; | |
T zz = (mat[2][2] + (T)1.0) / (T)2.0; | |
T xy = (mat[1][0] + mat[0][1]) / (T)4.0; | |
T xz = (mat[2][0] + mat[0][2]) / (T)4.0; | |
T yz = (mat[2][1] + mat[1][2]) / (T)4.0; | |
if((xx > yy) && (xx > zz)) | |
{ | |
if (xx < epsilon) { | |
axis.x = (T)0.0; | |
axis.y = (T)0.7071; | |
axis.z = (T)0.7071; | |
} else { | |
axis.x = sqrt(xx); | |
axis.y = xy / axis.x; | |
axis.z = xz / axis.x; | |
} | |
} | |
else if (yy > zz) | |
{ | |
if (yy < epsilon) { | |
axis.x = (T)0.7071; | |
axis.y = (T)0.0; | |
axis.z = (T)0.7071; | |
} else { | |
axis.y = sqrt(yy); | |
axis.x = xy / axis.y; | |
axis.z = yz / axis.y; | |
} | |
} | |
else | |
{ | |
if (zz < epsilon) { | |
axis.x = (T)0.7071; | |
axis.y = (T)0.7071; | |
axis.z = (T)0.0; | |
} else { | |
axis.z = sqrt(zz); | |
axis.x = xz / axis.z; | |
axis.y = yz / axis.z; | |
} | |
} | |
return; | |
} | |
T s = sqrt((mat[2][1] - mat[1][2]) * (mat[2][1] - mat[1][2]) + (mat[2][0] - mat[0][2]) * (mat[2][0] - mat[0][2]) + (mat[1][0] - mat[0][1]) * (mat[1][0] - mat[0][1])); | |
if (glm::abs(s) < T(0.001)) | |
s = (T)1.0; | |
angle = acos((mat[0][0] + mat[1][1] + mat[2][2] - (T)1.0) / (T)2.0); | |
axis.x = (mat[1][2] - mat[2][1]) / s; | |
axis.y = (mat[2][0] - mat[0][2]) / s; | |
axis.z = (mat[0][1] - mat[1][0]) / s; | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tmat4x4<T, P> axisAngleMatrix | |
( | |
tvec3<T, P> const & axis, | |
T const angle | |
) | |
{ | |
T c = cos(angle); | |
T s = sin(angle); | |
T t = static_cast<T>(1) - c; | |
tvec3<T, P> n = normalize(axis); | |
return tmat4x4<T, P>( | |
t * n.x * n.x + c, t * n.x * n.y + n.z * s, t * n.x * n.z - n.y * s, T(0), | |
t * n.x * n.y - n.z * s, t * n.y * n.y + c, t * n.y * n.z + n.x * s, T(0), | |
t * n.x * n.z + n.y * s, t * n.y * n.z - n.x * s, t * n.z * n.z + c, T(0), | |
T(0), T(0), T(0), T(1) | |
); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tmat4x4<T, P> extractMatrixRotation | |
( | |
tmat4x4<T, P> const & mat | |
) | |
{ | |
return tmat4x4<T, P>( | |
mat[0][0], mat[0][1], mat[0][2], 0.0, | |
mat[1][0], mat[1][1], mat[1][2], 0.0, | |
mat[2][0], mat[2][1], mat[2][2], 0.0, | |
0.0, 0.0, 0.0, 1.0 | |
); | |
} | |
template <typename T, precision P> | |
GLM_FUNC_QUALIFIER tmat4x4<T, P> interpolate | |
( | |
tmat4x4<T, P> const & m1, | |
tmat4x4<T, P> const & m2, | |
T const delta | |
) | |
{ | |
tmat4x4<T, P> m1rot = extractMatrixRotation(m1); | |
tmat4x4<T, P> dltRotation = m2 * transpose(m1rot); | |
tvec3<T, P> dltAxis; | |
T dltAngle; | |
axisAngle(dltRotation, dltAxis, dltAngle); | |
tmat4x4<T, P> out = axisAngleMatrix(dltAxis, dltAngle * delta) * m1rot; | |
out[3][0] = m1[3][0] + delta * (m2[3][0] - m1[3][0]); | |
out[3][1] = m1[3][1] + delta * (m2[3][1] - m1[3][1]); | |
out[3][2] = m1[3][2] + delta * (m2[3][2] - m1[3][2]); | |
return out; | |
} | |
}//namespace glm |