Gurchetan Singh | 876877a | 2023-08-07 15:15:58 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2011 Intel Corporation |
| 3 | * |
| 4 | * Permission is hereby granted, free of charge, to any person obtaining a |
| 5 | * copy of this software and associated documentation files (the "Software"), |
| 6 | * to deal in the Software without restriction, including without limitation |
| 7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 8 | * and/or sell copies of the Software, and to permit persons to whom the |
| 9 | * Software is furnished to do so, subject to the following conditions: |
| 10 | * |
| 11 | * The above copyright notice and this permission notice (including the next |
| 12 | * paragraph) shall be included in all copies or substantial portions of the |
| 13 | * Software. |
| 14 | * |
| 15 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 16 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 17 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| 18 | * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| 19 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| 20 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| 21 | * OTHER DEALINGS IN THE SOFTWARE. |
| 22 | */ |
| 23 | |
| 24 | #ifndef DRM_FOURCC_H |
| 25 | #define DRM_FOURCC_H |
| 26 | |
| 27 | #include "drm.h" |
| 28 | |
| 29 | #if defined(__cplusplus) |
| 30 | extern "C" { |
| 31 | #endif |
| 32 | |
| 33 | /** |
| 34 | * DOC: overview |
| 35 | * |
| 36 | * In the DRM subsystem, framebuffer pixel formats are described using the |
| 37 | * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the |
| 38 | * fourcc code, a Format Modifier may optionally be provided, in order to |
| 39 | * further describe the buffer's format - for example tiling or compression. |
| 40 | * |
| 41 | * Format Modifiers |
| 42 | * ---------------- |
| 43 | * |
| 44 | * Format modifiers are used in conjunction with a fourcc code, forming a |
| 45 | * unique fourcc:modifier pair. This format:modifier pair must fully define the |
| 46 | * format and data layout of the buffer, and should be the only way to describe |
| 47 | * that particular buffer. |
| 48 | * |
| 49 | * Having multiple fourcc:modifier pairs which describe the same layout should |
| 50 | * be avoided, as such aliases run the risk of different drivers exposing |
| 51 | * different names for the same data format, forcing userspace to understand |
| 52 | * that they are aliases. |
| 53 | * |
| 54 | * Format modifiers may change any property of the buffer, including the number |
| 55 | * of planes and/or the required allocation size. Format modifiers are |
| 56 | * vendor-namespaced, and as such the relationship between a fourcc code and a |
| 57 | * modifier is specific to the modifer being used. For example, some modifiers |
| 58 | * may preserve meaning - such as number of planes - from the fourcc code, |
| 59 | * whereas others may not. |
| 60 | * |
| 61 | * Modifiers must uniquely encode buffer layout. In other words, a buffer must |
| 62 | * match only a single modifier. A modifier must not be a subset of layouts of |
| 63 | * another modifier. For instance, it's incorrect to encode pitch alignment in |
| 64 | * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel |
| 65 | * aligned modifier. That said, modifiers can have implicit minimal |
| 66 | * requirements. |
| 67 | * |
| 68 | * For modifiers where the combination of fourcc code and modifier can alias, |
| 69 | * a canonical pair needs to be defined and used by all drivers. Preferred |
| 70 | * combinations are also encouraged where all combinations might lead to |
| 71 | * confusion and unnecessarily reduced interoperability. An example for the |
| 72 | * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts. |
| 73 | * |
| 74 | * There are two kinds of modifier users: |
| 75 | * |
| 76 | * - Kernel and user-space drivers: for drivers it's important that modifiers |
| 77 | * don't alias, otherwise two drivers might support the same format but use |
| 78 | * different aliases, preventing them from sharing buffers in an efficient |
| 79 | * format. |
| 80 | * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users |
| 81 | * see modifiers as opaque tokens they can check for equality and intersect. |
| 82 | * These users musn't need to know to reason about the modifier value |
| 83 | * (i.e. they are not expected to extract information out of the modifier). |
| 84 | * |
| 85 | * Vendors should document their modifier usage in as much detail as |
| 86 | * possible, to ensure maximum compatibility across devices, drivers and |
| 87 | * applications. |
| 88 | * |
| 89 | * The authoritative list of format modifier codes is found in |
| 90 | * `include/uapi/drm/drm_fourcc.h` |
| 91 | * |
| 92 | * Open Source User Waiver |
| 93 | * ----------------------- |
| 94 | * |
| 95 | * Because this is the authoritative source for pixel formats and modifiers |
| 96 | * referenced by GL, Vulkan extensions and other standards and hence used both |
| 97 | * by open source and closed source driver stacks, the usual requirement for an |
| 98 | * upstream in-kernel or open source userspace user does not apply. |
| 99 | * |
| 100 | * To ensure, as much as feasible, compatibility across stacks and avoid |
| 101 | * confusion with incompatible enumerations stakeholders for all relevant driver |
| 102 | * stacks should approve additions. |
| 103 | */ |
| 104 | |
| 105 | #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \ |
| 106 | ((__u32)(c) << 16) | ((__u32)(d) << 24)) |
| 107 | |
| 108 | #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */ |
| 109 | |
| 110 | /* Reserve 0 for the invalid format specifier */ |
| 111 | #define DRM_FORMAT_INVALID 0 |
| 112 | |
| 113 | /* color index */ |
| 114 | #define DRM_FORMAT_C1 fourcc_code('C', '1', ' ', ' ') /* [7:0] C0:C1:C2:C3:C4:C5:C6:C7 1:1:1:1:1:1:1:1 eight pixels/byte */ |
| 115 | #define DRM_FORMAT_C2 fourcc_code('C', '2', ' ', ' ') /* [7:0] C0:C1:C2:C3 2:2:2:2 four pixels/byte */ |
| 116 | #define DRM_FORMAT_C4 fourcc_code('C', '4', ' ', ' ') /* [7:0] C0:C1 4:4 two pixels/byte */ |
| 117 | #define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */ |
| 118 | |
| 119 | /* 1 bpp Darkness (inverse relationship between channel value and brightness) */ |
| 120 | #define DRM_FORMAT_D1 fourcc_code('D', '1', ' ', ' ') /* [7:0] D0:D1:D2:D3:D4:D5:D6:D7 1:1:1:1:1:1:1:1 eight pixels/byte */ |
| 121 | |
| 122 | /* 2 bpp Darkness (inverse relationship between channel value and brightness) */ |
| 123 | #define DRM_FORMAT_D2 fourcc_code('D', '2', ' ', ' ') /* [7:0] D0:D1:D2:D3 2:2:2:2 four pixels/byte */ |
| 124 | |
| 125 | /* 4 bpp Darkness (inverse relationship between channel value and brightness) */ |
| 126 | #define DRM_FORMAT_D4 fourcc_code('D', '4', ' ', ' ') /* [7:0] D0:D1 4:4 two pixels/byte */ |
| 127 | |
| 128 | /* 8 bpp Darkness (inverse relationship between channel value and brightness) */ |
| 129 | #define DRM_FORMAT_D8 fourcc_code('D', '8', ' ', ' ') /* [7:0] D */ |
| 130 | |
| 131 | /* 1 bpp Red (direct relationship between channel value and brightness) */ |
| 132 | #define DRM_FORMAT_R1 fourcc_code('R', '1', ' ', ' ') /* [7:0] R0:R1:R2:R3:R4:R5:R6:R7 1:1:1:1:1:1:1:1 eight pixels/byte */ |
| 133 | |
| 134 | /* 2 bpp Red (direct relationship between channel value and brightness) */ |
| 135 | #define DRM_FORMAT_R2 fourcc_code('R', '2', ' ', ' ') /* [7:0] R0:R1:R2:R3 2:2:2:2 four pixels/byte */ |
| 136 | |
| 137 | /* 4 bpp Red (direct relationship between channel value and brightness) */ |
| 138 | #define DRM_FORMAT_R4 fourcc_code('R', '4', ' ', ' ') /* [7:0] R0:R1 4:4 two pixels/byte */ |
| 139 | |
| 140 | /* 8 bpp Red (direct relationship between channel value and brightness) */ |
| 141 | #define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */ |
| 142 | |
| 143 | /* 10 bpp Red (direct relationship between channel value and brightness) */ |
| 144 | #define DRM_FORMAT_R10 fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */ |
| 145 | |
| 146 | /* 12 bpp Red (direct relationship between channel value and brightness) */ |
| 147 | #define DRM_FORMAT_R12 fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */ |
| 148 | |
| 149 | /* 16 bpp Red (direct relationship between channel value and brightness) */ |
| 150 | #define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */ |
| 151 | |
| 152 | /* 16 bpp RG */ |
| 153 | #define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */ |
| 154 | #define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */ |
| 155 | |
| 156 | /* 32 bpp RG */ |
| 157 | #define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */ |
| 158 | #define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */ |
| 159 | |
| 160 | /* 8 bpp RGB */ |
| 161 | #define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */ |
| 162 | #define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */ |
| 163 | |
| 164 | /* 16 bpp RGB */ |
| 165 | #define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */ |
| 166 | #define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */ |
| 167 | #define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */ |
| 168 | #define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */ |
| 169 | |
| 170 | #define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */ |
| 171 | #define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */ |
| 172 | #define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */ |
| 173 | #define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */ |
| 174 | |
| 175 | #define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */ |
| 176 | #define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */ |
| 177 | #define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */ |
| 178 | #define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */ |
| 179 | |
| 180 | #define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */ |
| 181 | #define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */ |
| 182 | #define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */ |
| 183 | #define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */ |
| 184 | |
| 185 | #define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */ |
| 186 | #define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */ |
| 187 | |
| 188 | /* 24 bpp RGB */ |
| 189 | #define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */ |
| 190 | #define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */ |
| 191 | |
| 192 | /* 32 bpp RGB */ |
| 193 | #define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */ |
| 194 | #define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */ |
| 195 | #define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */ |
| 196 | #define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */ |
| 197 | |
| 198 | #define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */ |
| 199 | #define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */ |
| 200 | #define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */ |
| 201 | #define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */ |
| 202 | |
| 203 | #define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */ |
| 204 | #define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */ |
| 205 | #define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */ |
| 206 | #define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */ |
| 207 | |
| 208 | #define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */ |
| 209 | #define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */ |
| 210 | #define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */ |
| 211 | #define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */ |
| 212 | |
| 213 | /* 64 bpp RGB */ |
| 214 | #define DRM_FORMAT_XRGB16161616 fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */ |
| 215 | #define DRM_FORMAT_XBGR16161616 fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */ |
| 216 | |
| 217 | #define DRM_FORMAT_ARGB16161616 fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */ |
| 218 | #define DRM_FORMAT_ABGR16161616 fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */ |
| 219 | |
| 220 | /* |
| 221 | * Floating point 64bpp RGB |
| 222 | * IEEE 754-2008 binary16 half-precision float |
| 223 | * [15:0] sign:exponent:mantissa 1:5:10 |
| 224 | */ |
| 225 | #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */ |
| 226 | #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */ |
| 227 | |
| 228 | #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */ |
| 229 | #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */ |
| 230 | |
| 231 | /* |
| 232 | * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits |
| 233 | * of unused padding per component: |
| 234 | */ |
| 235 | #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */ |
| 236 | |
| 237 | /* packed YCbCr */ |
| 238 | #define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */ |
| 239 | #define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */ |
| 240 | #define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */ |
| 241 | #define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */ |
| 242 | |
| 243 | #define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */ |
| 244 | #define DRM_FORMAT_AVUY8888 fourcc_code('A', 'V', 'U', 'Y') /* [31:0] A:Cr:Cb:Y 8:8:8:8 little endian */ |
| 245 | #define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */ |
| 246 | #define DRM_FORMAT_XVUY8888 fourcc_code('X', 'V', 'U', 'Y') /* [31:0] X:Cr:Cb:Y 8:8:8:8 little endian */ |
| 247 | #define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */ |
| 248 | #define DRM_FORMAT_VUY101010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */ |
| 249 | |
| 250 | /* |
| 251 | * packed Y2xx indicate for each component, xx valid data occupy msb |
| 252 | * 16-xx padding occupy lsb |
| 253 | */ |
| 254 | #define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */ |
| 255 | #define DRM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */ |
| 256 | #define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */ |
| 257 | |
| 258 | /* |
| 259 | * packed Y4xx indicate for each component, xx valid data occupy msb |
| 260 | * 16-xx padding occupy lsb except Y410 |
| 261 | */ |
| 262 | #define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */ |
| 263 | #define DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */ |
| 264 | #define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */ |
| 265 | |
| 266 | #define DRM_FORMAT_XVYU2101010 fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */ |
| 267 | #define DRM_FORMAT_XVYU12_16161616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */ |
| 268 | #define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */ |
| 269 | |
| 270 | /* |
| 271 | * packed YCbCr420 2x2 tiled formats |
| 272 | * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile |
| 273 | */ |
| 274 | /* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */ |
| 275 | #define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0') |
| 276 | /* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */ |
| 277 | #define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0') |
| 278 | |
| 279 | /* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */ |
| 280 | #define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2') |
| 281 | /* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */ |
| 282 | #define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2') |
| 283 | |
| 284 | /* |
| 285 | * 1-plane YUV 4:2:0 |
| 286 | * In these formats, the component ordering is specified (Y, followed by U |
| 287 | * then V), but the exact Linear layout is undefined. |
| 288 | * These formats can only be used with a non-Linear modifier. |
| 289 | */ |
| 290 | #define DRM_FORMAT_YUV420_8BIT fourcc_code('Y', 'U', '0', '8') |
| 291 | #define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0') |
| 292 | |
| 293 | /* |
| 294 | * 2 plane RGB + A |
| 295 | * index 0 = RGB plane, same format as the corresponding non _A8 format has |
| 296 | * index 1 = A plane, [7:0] A |
| 297 | */ |
| 298 | #define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8') |
| 299 | #define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8') |
| 300 | #define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8') |
| 301 | #define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8') |
| 302 | #define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8') |
| 303 | #define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8') |
| 304 | #define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8') |
| 305 | #define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8') |
| 306 | |
| 307 | /* |
| 308 | * 2 plane YCbCr |
| 309 | * index 0 = Y plane, [7:0] Y |
| 310 | * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian |
| 311 | * or |
| 312 | * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian |
| 313 | */ |
| 314 | #define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */ |
| 315 | #define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */ |
| 316 | #define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */ |
| 317 | #define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */ |
| 318 | #define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */ |
| 319 | #define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */ |
| 320 | /* |
| 321 | * 2 plane YCbCr |
| 322 | * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian |
| 323 | * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian |
| 324 | */ |
| 325 | #define DRM_FORMAT_NV15 fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */ |
| 326 | |
| 327 | /* |
| 328 | * 2 plane YCbCr MSB aligned |
| 329 | * index 0 = Y plane, [15:0] Y:x [10:6] little endian |
| 330 | * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian |
| 331 | */ |
| 332 | #define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */ |
| 333 | |
| 334 | /* |
| 335 | * 2 plane YCbCr MSB aligned |
| 336 | * index 0 = Y plane, [15:0] Y:x [10:6] little endian |
| 337 | * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian |
| 338 | */ |
| 339 | #define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */ |
| 340 | |
| 341 | /* |
| 342 | * 2 plane YCbCr MSB aligned |
| 343 | * index 0 = Y plane, [15:0] Y:x [12:4] little endian |
| 344 | * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian |
| 345 | */ |
| 346 | #define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */ |
| 347 | |
| 348 | /* |
| 349 | * 2 plane YCbCr MSB aligned |
| 350 | * index 0 = Y plane, [15:0] Y little endian |
| 351 | * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian |
| 352 | */ |
| 353 | #define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */ |
| 354 | |
| 355 | /* 2 plane YCbCr420. |
| 356 | * 3 10 bit components and 2 padding bits packed into 4 bytes. |
| 357 | * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian |
| 358 | * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian |
| 359 | */ |
| 360 | #define DRM_FORMAT_P030 fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */ |
| 361 | |
| 362 | /* 3 plane non-subsampled (444) YCbCr |
| 363 | * 16 bits per component, but only 10 bits are used and 6 bits are padded |
| 364 | * index 0: Y plane, [15:0] Y:x [10:6] little endian |
| 365 | * index 1: Cb plane, [15:0] Cb:x [10:6] little endian |
| 366 | * index 2: Cr plane, [15:0] Cr:x [10:6] little endian |
| 367 | */ |
| 368 | #define DRM_FORMAT_Q410 fourcc_code('Q', '4', '1', '0') |
| 369 | |
| 370 | /* 3 plane non-subsampled (444) YCrCb |
| 371 | * 16 bits per component, but only 10 bits are used and 6 bits are padded |
| 372 | * index 0: Y plane, [15:0] Y:x [10:6] little endian |
| 373 | * index 1: Cr plane, [15:0] Cr:x [10:6] little endian |
| 374 | * index 2: Cb plane, [15:0] Cb:x [10:6] little endian |
| 375 | */ |
| 376 | #define DRM_FORMAT_Q401 fourcc_code('Q', '4', '0', '1') |
| 377 | |
| 378 | /* |
| 379 | * 3 plane YCbCr |
| 380 | * index 0: Y plane, [7:0] Y |
| 381 | * index 1: Cb plane, [7:0] Cb |
| 382 | * index 2: Cr plane, [7:0] Cr |
| 383 | * or |
| 384 | * index 1: Cr plane, [7:0] Cr |
| 385 | * index 2: Cb plane, [7:0] Cb |
| 386 | */ |
| 387 | #define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */ |
| 388 | #define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */ |
| 389 | #define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */ |
| 390 | #define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */ |
| 391 | #define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */ |
| 392 | #define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */ |
| 393 | #define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */ |
| 394 | #define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */ |
| 395 | #define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */ |
| 396 | #define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */ |
| 397 | |
| 398 | |
| 399 | /* |
| 400 | * Format Modifiers: |
| 401 | * |
| 402 | * Format modifiers describe, typically, a re-ordering or modification |
| 403 | * of the data in a plane of an FB. This can be used to express tiled/ |
| 404 | * swizzled formats, or compression, or a combination of the two. |
| 405 | * |
| 406 | * The upper 8 bits of the format modifier are a vendor-id as assigned |
| 407 | * below. The lower 56 bits are assigned as vendor sees fit. |
| 408 | */ |
| 409 | |
| 410 | /* Vendor Ids: */ |
| 411 | #define DRM_FORMAT_MOD_VENDOR_NONE 0 |
| 412 | #define DRM_FORMAT_MOD_VENDOR_INTEL 0x01 |
| 413 | #define DRM_FORMAT_MOD_VENDOR_AMD 0x02 |
| 414 | #define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03 |
| 415 | #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04 |
| 416 | #define DRM_FORMAT_MOD_VENDOR_QCOM 0x05 |
| 417 | #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06 |
| 418 | #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07 |
| 419 | #define DRM_FORMAT_MOD_VENDOR_ARM 0x08 |
| 420 | #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09 |
| 421 | #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a |
| 422 | |
| 423 | /* add more to the end as needed */ |
| 424 | |
| 425 | #define DRM_FORMAT_RESERVED ((1ULL << 56) - 1) |
| 426 | |
| 427 | #define fourcc_mod_get_vendor(modifier) \ |
| 428 | (((modifier) >> 56) & 0xff) |
| 429 | |
| 430 | #define fourcc_mod_is_vendor(modifier, vendor) \ |
| 431 | (fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor) |
| 432 | |
| 433 | #define fourcc_mod_code(vendor, val) \ |
| 434 | ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL)) |
| 435 | |
| 436 | /* |
| 437 | * Format Modifier tokens: |
| 438 | * |
| 439 | * When adding a new token please document the layout with a code comment, |
| 440 | * similar to the fourcc codes above. drm_fourcc.h is considered the |
| 441 | * authoritative source for all of these. |
| 442 | * |
| 443 | * Generic modifier names: |
| 444 | * |
| 445 | * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names |
| 446 | * for layouts which are common across multiple vendors. To preserve |
| 447 | * compatibility, in cases where a vendor-specific definition already exists and |
| 448 | * a generic name for it is desired, the common name is a purely symbolic alias |
| 449 | * and must use the same numerical value as the original definition. |
| 450 | * |
| 451 | * Note that generic names should only be used for modifiers which describe |
| 452 | * generic layouts (such as pixel re-ordering), which may have |
| 453 | * independently-developed support across multiple vendors. |
| 454 | * |
| 455 | * In future cases where a generic layout is identified before merging with a |
| 456 | * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor |
| 457 | * 'NONE' could be considered. This should only be for obvious, exceptional |
| 458 | * cases to avoid polluting the 'GENERIC' namespace with modifiers which only |
| 459 | * apply to a single vendor. |
| 460 | * |
| 461 | * Generic names should not be used for cases where multiple hardware vendors |
| 462 | * have implementations of the same standardised compression scheme (such as |
| 463 | * AFBC). In those cases, all implementations should use the same format |
| 464 | * modifier(s), reflecting the vendor of the standard. |
| 465 | */ |
| 466 | |
| 467 | #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE |
| 468 | |
| 469 | /* |
| 470 | * Invalid Modifier |
| 471 | * |
| 472 | * This modifier can be used as a sentinel to terminate the format modifiers |
| 473 | * list, or to initialize a variable with an invalid modifier. It might also be |
| 474 | * used to report an error back to userspace for certain APIs. |
| 475 | */ |
| 476 | #define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED) |
| 477 | |
| 478 | /* |
| 479 | * Linear Layout |
| 480 | * |
| 481 | * Just plain linear layout. Note that this is different from no specifying any |
| 482 | * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl), |
| 483 | * which tells the driver to also take driver-internal information into account |
| 484 | * and so might actually result in a tiled framebuffer. |
| 485 | */ |
| 486 | #define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0) |
| 487 | |
| 488 | /* |
| 489 | * Deprecated: use DRM_FORMAT_MOD_LINEAR instead |
| 490 | * |
| 491 | * The "none" format modifier doesn't actually mean that the modifier is |
| 492 | * implicit, instead it means that the layout is linear. Whether modifiers are |
| 493 | * used is out-of-band information carried in an API-specific way (e.g. in a |
| 494 | * flag for drm_mode_fb_cmd2). |
| 495 | */ |
| 496 | #define DRM_FORMAT_MOD_NONE 0 |
| 497 | |
| 498 | /* Intel framebuffer modifiers */ |
| 499 | |
| 500 | /* |
| 501 | * Intel X-tiling layout |
| 502 | * |
| 503 | * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) |
| 504 | * in row-major layout. Within the tile bytes are laid out row-major, with |
| 505 | * a platform-dependent stride. On top of that the memory can apply |
| 506 | * platform-depending swizzling of some higher address bits into bit6. |
| 507 | * |
| 508 | * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets. |
| 509 | * On earlier platforms the is highly platforms specific and not useful for |
| 510 | * cross-driver sharing. It exists since on a given platform it does uniquely |
| 511 | * identify the layout in a simple way for i915-specific userspace, which |
| 512 | * facilitated conversion of userspace to modifiers. Additionally the exact |
| 513 | * format on some really old platforms is not known. |
| 514 | */ |
| 515 | #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1) |
| 516 | |
| 517 | /* |
| 518 | * Intel Y-tiling layout |
| 519 | * |
| 520 | * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) |
| 521 | * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes) |
| 522 | * chunks column-major, with a platform-dependent height. On top of that the |
| 523 | * memory can apply platform-depending swizzling of some higher address bits |
| 524 | * into bit6. |
| 525 | * |
| 526 | * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets. |
| 527 | * On earlier platforms the is highly platforms specific and not useful for |
| 528 | * cross-driver sharing. It exists since on a given platform it does uniquely |
| 529 | * identify the layout in a simple way for i915-specific userspace, which |
| 530 | * facilitated conversion of userspace to modifiers. Additionally the exact |
| 531 | * format on some really old platforms is not known. |
| 532 | */ |
| 533 | #define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2) |
| 534 | |
| 535 | /* |
| 536 | * Intel Yf-tiling layout |
| 537 | * |
| 538 | * This is a tiled layout using 4Kb tiles in row-major layout. |
| 539 | * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which |
| 540 | * are arranged in four groups (two wide, two high) with column-major layout. |
| 541 | * Each group therefore consits out of four 256 byte units, which are also laid |
| 542 | * out as 2x2 column-major. |
| 543 | * 256 byte units are made out of four 64 byte blocks of pixels, producing |
| 544 | * either a square block or a 2:1 unit. |
| 545 | * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width |
| 546 | * in pixel depends on the pixel depth. |
| 547 | */ |
| 548 | #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3) |
| 549 | |
| 550 | /* |
| 551 | * Intel color control surface (CCS) for render compression |
| 552 | * |
| 553 | * The framebuffer format must be one of the 8:8:8:8 RGB formats. |
| 554 | * The main surface will be plane index 0 and must be Y/Yf-tiled, |
| 555 | * the CCS will be plane index 1. |
| 556 | * |
| 557 | * Each CCS tile matches a 1024x512 pixel area of the main surface. |
| 558 | * To match certain aspects of the 3D hardware the CCS is |
| 559 | * considered to be made up of normal 128Bx32 Y tiles, Thus |
| 560 | * the CCS pitch must be specified in multiples of 128 bytes. |
| 561 | * |
| 562 | * In reality the CCS tile appears to be a 64Bx64 Y tile, composed |
| 563 | * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks. |
| 564 | * But that fact is not relevant unless the memory is accessed |
| 565 | * directly. |
| 566 | */ |
| 567 | #define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4) |
| 568 | #define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5) |
| 569 | |
| 570 | /* |
| 571 | * Intel color control surfaces (CCS) for Gen-12 render compression. |
| 572 | * |
| 573 | * The main surface is Y-tiled and at plane index 0, the CCS is linear and |
| 574 | * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in |
| 575 | * main surface. In other words, 4 bits in CCS map to a main surface cache |
| 576 | * line pair. The main surface pitch is required to be a multiple of four |
| 577 | * Y-tile widths. |
| 578 | */ |
| 579 | #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6) |
| 580 | |
| 581 | /* |
| 582 | * Intel color control surfaces (CCS) for Gen-12 media compression |
| 583 | * |
| 584 | * The main surface is Y-tiled and at plane index 0, the CCS is linear and |
| 585 | * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in |
| 586 | * main surface. In other words, 4 bits in CCS map to a main surface cache |
| 587 | * line pair. The main surface pitch is required to be a multiple of four |
| 588 | * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the |
| 589 | * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces, |
| 590 | * planes 2 and 3 for the respective CCS. |
| 591 | */ |
| 592 | #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7) |
| 593 | |
| 594 | /* |
| 595 | * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render |
| 596 | * compression. |
| 597 | * |
| 598 | * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear |
| 599 | * and at index 1. The clear color is stored at index 2, and the pitch should |
| 600 | * be 64 bytes aligned. The clear color structure is 256 bits. The first 128 bits |
| 601 | * represents Raw Clear Color Red, Green, Blue and Alpha color each represented |
| 602 | * by 32 bits. The raw clear color is consumed by the 3d engine and generates |
| 603 | * the converted clear color of size 64 bits. The first 32 bits store the Lower |
| 604 | * Converted Clear Color value and the next 32 bits store the Higher Converted |
| 605 | * Clear Color value when applicable. The Converted Clear Color values are |
| 606 | * consumed by the DE. The last 64 bits are used to store Color Discard Enable |
| 607 | * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line |
| 608 | * corresponds to an area of 4x1 tiles in the main surface. The main surface |
| 609 | * pitch is required to be a multiple of 4 tile widths. |
| 610 | */ |
| 611 | #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8) |
| 612 | |
| 613 | /* |
| 614 | * Intel Tile 4 layout |
| 615 | * |
| 616 | * This is a tiled layout using 4KB tiles in a row-major layout. It has the same |
| 617 | * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It |
| 618 | * only differs from Tile Y at the 256B granularity in between. At this |
| 619 | * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape |
| 620 | * of 64B x 8 rows. |
| 621 | */ |
| 622 | #define I915_FORMAT_MOD_4_TILED fourcc_mod_code(INTEL, 9) |
| 623 | |
| 624 | /* |
| 625 | * Intel color control surfaces (CCS) for DG2 render compression. |
| 626 | * |
| 627 | * The main surface is Tile 4 and at plane index 0. The CCS data is stored |
| 628 | * outside of the GEM object in a reserved memory area dedicated for the |
| 629 | * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The |
| 630 | * main surface pitch is required to be a multiple of four Tile 4 widths. |
| 631 | */ |
| 632 | #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10) |
| 633 | |
| 634 | /* |
| 635 | * Intel color control surfaces (CCS) for DG2 media compression. |
| 636 | * |
| 637 | * The main surface is Tile 4 and at plane index 0. For semi-planar formats |
| 638 | * like NV12, the Y and UV planes are Tile 4 and are located at plane indices |
| 639 | * 0 and 1, respectively. The CCS for all planes are stored outside of the |
| 640 | * GEM object in a reserved memory area dedicated for the storage of the |
| 641 | * CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface |
| 642 | * pitch is required to be a multiple of four Tile 4 widths. |
| 643 | */ |
| 644 | #define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11) |
| 645 | |
| 646 | /* |
| 647 | * Intel Color Control Surface with Clear Color (CCS) for DG2 render compression. |
| 648 | * |
| 649 | * The main surface is Tile 4 and at plane index 0. The CCS data is stored |
| 650 | * outside of the GEM object in a reserved memory area dedicated for the |
| 651 | * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The |
| 652 | * main surface pitch is required to be a multiple of four Tile 4 widths. The |
| 653 | * clear color is stored at plane index 1 and the pitch should be 64 bytes |
| 654 | * aligned. The format of the 256 bits of clear color data matches the one used |
| 655 | * for the I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description |
| 656 | * for details. |
| 657 | */ |
| 658 | #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12) |
| 659 | |
| 660 | /* |
| 661 | * Intel Color Control Surfaces (CCS) for display ver. 14 render compression. |
| 662 | * |
| 663 | * The main surface is tile4 and at plane index 0, the CCS is linear and |
| 664 | * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in |
| 665 | * main surface. In other words, 4 bits in CCS map to a main surface cache |
| 666 | * line pair. The main surface pitch is required to be a multiple of four |
| 667 | * tile4 widths. |
| 668 | */ |
| 669 | #define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS fourcc_mod_code(INTEL, 13) |
| 670 | |
| 671 | /* |
| 672 | * Intel Color Control Surfaces (CCS) for display ver. 14 media compression |
| 673 | * |
| 674 | * The main surface is tile4 and at plane index 0, the CCS is linear and |
| 675 | * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in |
| 676 | * main surface. In other words, 4 bits in CCS map to a main surface cache |
| 677 | * line pair. The main surface pitch is required to be a multiple of four |
| 678 | * tile4 widths. For semi-planar formats like NV12, CCS planes follow the |
| 679 | * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces, |
| 680 | * planes 2 and 3 for the respective CCS. |
| 681 | */ |
| 682 | #define I915_FORMAT_MOD_4_TILED_MTL_MC_CCS fourcc_mod_code(INTEL, 14) |
| 683 | |
| 684 | /* |
| 685 | * Intel Color Control Surface with Clear Color (CCS) for display ver. 14 render |
| 686 | * compression. |
| 687 | * |
| 688 | * The main surface is tile4 and is at plane index 0 whereas CCS is linear |
| 689 | * and at index 1. The clear color is stored at index 2, and the pitch should |
| 690 | * be ignored. The clear color structure is 256 bits. The first 128 bits |
| 691 | * represents Raw Clear Color Red, Green, Blue and Alpha color each represented |
| 692 | * by 32 bits. The raw clear color is consumed by the 3d engine and generates |
| 693 | * the converted clear color of size 64 bits. The first 32 bits store the Lower |
| 694 | * Converted Clear Color value and the next 32 bits store the Higher Converted |
| 695 | * Clear Color value when applicable. The Converted Clear Color values are |
| 696 | * consumed by the DE. The last 64 bits are used to store Color Discard Enable |
| 697 | * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line |
| 698 | * corresponds to an area of 4x1 tiles in the main surface. The main surface |
| 699 | * pitch is required to be a multiple of 4 tile widths. |
| 700 | */ |
| 701 | #define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS_CC fourcc_mod_code(INTEL, 15) |
| 702 | |
| 703 | /* |
| 704 | * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks |
| 705 | * |
| 706 | * Macroblocks are laid in a Z-shape, and each pixel data is following the |
| 707 | * standard NV12 style. |
| 708 | * As for NV12, an image is the result of two frame buffers: one for Y, |
| 709 | * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer). |
| 710 | * Alignment requirements are (for each buffer): |
| 711 | * - multiple of 128 pixels for the width |
| 712 | * - multiple of 32 pixels for the height |
| 713 | * |
| 714 | * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html |
| 715 | */ |
| 716 | #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1) |
| 717 | |
| 718 | /* |
| 719 | * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks |
| 720 | * |
| 721 | * This is a simple tiled layout using tiles of 16x16 pixels in a row-major |
| 722 | * layout. For YCbCr formats Cb/Cr components are taken in such a way that |
| 723 | * they correspond to their 16x16 luma block. |
| 724 | */ |
| 725 | #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2) |
| 726 | |
| 727 | /* |
| 728 | * Qualcomm Compressed Format |
| 729 | * |
| 730 | * Refers to a compressed variant of the base format that is compressed. |
| 731 | * Implementation may be platform and base-format specific. |
| 732 | * |
| 733 | * Each macrotile consists of m x n (mostly 4 x 4) tiles. |
| 734 | * Pixel data pitch/stride is aligned with macrotile width. |
| 735 | * Pixel data height is aligned with macrotile height. |
| 736 | * Entire pixel data buffer is aligned with 4k(bytes). |
| 737 | */ |
| 738 | #define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1) |
| 739 | |
| 740 | /* |
| 741 | * Qualcomm Tiled Format |
| 742 | * |
| 743 | * Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed. |
| 744 | * Implementation may be platform and base-format specific. |
| 745 | * |
| 746 | * Each macrotile consists of m x n (mostly 4 x 4) tiles. |
| 747 | * Pixel data pitch/stride is aligned with macrotile width. |
| 748 | * Pixel data height is aligned with macrotile height. |
| 749 | * Entire pixel data buffer is aligned with 4k(bytes). |
| 750 | */ |
| 751 | #define DRM_FORMAT_MOD_QCOM_TILED3 fourcc_mod_code(QCOM, 3) |
| 752 | |
| 753 | /* |
| 754 | * Qualcomm Alternate Tiled Format |
| 755 | * |
| 756 | * Alternate tiled format typically only used within GMEM. |
| 757 | * Implementation may be platform and base-format specific. |
| 758 | */ |
| 759 | #define DRM_FORMAT_MOD_QCOM_TILED2 fourcc_mod_code(QCOM, 2) |
| 760 | |
| 761 | |
| 762 | /* Vivante framebuffer modifiers */ |
| 763 | |
| 764 | /* |
| 765 | * Vivante 4x4 tiling layout |
| 766 | * |
| 767 | * This is a simple tiled layout using tiles of 4x4 pixels in a row-major |
| 768 | * layout. |
| 769 | */ |
| 770 | #define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1) |
| 771 | |
| 772 | /* |
| 773 | * Vivante 64x64 super-tiling layout |
| 774 | * |
| 775 | * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile |
| 776 | * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row- |
| 777 | * major layout. |
| 778 | * |
| 779 | * For more information: see |
| 780 | * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling |
| 781 | */ |
| 782 | #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2) |
| 783 | |
| 784 | /* |
| 785 | * Vivante 4x4 tiling layout for dual-pipe |
| 786 | * |
| 787 | * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a |
| 788 | * different base address. Offsets from the base addresses are therefore halved |
| 789 | * compared to the non-split tiled layout. |
| 790 | */ |
| 791 | #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3) |
| 792 | |
| 793 | /* |
| 794 | * Vivante 64x64 super-tiling layout for dual-pipe |
| 795 | * |
| 796 | * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile |
| 797 | * starts at a different base address. Offsets from the base addresses are |
| 798 | * therefore halved compared to the non-split super-tiled layout. |
| 799 | */ |
| 800 | #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4) |
| 801 | |
| 802 | /* |
| 803 | * Vivante TS (tile-status) buffer modifiers. They can be combined with all of |
| 804 | * the color buffer tiling modifiers defined above. When TS is present it's a |
| 805 | * separate buffer containing the clear/compression status of each tile. The |
| 806 | * modifiers are defined as VIVANTE_MOD_TS_c_s, where c is the color buffer |
| 807 | * tile size in bytes covered by one entry in the status buffer and s is the |
| 808 | * number of status bits per entry. |
| 809 | * We reserve the top 8 bits of the Vivante modifier space for tile status |
| 810 | * clear/compression modifiers, as future cores might add some more TS layout |
| 811 | * variations. |
| 812 | */ |
| 813 | #define VIVANTE_MOD_TS_64_4 (1ULL << 48) |
| 814 | #define VIVANTE_MOD_TS_64_2 (2ULL << 48) |
| 815 | #define VIVANTE_MOD_TS_128_4 (3ULL << 48) |
| 816 | #define VIVANTE_MOD_TS_256_4 (4ULL << 48) |
| 817 | #define VIVANTE_MOD_TS_MASK (0xfULL << 48) |
| 818 | |
| 819 | /* |
| 820 | * Vivante compression modifiers. Those depend on a TS modifier being present |
| 821 | * as the TS bits get reinterpreted as compression tags instead of simple |
| 822 | * clear markers when compression is enabled. |
| 823 | */ |
| 824 | #define VIVANTE_MOD_COMP_DEC400 (1ULL << 52) |
| 825 | #define VIVANTE_MOD_COMP_MASK (0xfULL << 52) |
| 826 | |
| 827 | /* Masking out the extension bits will yield the base modifier. */ |
| 828 | #define VIVANTE_MOD_EXT_MASK (VIVANTE_MOD_TS_MASK | \ |
| 829 | VIVANTE_MOD_COMP_MASK) |
| 830 | |
| 831 | /* NVIDIA frame buffer modifiers */ |
| 832 | |
| 833 | /* |
| 834 | * Tegra Tiled Layout, used by Tegra 2, 3 and 4. |
| 835 | * |
| 836 | * Pixels are arranged in simple tiles of 16 x 16 bytes. |
| 837 | */ |
| 838 | #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1) |
| 839 | |
| 840 | /* |
| 841 | * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80, |
| 842 | * and Tegra GPUs starting with Tegra K1. |
| 843 | * |
| 844 | * Pixels are arranged in Groups of Bytes (GOBs). GOB size and layout varies |
| 845 | * based on the architecture generation. GOBs themselves are then arranged in |
| 846 | * 3D blocks, with the block dimensions (in terms of GOBs) always being a power |
| 847 | * of two, and hence expressible as their log2 equivalent (E.g., "2" represents |
| 848 | * a block depth or height of "4"). |
| 849 | * |
| 850 | * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format |
| 851 | * in full detail. |
| 852 | * |
| 853 | * Macro |
| 854 | * Bits Param Description |
| 855 | * ---- ----- ----------------------------------------------------------------- |
| 856 | * |
| 857 | * 3:0 h log2(height) of each block, in GOBs. Placed here for |
| 858 | * compatibility with the existing |
| 859 | * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers. |
| 860 | * |
| 861 | * 4:4 - Must be 1, to indicate block-linear layout. Necessary for |
| 862 | * compatibility with the existing |
| 863 | * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers. |
| 864 | * |
| 865 | * 8:5 - Reserved (To support 3D-surfaces with variable log2(depth) block |
| 866 | * size). Must be zero. |
| 867 | * |
| 868 | * Note there is no log2(width) parameter. Some portions of the |
| 869 | * hardware support a block width of two gobs, but it is impractical |
| 870 | * to use due to lack of support elsewhere, and has no known |
| 871 | * benefits. |
| 872 | * |
| 873 | * 11:9 - Reserved (To support 2D-array textures with variable array stride |
| 874 | * in blocks, specified via log2(tile width in blocks)). Must be |
| 875 | * zero. |
| 876 | * |
| 877 | * 19:12 k Page Kind. This value directly maps to a field in the page |
| 878 | * tables of all GPUs >= NV50. It affects the exact layout of bits |
| 879 | * in memory and can be derived from the tuple |
| 880 | * |
| 881 | * (format, GPU model, compression type, samples per pixel) |
| 882 | * |
| 883 | * Where compression type is defined below. If GPU model were |
| 884 | * implied by the format modifier, format, or memory buffer, page |
| 885 | * kind would not need to be included in the modifier itself, but |
| 886 | * since the modifier should define the layout of the associated |
| 887 | * memory buffer independent from any device or other context, it |
| 888 | * must be included here. |
| 889 | * |
| 890 | * 21:20 g GOB Height and Page Kind Generation. The height of a GOB changed |
| 891 | * starting with Fermi GPUs. Additionally, the mapping between page |
| 892 | * kind and bit layout has changed at various points. |
| 893 | * |
| 894 | * 0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping |
| 895 | * 1 = Gob Height 4, G80 - GT2XX Page Kind mapping |
| 896 | * 2 = Gob Height 8, Turing+ Page Kind mapping |
| 897 | * 3 = Reserved for future use. |
| 898 | * |
| 899 | * 22:22 s Sector layout. On Tegra GPUs prior to Xavier, there is a further |
| 900 | * bit remapping step that occurs at an even lower level than the |
| 901 | * page kind and block linear swizzles. This causes the layout of |
| 902 | * surfaces mapped in those SOC's GPUs to be incompatible with the |
| 903 | * equivalent mapping on other GPUs in the same system. |
| 904 | * |
| 905 | * 0 = Tegra K1 - Tegra Parker/TX2 Layout. |
| 906 | * 1 = Desktop GPU and Tegra Xavier+ Layout |
| 907 | * |
| 908 | * 25:23 c Lossless Framebuffer Compression type. |
| 909 | * |
| 910 | * 0 = none |
| 911 | * 1 = ROP/3D, layout 1, exact compression format implied by Page |
| 912 | * Kind field |
| 913 | * 2 = ROP/3D, layout 2, exact compression format implied by Page |
| 914 | * Kind field |
| 915 | * 3 = CDE horizontal |
| 916 | * 4 = CDE vertical |
| 917 | * 5 = Reserved for future use |
| 918 | * 6 = Reserved for future use |
| 919 | * 7 = Reserved for future use |
| 920 | * |
| 921 | * 55:25 - Reserved for future use. Must be zero. |
| 922 | */ |
| 923 | #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \ |
| 924 | fourcc_mod_code(NVIDIA, (0x10 | \ |
| 925 | ((h) & 0xf) | \ |
| 926 | (((k) & 0xff) << 12) | \ |
| 927 | (((g) & 0x3) << 20) | \ |
| 928 | (((s) & 0x1) << 22) | \ |
| 929 | (((c) & 0x7) << 23))) |
| 930 | |
| 931 | /* To grandfather in prior block linear format modifiers to the above layout, |
| 932 | * the page kind "0", which corresponds to "pitch/linear" and hence is unusable |
| 933 | * with block-linear layouts, is remapped within drivers to the value 0xfe, |
| 934 | * which corresponds to the "generic" kind used for simple single-sample |
| 935 | * uncompressed color formats on Fermi - Volta GPUs. |
| 936 | */ |
| 937 | static __inline__ __u64 |
| 938 | drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier) |
| 939 | { |
| 940 | if (!(modifier & 0x10) || (modifier & (0xff << 12))) |
| 941 | return modifier; |
| 942 | else |
| 943 | return modifier | (0xfe << 12); |
| 944 | } |
| 945 | |
| 946 | /* |
| 947 | * 16Bx2 Block Linear layout, used by Tegra K1 and later |
| 948 | * |
| 949 | * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked |
| 950 | * vertically by a power of 2 (1 to 32 GOBs) to form a block. |
| 951 | * |
| 952 | * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape. |
| 953 | * |
| 954 | * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically. |
| 955 | * Valid values are: |
| 956 | * |
| 957 | * 0 == ONE_GOB |
| 958 | * 1 == TWO_GOBS |
| 959 | * 2 == FOUR_GOBS |
| 960 | * 3 == EIGHT_GOBS |
| 961 | * 4 == SIXTEEN_GOBS |
| 962 | * 5 == THIRTYTWO_GOBS |
| 963 | * |
| 964 | * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format |
| 965 | * in full detail. |
| 966 | */ |
| 967 | #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \ |
| 968 | DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v)) |
| 969 | |
| 970 | #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \ |
| 971 | DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0) |
| 972 | #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \ |
| 973 | DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1) |
| 974 | #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \ |
| 975 | DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2) |
| 976 | #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \ |
| 977 | DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3) |
| 978 | #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \ |
| 979 | DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4) |
| 980 | #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \ |
| 981 | DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5) |
| 982 | |
| 983 | /* |
| 984 | * Some Broadcom modifiers take parameters, for example the number of |
| 985 | * vertical lines in the image. Reserve the lower 32 bits for modifier |
| 986 | * type, and the next 24 bits for parameters. Top 8 bits are the |
| 987 | * vendor code. |
| 988 | */ |
| 989 | #define __fourcc_mod_broadcom_param_shift 8 |
| 990 | #define __fourcc_mod_broadcom_param_bits 48 |
| 991 | #define fourcc_mod_broadcom_code(val, params) \ |
| 992 | fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val)) |
| 993 | #define fourcc_mod_broadcom_param(m) \ |
| 994 | ((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \ |
| 995 | ((1ULL << __fourcc_mod_broadcom_param_bits) - 1))) |
| 996 | #define fourcc_mod_broadcom_mod(m) \ |
| 997 | ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \ |
| 998 | __fourcc_mod_broadcom_param_shift)) |
| 999 | |
| 1000 | /* |
| 1001 | * Broadcom VC4 "T" format |
| 1002 | * |
| 1003 | * This is the primary layout that the V3D GPU can texture from (it |
| 1004 | * can't do linear). The T format has: |
| 1005 | * |
| 1006 | * - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4 |
| 1007 | * pixels at 32 bit depth. |
| 1008 | * |
| 1009 | * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually |
| 1010 | * 16x16 pixels). |
| 1011 | * |
| 1012 | * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On |
| 1013 | * even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows |
| 1014 | * they're (TR, BR, BL, TL), where bottom left is start of memory. |
| 1015 | * |
| 1016 | * - an image made of 4k tiles in rows either left-to-right (even rows of 4k |
| 1017 | * tiles) or right-to-left (odd rows of 4k tiles). |
| 1018 | */ |
| 1019 | #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1) |
| 1020 | |
| 1021 | /* |
| 1022 | * Broadcom SAND format |
| 1023 | * |
| 1024 | * This is the native format that the H.264 codec block uses. For VC4 |
| 1025 | * HVS, it is only valid for H.264 (NV12/21) and RGBA modes. |
| 1026 | * |
| 1027 | * The image can be considered to be split into columns, and the |
| 1028 | * columns are placed consecutively into memory. The width of those |
| 1029 | * columns can be either 32, 64, 128, or 256 pixels, but in practice |
| 1030 | * only 128 pixel columns are used. |
| 1031 | * |
| 1032 | * The pitch between the start of each column is set to optimally |
| 1033 | * switch between SDRAM banks. This is passed as the number of lines |
| 1034 | * of column width in the modifier (we can't use the stride value due |
| 1035 | * to various core checks that look at it , so you should set the |
| 1036 | * stride to width*cpp). |
| 1037 | * |
| 1038 | * Note that the column height for this format modifier is the same |
| 1039 | * for all of the planes, assuming that each column contains both Y |
| 1040 | * and UV. Some SAND-using hardware stores UV in a separate tiled |
| 1041 | * image from Y to reduce the column height, which is not supported |
| 1042 | * with these modifiers. |
| 1043 | * |
| 1044 | * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also |
| 1045 | * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes |
| 1046 | * wide, but as this is a 10 bpp format that translates to 96 pixels. |
| 1047 | */ |
| 1048 | |
| 1049 | #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \ |
| 1050 | fourcc_mod_broadcom_code(2, v) |
| 1051 | #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \ |
| 1052 | fourcc_mod_broadcom_code(3, v) |
| 1053 | #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \ |
| 1054 | fourcc_mod_broadcom_code(4, v) |
| 1055 | #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \ |
| 1056 | fourcc_mod_broadcom_code(5, v) |
| 1057 | |
| 1058 | #define DRM_FORMAT_MOD_BROADCOM_SAND32 \ |
| 1059 | DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0) |
| 1060 | #define DRM_FORMAT_MOD_BROADCOM_SAND64 \ |
| 1061 | DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0) |
| 1062 | #define DRM_FORMAT_MOD_BROADCOM_SAND128 \ |
| 1063 | DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0) |
| 1064 | #define DRM_FORMAT_MOD_BROADCOM_SAND256 \ |
| 1065 | DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0) |
| 1066 | |
| 1067 | /* Broadcom UIF format |
| 1068 | * |
| 1069 | * This is the common format for the current Broadcom multimedia |
| 1070 | * blocks, including V3D 3.x and newer, newer video codecs, and |
| 1071 | * displays. |
| 1072 | * |
| 1073 | * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles), |
| 1074 | * and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are |
| 1075 | * stored in columns, with padding between the columns to ensure that |
| 1076 | * moving from one column to the next doesn't hit the same SDRAM page |
| 1077 | * bank. |
| 1078 | * |
| 1079 | * To calculate the padding, it is assumed that each hardware block |
| 1080 | * and the software driving it knows the platform's SDRAM page size, |
| 1081 | * number of banks, and XOR address, and that it's identical between |
| 1082 | * all blocks using the format. This tiling modifier will use XOR as |
| 1083 | * necessary to reduce the padding. If a hardware block can't do XOR, |
| 1084 | * the assumption is that a no-XOR tiling modifier will be created. |
| 1085 | */ |
| 1086 | #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6) |
| 1087 | |
| 1088 | /* |
| 1089 | * Arm Framebuffer Compression (AFBC) modifiers |
| 1090 | * |
| 1091 | * AFBC is a proprietary lossless image compression protocol and format. |
| 1092 | * It provides fine-grained random access and minimizes the amount of data |
| 1093 | * transferred between IP blocks. |
| 1094 | * |
| 1095 | * AFBC has several features which may be supported and/or used, which are |
| 1096 | * represented using bits in the modifier. Not all combinations are valid, |
| 1097 | * and different devices or use-cases may support different combinations. |
| 1098 | * |
| 1099 | * Further information on the use of AFBC modifiers can be found in |
| 1100 | * Documentation/gpu/afbc.rst |
| 1101 | */ |
| 1102 | |
| 1103 | /* |
| 1104 | * The top 4 bits (out of the 56 bits alloted for specifying vendor specific |
| 1105 | * modifiers) denote the category for modifiers. Currently we have three |
| 1106 | * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of |
| 1107 | * sixteen different categories. |
| 1108 | */ |
| 1109 | #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \ |
| 1110 | fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL)) |
| 1111 | |
| 1112 | #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00 |
| 1113 | #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01 |
| 1114 | |
| 1115 | #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \ |
| 1116 | DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode) |
| 1117 | |
| 1118 | /* |
| 1119 | * AFBC superblock size |
| 1120 | * |
| 1121 | * Indicates the superblock size(s) used for the AFBC buffer. The buffer |
| 1122 | * size (in pixels) must be aligned to a multiple of the superblock size. |
| 1123 | * Four lowest significant bits(LSBs) are reserved for block size. |
| 1124 | * |
| 1125 | * Where one superblock size is specified, it applies to all planes of the |
| 1126 | * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified, |
| 1127 | * the first applies to the Luma plane and the second applies to the Chroma |
| 1128 | * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma). |
| 1129 | * Multiple superblock sizes are only valid for multi-plane YCbCr formats. |
| 1130 | */ |
| 1131 | #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf |
| 1132 | #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL) |
| 1133 | #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL) |
| 1134 | #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL) |
| 1135 | #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL) |
| 1136 | |
| 1137 | /* |
| 1138 | * AFBC lossless colorspace transform |
| 1139 | * |
| 1140 | * Indicates that the buffer makes use of the AFBC lossless colorspace |
| 1141 | * transform. |
| 1142 | */ |
| 1143 | #define AFBC_FORMAT_MOD_YTR (1ULL << 4) |
| 1144 | |
| 1145 | /* |
| 1146 | * AFBC block-split |
| 1147 | * |
| 1148 | * Indicates that the payload of each superblock is split. The second |
| 1149 | * half of the payload is positioned at a predefined offset from the start |
| 1150 | * of the superblock payload. |
| 1151 | */ |
| 1152 | #define AFBC_FORMAT_MOD_SPLIT (1ULL << 5) |
| 1153 | |
| 1154 | /* |
| 1155 | * AFBC sparse layout |
| 1156 | * |
| 1157 | * This flag indicates that the payload of each superblock must be stored at a |
| 1158 | * predefined position relative to the other superblocks in the same AFBC |
| 1159 | * buffer. This order is the same order used by the header buffer. In this mode |
| 1160 | * each superblock is given the same amount of space as an uncompressed |
| 1161 | * superblock of the particular format would require, rounding up to the next |
| 1162 | * multiple of 128 bytes in size. |
| 1163 | */ |
| 1164 | #define AFBC_FORMAT_MOD_SPARSE (1ULL << 6) |
| 1165 | |
| 1166 | /* |
| 1167 | * AFBC copy-block restrict |
| 1168 | * |
| 1169 | * Buffers with this flag must obey the copy-block restriction. The restriction |
| 1170 | * is such that there are no copy-blocks referring across the border of 8x8 |
| 1171 | * blocks. For the subsampled data the 8x8 limitation is also subsampled. |
| 1172 | */ |
| 1173 | #define AFBC_FORMAT_MOD_CBR (1ULL << 7) |
| 1174 | |
| 1175 | /* |
| 1176 | * AFBC tiled layout |
| 1177 | * |
| 1178 | * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all |
| 1179 | * superblocks inside a tile are stored together in memory. 8x8 tiles are used |
| 1180 | * for pixel formats up to and including 32 bpp while 4x4 tiles are used for |
| 1181 | * larger bpp formats. The order between the tiles is scan line. |
| 1182 | * When the tiled layout is used, the buffer size (in pixels) must be aligned |
| 1183 | * to the tile size. |
| 1184 | */ |
| 1185 | #define AFBC_FORMAT_MOD_TILED (1ULL << 8) |
| 1186 | |
| 1187 | /* |
| 1188 | * AFBC solid color blocks |
| 1189 | * |
| 1190 | * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth |
| 1191 | * can be reduced if a whole superblock is a single color. |
| 1192 | */ |
| 1193 | #define AFBC_FORMAT_MOD_SC (1ULL << 9) |
| 1194 | |
| 1195 | /* |
| 1196 | * AFBC double-buffer |
| 1197 | * |
| 1198 | * Indicates that the buffer is allocated in a layout safe for front-buffer |
| 1199 | * rendering. |
| 1200 | */ |
| 1201 | #define AFBC_FORMAT_MOD_DB (1ULL << 10) |
| 1202 | |
| 1203 | /* |
| 1204 | * AFBC buffer content hints |
| 1205 | * |
| 1206 | * Indicates that the buffer includes per-superblock content hints. |
| 1207 | */ |
| 1208 | #define AFBC_FORMAT_MOD_BCH (1ULL << 11) |
| 1209 | |
| 1210 | /* AFBC uncompressed storage mode |
| 1211 | * |
| 1212 | * Indicates that the buffer is using AFBC uncompressed storage mode. |
| 1213 | * In this mode all superblock payloads in the buffer use the uncompressed |
| 1214 | * storage mode, which is usually only used for data which cannot be compressed. |
| 1215 | * The buffer layout is the same as for AFBC buffers without USM set, this only |
| 1216 | * affects the storage mode of the individual superblocks. Note that even a |
| 1217 | * buffer without USM set may use uncompressed storage mode for some or all |
| 1218 | * superblocks, USM just guarantees it for all. |
| 1219 | */ |
| 1220 | #define AFBC_FORMAT_MOD_USM (1ULL << 12) |
| 1221 | |
| 1222 | /* |
| 1223 | * Arm Fixed-Rate Compression (AFRC) modifiers |
| 1224 | * |
| 1225 | * AFRC is a proprietary fixed rate image compression protocol and format, |
| 1226 | * designed to provide guaranteed bandwidth and memory footprint |
| 1227 | * reductions in graphics and media use-cases. |
| 1228 | * |
| 1229 | * AFRC buffers consist of one or more planes, with the same components |
| 1230 | * and meaning as an uncompressed buffer using the same pixel format. |
| 1231 | * |
| 1232 | * Within each plane, the pixel/luma/chroma values are grouped into |
| 1233 | * "coding unit" blocks which are individually compressed to a |
| 1234 | * fixed size (in bytes). All coding units within a given plane of a buffer |
| 1235 | * store the same number of values, and have the same compressed size. |
| 1236 | * |
| 1237 | * The coding unit size is configurable, allowing different rates of compression. |
| 1238 | * |
| 1239 | * The start of each AFRC buffer plane must be aligned to an alignment granule which |
| 1240 | * depends on the coding unit size. |
| 1241 | * |
| 1242 | * Coding Unit Size Plane Alignment |
| 1243 | * ---------------- --------------- |
| 1244 | * 16 bytes 1024 bytes |
| 1245 | * 24 bytes 512 bytes |
| 1246 | * 32 bytes 2048 bytes |
| 1247 | * |
| 1248 | * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned |
| 1249 | * to a multiple of the paging tile dimensions. |
| 1250 | * The dimensions of each paging tile depend on whether the buffer is optimised for |
| 1251 | * scanline (SCAN layout) or rotated (ROT layout) access. |
| 1252 | * |
| 1253 | * Layout Paging Tile Width Paging Tile Height |
| 1254 | * ------ ----------------- ------------------ |
| 1255 | * SCAN 16 coding units 4 coding units |
| 1256 | * ROT 8 coding units 8 coding units |
| 1257 | * |
| 1258 | * The dimensions of each coding unit depend on the number of components |
| 1259 | * in the compressed plane and whether the buffer is optimised for |
| 1260 | * scanline (SCAN layout) or rotated (ROT layout) access. |
| 1261 | * |
| 1262 | * Number of Components in Plane Layout Coding Unit Width Coding Unit Height |
| 1263 | * ----------------------------- --------- ----------------- ------------------ |
| 1264 | * 1 SCAN 16 samples 4 samples |
| 1265 | * Example: 16x4 luma samples in a 'Y' plane |
| 1266 | * 16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer |
| 1267 | * ----------------------------- --------- ----------------- ------------------ |
| 1268 | * 1 ROT 8 samples 8 samples |
| 1269 | * Example: 8x8 luma samples in a 'Y' plane |
| 1270 | * 8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer |
| 1271 | * ----------------------------- --------- ----------------- ------------------ |
| 1272 | * 2 DONT CARE 8 samples 4 samples |
| 1273 | * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer |
| 1274 | * ----------------------------- --------- ----------------- ------------------ |
| 1275 | * 3 DONT CARE 4 samples 4 samples |
| 1276 | * Example: 4x4 pixels in an RGB buffer without alpha |
| 1277 | * ----------------------------- --------- ----------------- ------------------ |
| 1278 | * 4 DONT CARE 4 samples 4 samples |
| 1279 | * Example: 4x4 pixels in an RGB buffer with alpha |
| 1280 | */ |
| 1281 | |
| 1282 | #define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02 |
| 1283 | |
| 1284 | #define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \ |
| 1285 | DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode) |
| 1286 | |
| 1287 | /* |
| 1288 | * AFRC coding unit size modifier. |
| 1289 | * |
| 1290 | * Indicates the number of bytes used to store each compressed coding unit for |
| 1291 | * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance |
| 1292 | * is the same for both Cb and Cr, which may be stored in separate planes. |
| 1293 | * |
| 1294 | * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store |
| 1295 | * each compressed coding unit in the first plane of the buffer. For RGBA buffers |
| 1296 | * this is the only plane, while for semi-planar and fully-planar YUV buffers, |
| 1297 | * this corresponds to the luma plane. |
| 1298 | * |
| 1299 | * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store |
| 1300 | * each compressed coding unit in the second and third planes in the buffer. |
| 1301 | * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s). |
| 1302 | * |
| 1303 | * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified |
| 1304 | * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero. |
| 1305 | * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and |
| 1306 | * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified. |
| 1307 | */ |
| 1308 | #define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf |
| 1309 | #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL) |
| 1310 | #define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL) |
| 1311 | #define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL) |
| 1312 | |
| 1313 | #define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size) |
| 1314 | #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4) |
| 1315 | |
| 1316 | /* |
| 1317 | * AFRC scanline memory layout. |
| 1318 | * |
| 1319 | * Indicates if the buffer uses the scanline-optimised layout |
| 1320 | * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout. |
| 1321 | * The memory layout is the same for all planes. |
| 1322 | */ |
| 1323 | #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8) |
| 1324 | |
| 1325 | /* |
| 1326 | * Arm 16x16 Block U-Interleaved modifier |
| 1327 | * |
| 1328 | * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image |
| 1329 | * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels |
| 1330 | * in the block are reordered. |
| 1331 | */ |
| 1332 | #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \ |
| 1333 | DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL) |
| 1334 | |
| 1335 | /* |
| 1336 | * Allwinner tiled modifier |
| 1337 | * |
| 1338 | * This tiling mode is implemented by the VPU found on all Allwinner platforms, |
| 1339 | * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3 |
| 1340 | * planes. |
| 1341 | * |
| 1342 | * With this tiling, the luminance samples are disposed in tiles representing |
| 1343 | * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels. |
| 1344 | * The pixel order in each tile is linear and the tiles are disposed linearly, |
| 1345 | * both in row-major order. |
| 1346 | */ |
| 1347 | #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1) |
| 1348 | |
| 1349 | /* |
| 1350 | * Amlogic Video Framebuffer Compression modifiers |
| 1351 | * |
| 1352 | * Amlogic uses a proprietary lossless image compression protocol and format |
| 1353 | * for their hardware video codec accelerators, either video decoders or |
| 1354 | * video input encoders. |
| 1355 | * |
| 1356 | * It considerably reduces memory bandwidth while writing and reading |
| 1357 | * frames in memory. |
| 1358 | * |
| 1359 | * The underlying storage is considered to be 3 components, 8bit or 10-bit |
| 1360 | * per component YCbCr 420, single plane : |
| 1361 | * - DRM_FORMAT_YUV420_8BIT |
| 1362 | * - DRM_FORMAT_YUV420_10BIT |
| 1363 | * |
| 1364 | * The first 8 bits of the mode defines the layout, then the following 8 bits |
| 1365 | * defines the options changing the layout. |
| 1366 | * |
| 1367 | * Not all combinations are valid, and different SoCs may support different |
| 1368 | * combinations of layout and options. |
| 1369 | */ |
| 1370 | #define __fourcc_mod_amlogic_layout_mask 0xff |
| 1371 | #define __fourcc_mod_amlogic_options_shift 8 |
| 1372 | #define __fourcc_mod_amlogic_options_mask 0xff |
| 1373 | |
| 1374 | #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \ |
| 1375 | fourcc_mod_code(AMLOGIC, \ |
| 1376 | ((__layout) & __fourcc_mod_amlogic_layout_mask) | \ |
| 1377 | (((__options) & __fourcc_mod_amlogic_options_mask) \ |
| 1378 | << __fourcc_mod_amlogic_options_shift)) |
| 1379 | |
| 1380 | /* Amlogic FBC Layouts */ |
| 1381 | |
| 1382 | /* |
| 1383 | * Amlogic FBC Basic Layout |
| 1384 | * |
| 1385 | * The basic layout is composed of: |
| 1386 | * - a body content organized in 64x32 superblocks with 4096 bytes per |
| 1387 | * superblock in default mode. |
| 1388 | * - a 32 bytes per 128x64 header block |
| 1389 | * |
| 1390 | * This layout is transferrable between Amlogic SoCs supporting this modifier. |
| 1391 | */ |
| 1392 | #define AMLOGIC_FBC_LAYOUT_BASIC (1ULL) |
| 1393 | |
| 1394 | /* |
| 1395 | * Amlogic FBC Scatter Memory layout |
| 1396 | * |
| 1397 | * Indicates the header contains IOMMU references to the compressed |
| 1398 | * frames content to optimize memory access and layout. |
| 1399 | * |
| 1400 | * In this mode, only the header memory address is needed, thus the |
| 1401 | * content memory organization is tied to the current producer |
| 1402 | * execution and cannot be saved/dumped neither transferrable between |
| 1403 | * Amlogic SoCs supporting this modifier. |
| 1404 | * |
| 1405 | * Due to the nature of the layout, these buffers are not expected to |
| 1406 | * be accessible by the user-space clients, but only accessible by the |
| 1407 | * hardware producers and consumers. |
| 1408 | * |
| 1409 | * The user-space clients should expect a failure while trying to mmap |
| 1410 | * the DMA-BUF handle returned by the producer. |
| 1411 | */ |
| 1412 | #define AMLOGIC_FBC_LAYOUT_SCATTER (2ULL) |
| 1413 | |
| 1414 | /* Amlogic FBC Layout Options Bit Mask */ |
| 1415 | |
| 1416 | /* |
| 1417 | * Amlogic FBC Memory Saving mode |
| 1418 | * |
| 1419 | * Indicates the storage is packed when pixel size is multiple of word |
| 1420 | * boudaries, i.e. 8bit should be stored in this mode to save allocation |
| 1421 | * memory. |
| 1422 | * |
| 1423 | * This mode reduces body layout to 3072 bytes per 64x32 superblock with |
| 1424 | * the basic layout and 3200 bytes per 64x32 superblock combined with |
| 1425 | * the scatter layout. |
| 1426 | */ |
| 1427 | #define AMLOGIC_FBC_OPTION_MEM_SAVING (1ULL << 0) |
| 1428 | |
| 1429 | /* |
| 1430 | * AMD modifiers |
| 1431 | * |
| 1432 | * Memory layout: |
| 1433 | * |
| 1434 | * without DCC: |
| 1435 | * - main surface |
| 1436 | * |
| 1437 | * with DCC & without DCC_RETILE: |
| 1438 | * - main surface in plane 0 |
| 1439 | * - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set) |
| 1440 | * |
| 1441 | * with DCC & DCC_RETILE: |
| 1442 | * - main surface in plane 0 |
| 1443 | * - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned) |
| 1444 | * - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned) |
| 1445 | * |
| 1446 | * For multi-plane formats the above surfaces get merged into one plane for |
| 1447 | * each format plane, based on the required alignment only. |
| 1448 | * |
| 1449 | * Bits Parameter Notes |
| 1450 | * ----- ------------------------ --------------------------------------------- |
| 1451 | * |
| 1452 | * 7:0 TILE_VERSION Values are AMD_FMT_MOD_TILE_VER_* |
| 1453 | * 12:8 TILE Values are AMD_FMT_MOD_TILE_<version>_* |
| 1454 | * 13 DCC |
| 1455 | * 14 DCC_RETILE |
| 1456 | * 15 DCC_PIPE_ALIGN |
| 1457 | * 16 DCC_INDEPENDENT_64B |
| 1458 | * 17 DCC_INDEPENDENT_128B |
| 1459 | * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_* |
| 1460 | * 20 DCC_CONSTANT_ENCODE |
| 1461 | * 23:21 PIPE_XOR_BITS Only for some chips |
| 1462 | * 26:24 BANK_XOR_BITS Only for some chips |
| 1463 | * 29:27 PACKERS Only for some chips |
| 1464 | * 32:30 RB Only for some chips |
| 1465 | * 35:33 PIPE Only for some chips |
| 1466 | * 55:36 - Reserved for future use, must be zero |
| 1467 | */ |
| 1468 | #define AMD_FMT_MOD fourcc_mod_code(AMD, 0) |
| 1469 | |
| 1470 | #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD) |
| 1471 | |
| 1472 | /* Reserve 0 for GFX8 and older */ |
| 1473 | #define AMD_FMT_MOD_TILE_VER_GFX9 1 |
| 1474 | #define AMD_FMT_MOD_TILE_VER_GFX10 2 |
| 1475 | #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3 |
| 1476 | #define AMD_FMT_MOD_TILE_VER_GFX11 4 |
| 1477 | |
| 1478 | /* |
| 1479 | * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical |
| 1480 | * version. |
| 1481 | */ |
| 1482 | #define AMD_FMT_MOD_TILE_GFX9_64K_S 9 |
| 1483 | |
| 1484 | /* |
| 1485 | * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has |
| 1486 | * GFX9 as canonical version. |
| 1487 | */ |
| 1488 | #define AMD_FMT_MOD_TILE_GFX9_64K_D 10 |
| 1489 | #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25 |
| 1490 | #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26 |
| 1491 | #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27 |
| 1492 | #define AMD_FMT_MOD_TILE_GFX11_256K_R_X 31 |
| 1493 | |
| 1494 | #define AMD_FMT_MOD_DCC_BLOCK_64B 0 |
| 1495 | #define AMD_FMT_MOD_DCC_BLOCK_128B 1 |
| 1496 | #define AMD_FMT_MOD_DCC_BLOCK_256B 2 |
| 1497 | |
| 1498 | #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0 |
| 1499 | #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF |
| 1500 | #define AMD_FMT_MOD_TILE_SHIFT 8 |
| 1501 | #define AMD_FMT_MOD_TILE_MASK 0x1F |
| 1502 | |
| 1503 | /* Whether DCC compression is enabled. */ |
| 1504 | #define AMD_FMT_MOD_DCC_SHIFT 13 |
| 1505 | #define AMD_FMT_MOD_DCC_MASK 0x1 |
| 1506 | |
| 1507 | /* |
| 1508 | * Whether to include two DCC surfaces, one which is rb & pipe aligned, and |
| 1509 | * one which is not-aligned. |
| 1510 | */ |
| 1511 | #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14 |
| 1512 | #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1 |
| 1513 | |
| 1514 | /* Only set if DCC_RETILE = false */ |
| 1515 | #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15 |
| 1516 | #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1 |
| 1517 | |
| 1518 | #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16 |
| 1519 | #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1 |
| 1520 | #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17 |
| 1521 | #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1 |
| 1522 | #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18 |
| 1523 | #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3 |
| 1524 | |
| 1525 | /* |
| 1526 | * DCC supports embedding some clear colors directly in the DCC surface. |
| 1527 | * However, on older GPUs the rendering HW ignores the embedded clear color |
| 1528 | * and prefers the driver provided color. This necessitates doing a fastclear |
| 1529 | * eliminate operation before a process transfers control. |
| 1530 | * |
| 1531 | * If this bit is set that means the fastclear eliminate is not needed for these |
| 1532 | * embeddable colors. |
| 1533 | */ |
| 1534 | #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20 |
| 1535 | #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1 |
| 1536 | |
| 1537 | /* |
| 1538 | * The below fields are for accounting for per GPU differences. These are only |
| 1539 | * relevant for GFX9 and later and if the tile field is *_X/_T. |
| 1540 | * |
| 1541 | * PIPE_XOR_BITS = always needed |
| 1542 | * BANK_XOR_BITS = only for TILE_VER_GFX9 |
| 1543 | * PACKERS = only for TILE_VER_GFX10_RBPLUS |
| 1544 | * RB = only for TILE_VER_GFX9 & DCC |
| 1545 | * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN) |
| 1546 | */ |
| 1547 | #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21 |
| 1548 | #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7 |
| 1549 | #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24 |
| 1550 | #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7 |
| 1551 | #define AMD_FMT_MOD_PACKERS_SHIFT 27 |
| 1552 | #define AMD_FMT_MOD_PACKERS_MASK 0x7 |
| 1553 | #define AMD_FMT_MOD_RB_SHIFT 30 |
| 1554 | #define AMD_FMT_MOD_RB_MASK 0x7 |
| 1555 | #define AMD_FMT_MOD_PIPE_SHIFT 33 |
| 1556 | #define AMD_FMT_MOD_PIPE_MASK 0x7 |
| 1557 | |
| 1558 | #define AMD_FMT_MOD_SET(field, value) \ |
| 1559 | ((__u64)(value) << AMD_FMT_MOD_##field##_SHIFT) |
| 1560 | #define AMD_FMT_MOD_GET(field, value) \ |
| 1561 | (((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK) |
| 1562 | #define AMD_FMT_MOD_CLEAR(field) \ |
| 1563 | (~((__u64)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT)) |
| 1564 | |
| 1565 | #if defined(__cplusplus) |
| 1566 | } |
| 1567 | #endif |
| 1568 | |
| 1569 | #endif /* DRM_FOURCC_H */ |