blob: 01602abffb1693379608e2532112aa1f48799ddc [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "vibrator-impl/Vibrator.h"
#include <android-base/logging.h>
#include <thread>
namespace aidl {
namespace android {
namespace hardware {
namespace vibrator {
static constexpr int32_t COMPOSE_DELAY_MAX_MS = 1000;
static constexpr int32_t COMPOSE_SIZE_MAX = 256;
static constexpr int32_t COMPOSE_PWLE_SIZE_MAX = 127;
static constexpr float Q_FACTOR = 11.0;
static constexpr int32_t COMPOSE_PWLE_PRIMITIVE_DURATION_MAX_MS = 16383;
static constexpr float PWLE_LEVEL_MIN = 0.0;
static constexpr float PWLE_LEVEL_MAX = 1.0;
static constexpr float PWLE_FREQUENCY_RESOLUTION_HZ = 1.0;
static constexpr float PWLE_FREQUENCY_MIN_HZ = 140.0;
static constexpr float RESONANT_FREQUENCY_HZ = 150.0;
static constexpr float PWLE_FREQUENCY_MAX_HZ = 160.0;
static constexpr float PWLE_BW_MAP_SIZE =
1 + ((PWLE_FREQUENCY_MAX_HZ - PWLE_FREQUENCY_MIN_HZ) / PWLE_FREQUENCY_RESOLUTION_HZ);
ndk::ScopedAStatus Vibrator::getCapabilities(int32_t* _aidl_return) {
LOG(VERBOSE) << "Vibrator reporting capabilities";
*_aidl_return = IVibrator::CAP_ON_CALLBACK | IVibrator::CAP_PERFORM_CALLBACK |
IVibrator::CAP_AMPLITUDE_CONTROL | IVibrator::CAP_EXTERNAL_CONTROL |
IVibrator::CAP_EXTERNAL_AMPLITUDE_CONTROL | IVibrator::CAP_COMPOSE_EFFECTS |
IVibrator::CAP_ALWAYS_ON_CONTROL | IVibrator::CAP_GET_RESONANT_FREQUENCY |
IVibrator::CAP_GET_Q_FACTOR | IVibrator::CAP_FREQUENCY_CONTROL |
IVibrator::CAP_COMPOSE_PWLE_EFFECTS;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::off() {
LOG(VERBOSE) << "Vibrator off";
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::on(int32_t timeoutMs,
const std::shared_ptr<IVibratorCallback>& callback) {
LOG(VERBOSE) << "Vibrator on for timeoutMs: " << timeoutMs;
if (callback != nullptr) {
// Note that thread lambdas aren't using implicit capture [=], to avoid capturing "this",
// which may be asynchronously destructed.
// If "this" is needed, use [sharedThis = this->ref<Vibrator>()].
std::thread([timeoutMs, callback] {
LOG(VERBOSE) << "Starting on on another thread";
usleep(timeoutMs * 1000);
LOG(VERBOSE) << "Notifying on complete";
if (!callback->onComplete().isOk()) {
LOG(ERROR) << "Failed to call onComplete";
}
}).detach();
}
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::perform(Effect effect, EffectStrength strength,
const std::shared_ptr<IVibratorCallback>& callback,
int32_t* _aidl_return) {
LOG(VERBOSE) << "Vibrator perform";
if (effect != Effect::CLICK && effect != Effect::TICK) {
return ndk::ScopedAStatus(AStatus_fromExceptionCode(EX_UNSUPPORTED_OPERATION));
}
if (strength != EffectStrength::LIGHT && strength != EffectStrength::MEDIUM &&
strength != EffectStrength::STRONG) {
return ndk::ScopedAStatus(AStatus_fromExceptionCode(EX_UNSUPPORTED_OPERATION));
}
constexpr size_t kEffectMillis = 100;
if (callback != nullptr) {
std::thread([callback] {
LOG(VERBOSE) << "Starting perform on another thread";
usleep(kEffectMillis * 1000);
LOG(VERBOSE) << "Notifying perform complete";
callback->onComplete();
}).detach();
}
*_aidl_return = kEffectMillis;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::getSupportedEffects(std::vector<Effect>* _aidl_return) {
*_aidl_return = {Effect::CLICK, Effect::TICK};
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::setAmplitude(float amplitude) {
LOG(VERBOSE) << "Vibrator set amplitude: " << amplitude;
if (amplitude <= 0.0f || amplitude > 1.0f) {
return ndk::ScopedAStatus(AStatus_fromExceptionCode(EX_ILLEGAL_ARGUMENT));
}
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::setExternalControl(bool enabled) {
LOG(VERBOSE) << "Vibrator set external control: " << enabled;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::getCompositionDelayMax(int32_t* maxDelayMs) {
*maxDelayMs = COMPOSE_DELAY_MAX_MS;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::getCompositionSizeMax(int32_t* maxSize) {
*maxSize = COMPOSE_SIZE_MAX;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::getSupportedPrimitives(std::vector<CompositePrimitive>* supported) {
*supported = {
CompositePrimitive::NOOP, CompositePrimitive::CLICK,
CompositePrimitive::THUD, CompositePrimitive::SPIN,
CompositePrimitive::QUICK_RISE, CompositePrimitive::SLOW_RISE,
CompositePrimitive::QUICK_FALL, CompositePrimitive::LIGHT_TICK,
CompositePrimitive::LOW_TICK,
};
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::getPrimitiveDuration(CompositePrimitive primitive,
int32_t* durationMs) {
std::vector<CompositePrimitive> supported;
getSupportedPrimitives(&supported);
if (std::find(supported.begin(), supported.end(), primitive) == supported.end()) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
if (primitive != CompositePrimitive::NOOP) {
*durationMs = 100;
} else {
*durationMs = 0;
}
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::compose(const std::vector<CompositeEffect>& composite,
const std::shared_ptr<IVibratorCallback>& callback) {
if (composite.size() > COMPOSE_SIZE_MAX) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
std::vector<CompositePrimitive> supported;
getSupportedPrimitives(&supported);
for (auto& e : composite) {
if (e.delayMs > COMPOSE_DELAY_MAX_MS) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
if (e.scale < 0.0f || e.scale > 1.0f) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
if (std::find(supported.begin(), supported.end(), e.primitive) == supported.end()) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
}
// The thread may theoretically outlive the vibrator, so take a proper reference to it.
std::thread([sharedThis = this->ref<Vibrator>(), composite, callback] {
LOG(VERBOSE) << "Starting compose on another thread";
for (auto& e : composite) {
if (e.delayMs) {
usleep(e.delayMs * 1000);
}
LOG(VERBOSE) << "triggering primitive " << static_cast<int>(e.primitive) << " @ scale "
<< e.scale;
int32_t durationMs;
sharedThis->getPrimitiveDuration(e.primitive, &durationMs);
usleep(durationMs * 1000);
}
if (callback != nullptr) {
LOG(VERBOSE) << "Notifying perform complete";
callback->onComplete();
}
}).detach();
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::getSupportedAlwaysOnEffects(std::vector<Effect>* _aidl_return) {
return getSupportedEffects(_aidl_return);
}
ndk::ScopedAStatus Vibrator::alwaysOnEnable(int32_t id, Effect effect, EffectStrength strength) {
std::vector<Effect> effects;
getSupportedAlwaysOnEffects(&effects);
if (std::find(effects.begin(), effects.end(), effect) == effects.end()) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
} else {
LOG(VERBOSE) << "Enabling always-on ID " << id << " with " << toString(effect) << "/"
<< toString(strength);
return ndk::ScopedAStatus::ok();
}
}
ndk::ScopedAStatus Vibrator::alwaysOnDisable(int32_t id) {
LOG(VERBOSE) << "Disabling always-on ID " << id;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::getResonantFrequency(float *resonantFreqHz) {
*resonantFreqHz = RESONANT_FREQUENCY_HZ;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::getQFactor(float *qFactor) {
*qFactor = Q_FACTOR;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::getFrequencyResolution(float *freqResolutionHz) {
*freqResolutionHz = PWLE_FREQUENCY_RESOLUTION_HZ;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::getFrequencyMinimum(float *freqMinimumHz) {
*freqMinimumHz = PWLE_FREQUENCY_MIN_HZ;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::getBandwidthAmplitudeMap(std::vector<float> *_aidl_return) {
// The output BandwidthAmplitudeMap will be as below and the maximum
// amplitude 1.0 will be set on RESONANT_FREQUENCY_HZ
// {0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1, 0.99, 0.98, 0.97,
// 0.96, 0.95, 0.94, 0.93, 0.92, 0.91, 0.9}
int32_t capabilities = 0;
int halfMapSize = PWLE_BW_MAP_SIZE / 2;
Vibrator::getCapabilities(&capabilities);
if (capabilities & IVibrator::CAP_FREQUENCY_CONTROL) {
std::vector<float> bandwidthAmplitudeMap(PWLE_BW_MAP_SIZE, PWLE_LEVEL_MAX);
for (int i = 0; i < halfMapSize; ++i) {
bandwidthAmplitudeMap[halfMapSize + i + 1] =
bandwidthAmplitudeMap[halfMapSize + i] - 0.01;
bandwidthAmplitudeMap[halfMapSize - i - 1] =
bandwidthAmplitudeMap[halfMapSize - i] - 0.01;
}
*_aidl_return = bandwidthAmplitudeMap;
return ndk::ScopedAStatus::ok();
} else {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
}
ndk::ScopedAStatus Vibrator::getPwlePrimitiveDurationMax(int32_t *durationMs) {
*durationMs = COMPOSE_PWLE_PRIMITIVE_DURATION_MAX_MS;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::getPwleCompositionSizeMax(int32_t *maxSize) {
*maxSize = COMPOSE_PWLE_SIZE_MAX;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::getSupportedBraking(std::vector<Braking> *supported) {
*supported = {
Braking::NONE,
Braking::CLAB,
};
return ndk::ScopedAStatus::ok();
}
void resetPreviousEndAmplitudeEndFrequency(float &prevEndAmplitude, float &prevEndFrequency) {
const float reset = -1.0;
prevEndAmplitude = reset;
prevEndFrequency = reset;
}
void incrementIndex(int &index) {
index += 1;
}
void constructActiveDefaults(std::ostringstream &pwleBuilder, const int &segmentIdx) {
pwleBuilder << ",C" << segmentIdx << ":1";
pwleBuilder << ",B" << segmentIdx << ":0";
pwleBuilder << ",AR" << segmentIdx << ":0";
pwleBuilder << ",V" << segmentIdx << ":0";
}
void constructActiveSegment(std::ostringstream &pwleBuilder, const int &segmentIdx, int duration,
float amplitude, float frequency) {
pwleBuilder << ",T" << segmentIdx << ":" << duration;
pwleBuilder << ",L" << segmentIdx << ":" << amplitude;
pwleBuilder << ",F" << segmentIdx << ":" << frequency;
constructActiveDefaults(pwleBuilder, segmentIdx);
}
void constructBrakingSegment(std::ostringstream &pwleBuilder, const int &segmentIdx, int duration,
Braking brakingType) {
pwleBuilder << ",T" << segmentIdx << ":" << duration;
pwleBuilder << ",L" << segmentIdx << ":" << 0;
pwleBuilder << ",F" << segmentIdx << ":" << 0;
pwleBuilder << ",C" << segmentIdx << ":0";
pwleBuilder << ",B" << segmentIdx << ":"
<< static_cast<std::underlying_type<Braking>::type>(brakingType);
pwleBuilder << ",AR" << segmentIdx << ":0";
pwleBuilder << ",V" << segmentIdx << ":0";
}
ndk::ScopedAStatus Vibrator::composePwle(const std::vector<PrimitivePwle> &composite,
const std::shared_ptr<IVibratorCallback> &callback) {
std::ostringstream pwleBuilder;
std::string pwleQueue;
int compositionSizeMax;
getPwleCompositionSizeMax(&compositionSizeMax);
if (composite.size() <= 0 || composite.size() > compositionSizeMax) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
float prevEndAmplitude;
float prevEndFrequency;
resetPreviousEndAmplitudeEndFrequency(prevEndAmplitude, prevEndFrequency);
int segmentIdx = 0;
uint32_t totalDuration = 0;
pwleBuilder << "S:0,WF:4,RP:0,WT:0";
for (auto &e : composite) {
switch (e.getTag()) {
case PrimitivePwle::active: {
auto active = e.get<PrimitivePwle::active>();
if (active.duration < 0 ||
active.duration > COMPOSE_PWLE_PRIMITIVE_DURATION_MAX_MS) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
if (active.startAmplitude < PWLE_LEVEL_MIN ||
active.startAmplitude > PWLE_LEVEL_MAX ||
active.endAmplitude < PWLE_LEVEL_MIN || active.endAmplitude > PWLE_LEVEL_MAX) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
if (active.startFrequency < PWLE_FREQUENCY_MIN_HZ ||
active.startFrequency > PWLE_FREQUENCY_MAX_HZ ||
active.endFrequency < PWLE_FREQUENCY_MIN_HZ ||
active.endFrequency > PWLE_FREQUENCY_MAX_HZ) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
if (!((active.startAmplitude == prevEndAmplitude) &&
(active.startFrequency == prevEndFrequency))) {
constructActiveSegment(pwleBuilder, segmentIdx, 0, active.startAmplitude,
active.startFrequency);
incrementIndex(segmentIdx);
}
constructActiveSegment(pwleBuilder, segmentIdx, active.duration,
active.endAmplitude, active.endFrequency);
incrementIndex(segmentIdx);
prevEndAmplitude = active.endAmplitude;
prevEndFrequency = active.endFrequency;
totalDuration += active.duration;
break;
}
case PrimitivePwle::braking: {
auto braking = e.get<PrimitivePwle::braking>();
if (braking.braking > Braking::CLAB) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
if (braking.duration > COMPOSE_PWLE_PRIMITIVE_DURATION_MAX_MS) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
constructBrakingSegment(pwleBuilder, segmentIdx, 0, braking.braking);
incrementIndex(segmentIdx);
constructBrakingSegment(pwleBuilder, segmentIdx, braking.duration, braking.braking);
incrementIndex(segmentIdx);
resetPreviousEndAmplitudeEndFrequency(prevEndAmplitude, prevEndFrequency);
totalDuration += braking.duration;
break;
}
}
}
std::thread([totalDuration, callback] {
LOG(VERBOSE) << "Starting composePwle on another thread";
usleep(totalDuration * 1000);
if (callback != nullptr) {
LOG(VERBOSE) << "Notifying compose PWLE complete";
callback->onComplete();
}
}).detach();
return ndk::ScopedAStatus::ok();
}
} // namespace vibrator
} // namespace hardware
} // namespace android
} // namespace aidl