| /* |
| * Copyright (c) 2019, The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <iterator> |
| #include <memory> |
| #include <set> |
| #include <string> |
| #include <tuple> |
| #include "aidl/android/hardware/security/keymint/IRemotelyProvisionedComponent.h" |
| |
| #include <aidl/android/hardware/security/keymint/RpcHardwareInfo.h> |
| #include <android-base/properties.h> |
| #include <cppbor.h> |
| #include <json/json.h> |
| #include <keymaster/km_openssl/ec_key.h> |
| #include <keymaster/km_openssl/ecdsa_operation.h> |
| #include <keymaster/km_openssl/openssl_err.h> |
| #include <keymaster/km_openssl/openssl_utils.h> |
| #include <openssl/base64.h> |
| #include <openssl/evp.h> |
| #include <openssl/rand.h> |
| #include <remote_prov/remote_prov_utils.h> |
| |
| namespace aidl::android::hardware::security::keymint::remote_prov { |
| |
| constexpr uint32_t kBccPayloadIssuer = 1; |
| constexpr uint32_t kBccPayloadSubject = 2; |
| constexpr int32_t kBccPayloadSubjPubKey = -4670552; |
| constexpr int32_t kBccPayloadKeyUsage = -4670553; |
| constexpr int kP256AffinePointSize = 32; |
| |
| using EC_KEY_Ptr = bssl::UniquePtr<EC_KEY>; |
| using EVP_PKEY_Ptr = bssl::UniquePtr<EVP_PKEY>; |
| using EVP_PKEY_CTX_Ptr = bssl::UniquePtr<EVP_PKEY_CTX>; |
| |
| ErrMsgOr<bytevec> ecKeyGetPrivateKey(const EC_KEY* ecKey) { |
| // Extract private key. |
| const BIGNUM* bignum = EC_KEY_get0_private_key(ecKey); |
| if (bignum == nullptr) { |
| return "Error getting bignum from private key"; |
| } |
| // Pad with zeros in case the length is lesser than 32. |
| bytevec privKey(32, 0); |
| BN_bn2binpad(bignum, privKey.data(), privKey.size()); |
| return privKey; |
| } |
| |
| ErrMsgOr<bytevec> ecKeyGetPublicKey(const EC_KEY* ecKey) { |
| // Extract public key. |
| auto group = EC_GROUP_Ptr(EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1)); |
| if (group.get() == nullptr) { |
| return "Error creating EC group by curve name"; |
| } |
| const EC_POINT* point = EC_KEY_get0_public_key(ecKey); |
| if (point == nullptr) return "Error getting ecpoint from public key"; |
| |
| int size = |
| EC_POINT_point2oct(group.get(), point, POINT_CONVERSION_UNCOMPRESSED, nullptr, 0, nullptr); |
| if (size == 0) { |
| return "Error generating public key encoding"; |
| } |
| |
| bytevec publicKey; |
| publicKey.resize(size); |
| EC_POINT_point2oct(group.get(), point, POINT_CONVERSION_UNCOMPRESSED, publicKey.data(), |
| publicKey.size(), nullptr); |
| return publicKey; |
| } |
| |
| ErrMsgOr<std::tuple<bytevec, bytevec>> getAffineCoordinates(const bytevec& pubKey) { |
| auto group = EC_GROUP_Ptr(EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1)); |
| if (group.get() == nullptr) { |
| return "Error creating EC group by curve name"; |
| } |
| auto point = EC_POINT_Ptr(EC_POINT_new(group.get())); |
| if (EC_POINT_oct2point(group.get(), point.get(), pubKey.data(), pubKey.size(), nullptr) != 1) { |
| return "Error decoding publicKey"; |
| } |
| BIGNUM_Ptr x(BN_new()); |
| BIGNUM_Ptr y(BN_new()); |
| BN_CTX_Ptr ctx(BN_CTX_new()); |
| if (!ctx.get()) return "Failed to create BN_CTX instance"; |
| |
| if (!EC_POINT_get_affine_coordinates_GFp(group.get(), point.get(), x.get(), y.get(), |
| ctx.get())) { |
| return "Failed to get affine coordinates from ECPoint"; |
| } |
| bytevec pubX(kP256AffinePointSize); |
| bytevec pubY(kP256AffinePointSize); |
| if (BN_bn2binpad(x.get(), pubX.data(), kP256AffinePointSize) != kP256AffinePointSize) { |
| return "Error in converting absolute value of x coordinate to big-endian"; |
| } |
| if (BN_bn2binpad(y.get(), pubY.data(), kP256AffinePointSize) != kP256AffinePointSize) { |
| return "Error in converting absolute value of y coordinate to big-endian"; |
| } |
| return std::make_tuple(std::move(pubX), std::move(pubY)); |
| } |
| |
| ErrMsgOr<std::tuple<bytevec, bytevec>> generateEc256KeyPair() { |
| auto ec_key = EC_KEY_Ptr(EC_KEY_new()); |
| if (ec_key.get() == nullptr) { |
| return "Failed to allocate ec key"; |
| } |
| |
| auto group = EC_GROUP_Ptr(EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1)); |
| if (group.get() == nullptr) { |
| return "Error creating EC group by curve name"; |
| } |
| |
| if (EC_KEY_set_group(ec_key.get(), group.get()) != 1 || |
| EC_KEY_generate_key(ec_key.get()) != 1 || EC_KEY_check_key(ec_key.get()) < 0) { |
| return "Error generating key"; |
| } |
| |
| auto privKey = ecKeyGetPrivateKey(ec_key.get()); |
| if (!privKey) return privKey.moveMessage(); |
| |
| auto pubKey = ecKeyGetPublicKey(ec_key.get()); |
| if (!pubKey) return pubKey.moveMessage(); |
| |
| return std::make_tuple(pubKey.moveValue(), privKey.moveValue()); |
| } |
| |
| ErrMsgOr<std::tuple<bytevec, bytevec>> generateX25519KeyPair() { |
| /* Generate X25519 key pair */ |
| bytevec pubKey(X25519_PUBLIC_VALUE_LEN); |
| bytevec privKey(X25519_PRIVATE_KEY_LEN); |
| X25519_keypair(pubKey.data(), privKey.data()); |
| return std::make_tuple(std::move(pubKey), std::move(privKey)); |
| } |
| |
| ErrMsgOr<std::tuple<bytevec, bytevec>> generateED25519KeyPair() { |
| /* Generate ED25519 key pair */ |
| bytevec pubKey(ED25519_PUBLIC_KEY_LEN); |
| bytevec privKey(ED25519_PRIVATE_KEY_LEN); |
| ED25519_keypair(pubKey.data(), privKey.data()); |
| return std::make_tuple(std::move(pubKey), std::move(privKey)); |
| } |
| |
| ErrMsgOr<std::tuple<bytevec, bytevec>> generateKeyPair(int32_t supportedEekCurve, bool isEek) { |
| switch (supportedEekCurve) { |
| case RpcHardwareInfo::CURVE_25519: |
| if (isEek) { |
| return generateX25519KeyPair(); |
| } |
| return generateED25519KeyPair(); |
| case RpcHardwareInfo::CURVE_P256: |
| return generateEc256KeyPair(); |
| default: |
| return "Unknown EEK Curve."; |
| } |
| } |
| |
| ErrMsgOr<bytevec> constructCoseKey(int32_t supportedEekCurve, const bytevec& eekId, |
| const bytevec& pubKey) { |
| CoseKeyType keyType; |
| CoseKeyAlgorithm algorithm; |
| CoseKeyCurve curve; |
| bytevec pubX; |
| bytevec pubY; |
| switch (supportedEekCurve) { |
| case RpcHardwareInfo::CURVE_25519: |
| keyType = OCTET_KEY_PAIR; |
| algorithm = (eekId.empty()) ? EDDSA : ECDH_ES_HKDF_256; |
| curve = (eekId.empty()) ? ED25519 : cppcose::X25519; |
| pubX = pubKey; |
| break; |
| case RpcHardwareInfo::CURVE_P256: { |
| keyType = EC2; |
| algorithm = (eekId.empty()) ? ES256 : ECDH_ES_HKDF_256; |
| curve = P256; |
| auto affineCoordinates = getAffineCoordinates(pubKey); |
| if (!affineCoordinates) return affineCoordinates.moveMessage(); |
| std::tie(pubX, pubY) = affineCoordinates.moveValue(); |
| } break; |
| default: |
| return "Unknown EEK Curve."; |
| } |
| cppbor::Map coseKey = cppbor::Map() |
| .add(CoseKey::KEY_TYPE, keyType) |
| .add(CoseKey::ALGORITHM, algorithm) |
| .add(CoseKey::CURVE, curve) |
| .add(CoseKey::PUBKEY_X, pubX); |
| |
| if (!pubY.empty()) coseKey.add(CoseKey::PUBKEY_Y, pubY); |
| if (!eekId.empty()) coseKey.add(CoseKey::KEY_ID, eekId); |
| |
| return coseKey.canonicalize().encode(); |
| } |
| |
| bytevec kTestMacKey(32 /* count */, 0 /* byte value */); |
| |
| bytevec randomBytes(size_t numBytes) { |
| bytevec retval(numBytes); |
| RAND_bytes(retval.data(), numBytes); |
| return retval; |
| } |
| |
| ErrMsgOr<cppbor::Array> constructCoseSign1(int32_t supportedEekCurve, const bytevec& key, |
| const bytevec& payload, const bytevec& aad) { |
| if (supportedEekCurve == RpcHardwareInfo::CURVE_P256) { |
| return constructECDSACoseSign1(key, {} /* protectedParams */, payload, aad); |
| } else { |
| return cppcose::constructCoseSign1(key, payload, aad); |
| } |
| } |
| |
| ErrMsgOr<EekChain> generateEekChain(int32_t supportedEekCurve, size_t length, |
| const bytevec& eekId) { |
| if (length < 2) { |
| return "EEK chain must contain at least 2 certs."; |
| } |
| |
| auto eekChain = cppbor::Array(); |
| |
| bytevec prev_priv_key; |
| for (size_t i = 0; i < length - 1; ++i) { |
| auto keyPair = generateKeyPair(supportedEekCurve, false); |
| if (!keyPair) return keyPair.moveMessage(); |
| auto [pub_key, priv_key] = keyPair.moveValue(); |
| |
| // The first signing key is self-signed. |
| if (prev_priv_key.empty()) prev_priv_key = priv_key; |
| |
| auto coseKey = constructCoseKey(supportedEekCurve, {}, pub_key); |
| if (!coseKey) return coseKey.moveMessage(); |
| |
| auto coseSign1 = |
| constructCoseSign1(supportedEekCurve, prev_priv_key, coseKey.moveValue(), {} /* AAD */); |
| if (!coseSign1) return coseSign1.moveMessage(); |
| eekChain.add(coseSign1.moveValue()); |
| |
| prev_priv_key = priv_key; |
| } |
| auto keyPair = generateKeyPair(supportedEekCurve, true); |
| if (!keyPair) return keyPair.moveMessage(); |
| auto [pub_key, priv_key] = keyPair.moveValue(); |
| |
| auto coseKey = constructCoseKey(supportedEekCurve, eekId, pub_key); |
| if (!coseKey) return coseKey.moveMessage(); |
| |
| auto coseSign1 = |
| constructCoseSign1(supportedEekCurve, prev_priv_key, coseKey.moveValue(), {} /* AAD */); |
| if (!coseSign1) return coseSign1.moveMessage(); |
| eekChain.add(coseSign1.moveValue()); |
| |
| if (supportedEekCurve == RpcHardwareInfo::CURVE_P256) { |
| // convert ec public key to x and y co-ordinates. |
| auto affineCoordinates = getAffineCoordinates(pub_key); |
| if (!affineCoordinates) return affineCoordinates.moveMessage(); |
| auto [pubX, pubY] = affineCoordinates.moveValue(); |
| pub_key.clear(); |
| pub_key.insert(pub_key.begin(), pubX.begin(), pubX.end()); |
| pub_key.insert(pub_key.end(), pubY.begin(), pubY.end()); |
| } |
| |
| return EekChain{eekChain.encode(), pub_key, priv_key}; |
| } |
| |
| bytevec getProdEekChain(int32_t supportedEekCurve) { |
| cppbor::Array chain; |
| if (supportedEekCurve == RpcHardwareInfo::CURVE_P256) { |
| chain.add(cppbor::EncodedItem(bytevec(std::begin(kCoseEncodedEcdsa256RootCert), |
| std::end(kCoseEncodedEcdsa256RootCert)))); |
| chain.add(cppbor::EncodedItem(bytevec(std::begin(kCoseEncodedEcdsa256GeekCert), |
| std::end(kCoseEncodedEcdsa256GeekCert)))); |
| } else { |
| chain.add(cppbor::EncodedItem( |
| bytevec(std::begin(kCoseEncodedRootCert), std::end(kCoseEncodedRootCert)))); |
| chain.add(cppbor::EncodedItem( |
| bytevec(std::begin(kCoseEncodedGeekCert), std::end(kCoseEncodedGeekCert)))); |
| } |
| return chain.encode(); |
| } |
| |
| ErrMsgOr<bytevec> validatePayloadAndFetchPubKey(const cppbor::Map* payload) { |
| const auto& issuer = payload->get(kBccPayloadIssuer); |
| if (!issuer || !issuer->asTstr()) return "Issuer is not present or not a tstr."; |
| const auto& subject = payload->get(kBccPayloadSubject); |
| if (!subject || !subject->asTstr()) return "Subject is not present or not a tstr."; |
| const auto& keyUsage = payload->get(kBccPayloadKeyUsage); |
| if (!keyUsage || !keyUsage->asBstr()) return "Key usage is not present or not a bstr."; |
| const auto& serializedKey = payload->get(kBccPayloadSubjPubKey); |
| if (!serializedKey || !serializedKey->asBstr()) return "Key is not present or not a bstr."; |
| return serializedKey->asBstr()->value(); |
| } |
| |
| ErrMsgOr<bytevec> verifyAndParseCoseSign1Cwt(const cppbor::Array* coseSign1, |
| const bytevec& signingCoseKey, const bytevec& aad) { |
| if (!coseSign1 || coseSign1->size() != kCoseSign1EntryCount) { |
| return "Invalid COSE_Sign1"; |
| } |
| |
| const cppbor::Bstr* protectedParams = coseSign1->get(kCoseSign1ProtectedParams)->asBstr(); |
| const cppbor::Map* unprotectedParams = coseSign1->get(kCoseSign1UnprotectedParams)->asMap(); |
| const cppbor::Bstr* payload = coseSign1->get(kCoseSign1Payload)->asBstr(); |
| const cppbor::Bstr* signature = coseSign1->get(kCoseSign1Signature)->asBstr(); |
| |
| if (!protectedParams || !unprotectedParams || !payload || !signature) { |
| return "Invalid COSE_Sign1"; |
| } |
| |
| auto [parsedProtParams, _, errMsg] = cppbor::parse(protectedParams); |
| if (!parsedProtParams) { |
| return errMsg + " when parsing protected params."; |
| } |
| if (!parsedProtParams->asMap()) { |
| return "Protected params must be a map"; |
| } |
| |
| auto& algorithm = parsedProtParams->asMap()->get(ALGORITHM); |
| if (!algorithm || !algorithm->asInt() || |
| (algorithm->asInt()->value() != EDDSA && algorithm->asInt()->value() != ES256)) { |
| return "Unsupported signature algorithm"; |
| } |
| |
| auto [parsedPayload, __, payloadErrMsg] = cppbor::parse(payload); |
| if (!parsedPayload) return payloadErrMsg + " when parsing key"; |
| if (!parsedPayload->asMap()) return "CWT must be a map"; |
| auto serializedKey = validatePayloadAndFetchPubKey(parsedPayload->asMap()); |
| if (!serializedKey) { |
| return "CWT validation failed: " + serializedKey.moveMessage(); |
| } |
| |
| bool selfSigned = signingCoseKey.empty(); |
| bytevec signatureInput = |
| cppbor::Array().add("Signature1").add(*protectedParams).add(aad).add(*payload).encode(); |
| |
| if (algorithm->asInt()->value() == EDDSA) { |
| auto key = CoseKey::parseEd25519(selfSigned ? *serializedKey : signingCoseKey); |
| |
| if (!key) return "Bad signing key: " + key.moveMessage(); |
| |
| if (!ED25519_verify(signatureInput.data(), signatureInput.size(), signature->value().data(), |
| key->getBstrValue(CoseKey::PUBKEY_X)->data())) { |
| return "Signature verification failed"; |
| } |
| } else { // P256 |
| auto key = CoseKey::parseP256(selfSigned ? *serializedKey : signingCoseKey); |
| if (!key || key->getBstrValue(CoseKey::PUBKEY_X)->empty() || |
| key->getBstrValue(CoseKey::PUBKEY_Y)->empty()) { |
| return "Bad signing key: " + key.moveMessage(); |
| } |
| auto publicKey = key->getEcPublicKey(); |
| if (!publicKey) return publicKey.moveMessage(); |
| |
| auto ecdsaDerSignature = ecdsaCoseSignatureToDer(signature->value()); |
| if (!ecdsaDerSignature) return ecdsaDerSignature.moveMessage(); |
| |
| // convert public key to uncompressed form. |
| publicKey->insert(publicKey->begin(), 0x04); |
| |
| if (!verifyEcdsaDigest(publicKey.moveValue(), sha256(signatureInput), *ecdsaDerSignature)) { |
| return "Signature verification failed"; |
| } |
| } |
| |
| return serializedKey.moveValue(); |
| } |
| |
| ErrMsgOr<std::vector<BccEntryData>> validateBcc(const cppbor::Array* bcc) { |
| if (!bcc || bcc->size() == 0) return "Invalid BCC"; |
| |
| std::vector<BccEntryData> result; |
| |
| const auto& devicePubKey = bcc->get(0); |
| if (!devicePubKey->asMap()) return "Invalid device public key at the 1st entry in the BCC"; |
| |
| bytevec prevKey; |
| |
| for (size_t i = 1; i < bcc->size(); ++i) { |
| const cppbor::Array* entry = bcc->get(i)->asArray(); |
| if (!entry || entry->size() != kCoseSign1EntryCount) { |
| return "Invalid BCC entry " + std::to_string(i) + ": " + prettyPrint(entry); |
| } |
| auto payload = verifyAndParseCoseSign1Cwt(entry, std::move(prevKey), bytevec{} /* AAD */); |
| if (!payload) { |
| return "Failed to verify entry " + std::to_string(i) + ": " + payload.moveMessage(); |
| } |
| |
| auto& certProtParms = entry->get(kCoseSign1ProtectedParams); |
| if (!certProtParms || !certProtParms->asBstr()) return "Invalid prot params"; |
| auto [parsedProtParms, _, errMsg] = cppbor::parse(certProtParms->asBstr()->value()); |
| if (!parsedProtParms || !parsedProtParms->asMap()) return "Invalid prot params"; |
| |
| result.push_back(BccEntryData{*payload}); |
| |
| // This entry's public key is the signing key for the next entry. |
| prevKey = payload.moveValue(); |
| if (i == 1) { |
| auto [parsedRootKey, _, errMsg] = cppbor::parse(prevKey); |
| if (!parsedRootKey || !parsedRootKey->asMap()) return "Invalid payload entry in BCC."; |
| if (*parsedRootKey != *devicePubKey) { |
| return "Device public key doesn't match BCC root."; |
| } |
| } |
| } |
| |
| return result; |
| } |
| |
| JsonOutput jsonEncodeCsrWithBuild(const std::string instance_name, const cppbor::Array& csr) { |
| const std::string kFingerprintProp = "ro.build.fingerprint"; |
| |
| if (!::android::base::WaitForPropertyCreation(kFingerprintProp)) { |
| return JsonOutput::Error("Unable to read build fingerprint"); |
| } |
| |
| bytevec csrCbor = csr.encode(); |
| size_t base64Length; |
| int rc = EVP_EncodedLength(&base64Length, csrCbor.size()); |
| if (!rc) { |
| return JsonOutput::Error("Error getting base64 length. Size overflow?"); |
| } |
| |
| std::vector<char> base64(base64Length); |
| rc = EVP_EncodeBlock(reinterpret_cast<uint8_t*>(base64.data()), csrCbor.data(), csrCbor.size()); |
| ++rc; // Account for NUL, which BoringSSL does not for some reason. |
| if (rc != base64Length) { |
| return JsonOutput::Error("Error writing base64. Expected " + std::to_string(base64Length) + |
| " bytes to be written, but " + std::to_string(rc) + |
| " bytes were actually written."); |
| } |
| |
| Json::Value json(Json::objectValue); |
| json["name"] = instance_name; |
| json["build_fingerprint"] = ::android::base::GetProperty(kFingerprintProp, /*default=*/""); |
| json["csr"] = base64.data(); // Boring writes a NUL-terminated c-string |
| |
| Json::StreamWriterBuilder factory; |
| factory["indentation"] = ""; // disable pretty formatting |
| return JsonOutput::Ok(Json::writeString(factory, json)); |
| } |
| |
| std::string checkMapEntry(bool isFactory, const cppbor::Map& devInfo, cppbor::MajorType majorType, |
| const std::string& entryName) { |
| const std::unique_ptr<cppbor::Item>& val = devInfo.get(entryName); |
| if (!val) { |
| return entryName + " is missing.\n"; |
| } |
| if (val->type() != majorType) { |
| return entryName + " has the wrong type.\n"; |
| } |
| if (isFactory) { |
| return ""; |
| } |
| switch (majorType) { |
| case cppbor::TSTR: |
| if (val->asTstr()->value().size() <= 0) { |
| return entryName + " is present but the value is empty.\n"; |
| } |
| break; |
| case cppbor::BSTR: |
| if (val->asBstr()->value().size() <= 0) { |
| return entryName + " is present but the value is empty.\n"; |
| } |
| break; |
| default: |
| break; |
| } |
| return ""; |
| } |
| |
| std::string checkMapEntry(bool isFactory, const cppbor::Map& devInfo, cppbor::MajorType majorType, |
| const std::string& entryName, const cppbor::Array& allowList) { |
| std::string error = checkMapEntry(isFactory, devInfo, majorType, entryName); |
| if (!error.empty()) { |
| return error; |
| } |
| |
| if (isFactory) { |
| return ""; |
| } |
| |
| const std::unique_ptr<cppbor::Item>& val = devInfo.get(entryName); |
| for (auto i = allowList.begin(); i != allowList.end(); ++i) { |
| if (**i == *val) { |
| return ""; |
| } |
| } |
| return entryName + " has an invalid value.\n"; |
| } |
| |
| ErrMsgOr<std::unique_ptr<cppbor::Map>> parseAndValidateDeviceInfo( |
| const std::vector<uint8_t>& deviceInfoBytes, IRemotelyProvisionedComponent* provisionable, |
| bool isFactory) { |
| const cppbor::Array kValidVbStates = {"green", "yellow", "orange"}; |
| const cppbor::Array kValidBootloaderStates = {"locked", "unlocked"}; |
| const cppbor::Array kValidSecurityLevels = {"tee", "strongbox"}; |
| const cppbor::Array kValidAttIdStates = {"locked", "open"}; |
| const cppbor::Array kValidFused = {0, 1}; |
| |
| struct AttestationIdEntry { |
| const char* id; |
| bool alwaysValidate; |
| }; |
| constexpr AttestationIdEntry kAttestationIdEntrySet[] = {{"brand", false}, |
| {"manufacturer", true}, |
| {"product", false}, |
| {"model", false}, |
| {"device", false}}; |
| |
| auto [parsedVerifiedDeviceInfo, ignore1, errMsg] = cppbor::parse(deviceInfoBytes); |
| if (!parsedVerifiedDeviceInfo) { |
| return errMsg; |
| } |
| |
| std::unique_ptr<cppbor::Map> parsed(parsedVerifiedDeviceInfo->asMap()); |
| if (!parsed) { |
| return "DeviceInfo must be a CBOR map."; |
| } |
| parsedVerifiedDeviceInfo.release(); |
| |
| if (parsed->clone()->asMap()->canonicalize().encode() != deviceInfoBytes) { |
| return "DeviceInfo ordering is non-canonical."; |
| } |
| const std::unique_ptr<cppbor::Item>& version = parsed->get("version"); |
| if (!version) { |
| return "Device info is missing version"; |
| } |
| if (!version->asUint()) { |
| return "version must be an unsigned integer"; |
| } |
| RpcHardwareInfo info; |
| provisionable->getHardwareInfo(&info); |
| if (version->asUint()->value() != info.versionNumber) { |
| return "DeviceInfo version (" + std::to_string(version->asUint()->value()) + |
| ") does not match the remotely provisioned component version (" + |
| std::to_string(info.versionNumber) + ")."; |
| } |
| std::string error; |
| switch (version->asUint()->value()) { |
| case 2: |
| for (const auto& entry : kAttestationIdEntrySet) { |
| error += checkMapEntry(isFactory && !entry.alwaysValidate, *parsed, cppbor::TSTR, |
| entry.id); |
| } |
| if (!error.empty()) { |
| return error + |
| "Attestation IDs are missing or malprovisioned. If this test is being\n" |
| "run against an early proto or EVT build, this error is probably WAI\n" |
| "and indicates that Device IDs were not provisioned in the factory. If\n" |
| "this error is returned on a DVT or later build revision, then\n" |
| "something is likely wrong with the factory provisioning process."; |
| } |
| // TODO: Refactor the KeyMint code that validates these fields and include it here. |
| error += checkMapEntry(isFactory, *parsed, cppbor::TSTR, "vb_state", kValidVbStates); |
| error += checkMapEntry(isFactory, *parsed, cppbor::TSTR, "bootloader_state", |
| kValidBootloaderStates); |
| error += checkMapEntry(isFactory, *parsed, cppbor::BSTR, "vbmeta_digest"); |
| error += checkMapEntry(isFactory, *parsed, cppbor::UINT, "system_patch_level"); |
| error += checkMapEntry(isFactory, *parsed, cppbor::UINT, "boot_patch_level"); |
| error += checkMapEntry(isFactory, *parsed, cppbor::UINT, "vendor_patch_level"); |
| error += checkMapEntry(isFactory, *parsed, cppbor::UINT, "fused", kValidFused); |
| error += checkMapEntry(isFactory, *parsed, cppbor::TSTR, "security_level", |
| kValidSecurityLevels); |
| if (parsed->get("security_level") && parsed->get("security_level")->asTstr() && |
| parsed->get("security_level")->asTstr()->value() == "tee") { |
| error += checkMapEntry(isFactory, *parsed, cppbor::TSTR, "os_version"); |
| } |
| break; |
| case 1: |
| error += checkMapEntry(isFactory, *parsed, cppbor::TSTR, "security_level", |
| kValidSecurityLevels); |
| error += checkMapEntry(isFactory, *parsed, cppbor::TSTR, "att_id_state", |
| kValidAttIdStates); |
| break; |
| default: |
| return "Unrecognized version: " + std::to_string(version->asUint()->value()); |
| } |
| |
| if (!error.empty()) { |
| return error; |
| } |
| |
| return std::move(parsed); |
| } |
| |
| ErrMsgOr<std::unique_ptr<cppbor::Map>> parseAndValidateFactoryDeviceInfo( |
| const std::vector<uint8_t>& deviceInfoBytes, IRemotelyProvisionedComponent* provisionable) { |
| return parseAndValidateDeviceInfo(deviceInfoBytes, provisionable, /*isFactory=*/true); |
| } |
| |
| ErrMsgOr<std::unique_ptr<cppbor::Map>> parseAndValidateProductionDeviceInfo( |
| const std::vector<uint8_t>& deviceInfoBytes, IRemotelyProvisionedComponent* provisionable) { |
| return parseAndValidateDeviceInfo(deviceInfoBytes, provisionable, /*isFactory=*/false); |
| } |
| |
| ErrMsgOr<bytevec> getSessionKey(ErrMsgOr<std::pair<bytevec, bytevec>>& senderPubkey, |
| const EekChain& eekChain, int32_t supportedEekCurve) { |
| if (supportedEekCurve == RpcHardwareInfo::CURVE_25519 || |
| supportedEekCurve == RpcHardwareInfo::CURVE_NONE) { |
| return x25519_HKDF_DeriveKey(eekChain.last_pubkey, eekChain.last_privkey, |
| senderPubkey->first, false /* senderIsA */); |
| } else { |
| return ECDH_HKDF_DeriveKey(eekChain.last_pubkey, eekChain.last_privkey, senderPubkey->first, |
| false /* senderIsA */); |
| } |
| } |
| |
| ErrMsgOr<std::vector<BccEntryData>> verifyProtectedData( |
| const DeviceInfo& deviceInfo, const cppbor::Array& keysToSign, |
| const std::vector<uint8_t>& keysToSignMac, const ProtectedData& protectedData, |
| const EekChain& eekChain, const std::vector<uint8_t>& eekId, int32_t supportedEekCurve, |
| IRemotelyProvisionedComponent* provisionable, const std::vector<uint8_t>& challenge, |
| bool isFactory) { |
| auto [parsedProtectedData, _, protDataErrMsg] = cppbor::parse(protectedData.protectedData); |
| if (!parsedProtectedData) { |
| return protDataErrMsg; |
| } |
| if (!parsedProtectedData->asArray()) { |
| return "Protected data is not a CBOR array."; |
| } |
| if (parsedProtectedData->asArray()->size() != kCoseEncryptEntryCount) { |
| return "The protected data COSE_encrypt structure must have " + |
| std::to_string(kCoseEncryptEntryCount) + " entries, but it only has " + |
| std::to_string(parsedProtectedData->asArray()->size()); |
| } |
| |
| auto senderPubkey = getSenderPubKeyFromCoseEncrypt(parsedProtectedData); |
| if (!senderPubkey) { |
| return senderPubkey.message(); |
| } |
| if (senderPubkey->second != eekId) { |
| return "The COSE_encrypt recipient does not match the expected EEK identifier"; |
| } |
| |
| auto sessionKey = getSessionKey(senderPubkey, eekChain, supportedEekCurve); |
| if (!sessionKey) { |
| return sessionKey.message(); |
| } |
| |
| auto protectedDataPayload = |
| decryptCoseEncrypt(*sessionKey, parsedProtectedData.get(), bytevec{} /* aad */); |
| if (!protectedDataPayload) { |
| return protectedDataPayload.message(); |
| } |
| |
| auto [parsedPayload, __, payloadErrMsg] = cppbor::parse(*protectedDataPayload); |
| if (!parsedPayload) { |
| return "Failed to parse payload: " + payloadErrMsg; |
| } |
| if (!parsedPayload->asArray()) { |
| return "The protected data payload must be an Array."; |
| } |
| if (parsedPayload->asArray()->size() != 3U && parsedPayload->asArray()->size() != 2U) { |
| return "The protected data payload must contain SignedMAC and BCC. It may optionally " |
| "contain AdditionalDKSignatures. However, the parsed payload has " + |
| std::to_string(parsedPayload->asArray()->size()) + " entries."; |
| } |
| |
| auto& signedMac = parsedPayload->asArray()->get(0); |
| auto& bcc = parsedPayload->asArray()->get(1); |
| if (!signedMac->asArray()) { |
| return "The SignedMAC in the protected data payload is not an Array."; |
| } |
| if (!bcc->asArray()) { |
| return "The BCC in the protected data payload is not an Array."; |
| } |
| |
| // BCC is [ pubkey, + BccEntry] |
| auto bccContents = validateBcc(bcc->asArray()); |
| if (!bccContents) { |
| return bccContents.message() + "\n" + prettyPrint(bcc.get()); |
| } |
| if (bccContents->size() == 0U) { |
| return "The BCC is empty. It must contain at least one entry."; |
| } |
| |
| auto deviceInfoResult = |
| parseAndValidateDeviceInfo(deviceInfo.deviceInfo, provisionable, isFactory); |
| if (!deviceInfoResult) { |
| return deviceInfoResult.message(); |
| } |
| std::unique_ptr<cppbor::Map> deviceInfoMap = deviceInfoResult.moveValue(); |
| auto& signingKey = bccContents->back().pubKey; |
| auto macKey = verifyAndParseCoseSign1(signedMac->asArray(), signingKey, |
| cppbor::Array() // SignedMacAad |
| .add(challenge) |
| .add(std::move(deviceInfoMap)) |
| .add(keysToSignMac) |
| .encode()); |
| if (!macKey) { |
| return macKey.message(); |
| } |
| |
| auto coseMac0 = cppbor::Array() |
| .add(cppbor::Map() // protected |
| .add(ALGORITHM, HMAC_256) |
| .canonicalize() |
| .encode()) |
| .add(cppbor::Map()) // unprotected |
| .add(keysToSign.encode()) // payload (keysToSign) |
| .add(keysToSignMac); // tag |
| |
| auto macPayload = verifyAndParseCoseMac0(&coseMac0, *macKey); |
| if (!macPayload) { |
| return macPayload.message(); |
| } |
| |
| return *bccContents; |
| } |
| |
| ErrMsgOr<std::vector<BccEntryData>> verifyFactoryProtectedData( |
| const DeviceInfo& deviceInfo, const cppbor::Array& keysToSign, |
| const std::vector<uint8_t>& keysToSignMac, const ProtectedData& protectedData, |
| const EekChain& eekChain, const std::vector<uint8_t>& eekId, int32_t supportedEekCurve, |
| IRemotelyProvisionedComponent* provisionable, const std::vector<uint8_t>& challenge) { |
| return verifyProtectedData(deviceInfo, keysToSign, keysToSignMac, protectedData, eekChain, |
| eekId, supportedEekCurve, provisionable, challenge, |
| /*isFactory=*/true); |
| } |
| |
| ErrMsgOr<std::vector<BccEntryData>> verifyProductionProtectedData( |
| const DeviceInfo& deviceInfo, const cppbor::Array& keysToSign, |
| const std::vector<uint8_t>& keysToSignMac, const ProtectedData& protectedData, |
| const EekChain& eekChain, const std::vector<uint8_t>& eekId, int32_t supportedEekCurve, |
| IRemotelyProvisionedComponent* provisionable, const std::vector<uint8_t>& challenge) { |
| return verifyProtectedData(deviceInfo, keysToSign, keysToSignMac, protectedData, eekChain, |
| eekId, supportedEekCurve, provisionable, challenge, |
| /*isFactory=*/false); |
| } |
| |
| } // namespace aidl::android::hardware::security::keymint::remote_prov |