| /* |
| * Copyright (C) 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <android-base/logging.h> |
| #include <android/hardware/neuralnetworks/1.2/types.h> |
| |
| #include <functional> |
| #include <numeric> |
| |
| namespace android { |
| namespace hardware { |
| namespace neuralnetworks { |
| |
| uint32_t sizeOfData(V1_2::OperandType type) { |
| switch (type) { |
| case V1_2::OperandType::FLOAT32: |
| case V1_2::OperandType::INT32: |
| case V1_2::OperandType::UINT32: |
| case V1_2::OperandType::TENSOR_FLOAT32: |
| case V1_2::OperandType::TENSOR_INT32: |
| return 4; |
| case V1_2::OperandType::TENSOR_QUANT16_SYMM: |
| case V1_2::OperandType::TENSOR_FLOAT16: |
| case V1_2::OperandType::FLOAT16: |
| case V1_2::OperandType::TENSOR_QUANT16_ASYMM: |
| return 2; |
| case V1_2::OperandType::TENSOR_QUANT8_ASYMM: |
| case V1_2::OperandType::BOOL: |
| case V1_2::OperandType::TENSOR_BOOL8: |
| case V1_2::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL: |
| case V1_2::OperandType::TENSOR_QUANT8_SYMM: |
| return 1; |
| default: |
| CHECK(false) << "Invalid OperandType " << static_cast<uint32_t>(type); |
| return 0; |
| } |
| } |
| |
| static bool isTensor(V1_2::OperandType type) { |
| switch (type) { |
| case V1_2::OperandType::FLOAT32: |
| case V1_2::OperandType::INT32: |
| case V1_2::OperandType::UINT32: |
| case V1_2::OperandType::FLOAT16: |
| case V1_2::OperandType::BOOL: |
| return false; |
| case V1_2::OperandType::TENSOR_FLOAT32: |
| case V1_2::OperandType::TENSOR_INT32: |
| case V1_2::OperandType::TENSOR_QUANT16_SYMM: |
| case V1_2::OperandType::TENSOR_FLOAT16: |
| case V1_2::OperandType::TENSOR_QUANT16_ASYMM: |
| case V1_2::OperandType::TENSOR_QUANT8_ASYMM: |
| case V1_2::OperandType::TENSOR_BOOL8: |
| case V1_2::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL: |
| case V1_2::OperandType::TENSOR_QUANT8_SYMM: |
| return true; |
| default: |
| CHECK(false) << "Invalid OperandType " << static_cast<uint32_t>(type); |
| return false; |
| } |
| } |
| |
| uint32_t sizeOfData(const V1_2::Operand& operand) { |
| const uint32_t dataSize = sizeOfData(operand.type); |
| if (isTensor(operand.type) && operand.dimensions.size() == 0) return 0; |
| return std::accumulate(operand.dimensions.begin(), operand.dimensions.end(), dataSize, |
| std::multiplies<>{}); |
| } |
| |
| } // namespace neuralnetworks |
| } // namespace hardware |
| } // namespace android |