| /* |
| * $Id: linkhash.c,v 1.4 2006/01/26 02:16:28 mclark Exp $ |
| * |
| * Copyright (c) 2004, 2005 Metaparadigm Pte. Ltd. |
| * Michael Clark <[email protected]> |
| * Copyright (c) 2009 Hewlett-Packard Development Company, L.P. |
| * |
| * This library is free software; you can redistribute it and/or modify |
| * it under the terms of the MIT license. See COPYING for details. |
| * |
| */ |
| |
| #include <stdio.h> |
| #include <string.h> |
| #include <stdlib.h> |
| #include <stdarg.h> |
| #include <stddef.h> |
| #include <limits.h> |
| |
| #ifdef HAVE_ENDIAN_H |
| # include <endian.h> /* attempt to define endianness */ |
| #endif |
| |
| #include "random_seed.h" |
| #include "linkhash.h" |
| |
| void lh_abort(const char *msg, ...) |
| { |
| va_list ap; |
| va_start(ap, msg); |
| vprintf(msg, ap); |
| va_end(ap); |
| exit(1); |
| } |
| |
| unsigned long lh_ptr_hash(const void *k) |
| { |
| /* CAW: refactored to be 64bit nice */ |
| return (unsigned long)((((ptrdiff_t)k * LH_PRIME) >> 4) & ULONG_MAX); |
| } |
| |
| int lh_ptr_equal(const void *k1, const void *k2) |
| { |
| return (k1 == k2); |
| } |
| |
| /* |
| * hashlittle from lookup3.c, by Bob Jenkins, May 2006, Public Domain. |
| * http://burtleburtle.net/bob/c/lookup3.c |
| * minor modifications to make functions static so no symbols are exported |
| * minor mofifications to compile with -Werror |
| */ |
| |
| /* |
| ------------------------------------------------------------------------------- |
| lookup3.c, by Bob Jenkins, May 2006, Public Domain. |
| |
| These are functions for producing 32-bit hashes for hash table lookup. |
| hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final() |
| are externally useful functions. Routines to test the hash are included |
| if SELF_TEST is defined. You can use this free for any purpose. It's in |
| the public domain. It has no warranty. |
| |
| You probably want to use hashlittle(). hashlittle() and hashbig() |
| hash byte arrays. hashlittle() is is faster than hashbig() on |
| little-endian machines. Intel and AMD are little-endian machines. |
| On second thought, you probably want hashlittle2(), which is identical to |
| hashlittle() except it returns two 32-bit hashes for the price of one. |
| You could implement hashbig2() if you wanted but I haven't bothered here. |
| |
| If you want to find a hash of, say, exactly 7 integers, do |
| a = i1; b = i2; c = i3; |
| mix(a,b,c); |
| a += i4; b += i5; c += i6; |
| mix(a,b,c); |
| a += i7; |
| final(a,b,c); |
| then use c as the hash value. If you have a variable length array of |
| 4-byte integers to hash, use hashword(). If you have a byte array (like |
| a character string), use hashlittle(). If you have several byte arrays, or |
| a mix of things, see the comments above hashlittle(). |
| |
| Why is this so big? I read 12 bytes at a time into 3 4-byte integers, |
| then mix those integers. This is fast (you can do a lot more thorough |
| mixing with 12*3 instructions on 3 integers than you can with 3 instructions |
| on 1 byte), but shoehorning those bytes into integers efficiently is messy. |
| ------------------------------------------------------------------------------- |
| */ |
| |
| /* |
| * My best guess at if you are big-endian or little-endian. This may |
| * need adjustment. |
| */ |
| #if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \ |
| __BYTE_ORDER == __LITTLE_ENDIAN) || \ |
| (defined(i386) || defined(__i386__) || defined(__i486__) || \ |
| defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL)) |
| # define HASH_LITTLE_ENDIAN 1 |
| # define HASH_BIG_ENDIAN 0 |
| #elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \ |
| __BYTE_ORDER == __BIG_ENDIAN) || \ |
| (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel)) |
| # define HASH_LITTLE_ENDIAN 0 |
| # define HASH_BIG_ENDIAN 1 |
| #else |
| # define HASH_LITTLE_ENDIAN 0 |
| # define HASH_BIG_ENDIAN 0 |
| #endif |
| |
| #define hashsize(n) ((uint32_t)1<<(n)) |
| #define hashmask(n) (hashsize(n)-1) |
| #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) |
| |
| /* |
| ------------------------------------------------------------------------------- |
| mix -- mix 3 32-bit values reversibly. |
| |
| This is reversible, so any information in (a,b,c) before mix() is |
| still in (a,b,c) after mix(). |
| |
| If four pairs of (a,b,c) inputs are run through mix(), or through |
| mix() in reverse, there are at least 32 bits of the output that |
| are sometimes the same for one pair and different for another pair. |
| This was tested for: |
| * pairs that differed by one bit, by two bits, in any combination |
| of top bits of (a,b,c), or in any combination of bottom bits of |
| (a,b,c). |
| * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed |
| the output delta to a Gray code (a^(a>>1)) so a string of 1's (as |
| is commonly produced by subtraction) look like a single 1-bit |
| difference. |
| * the base values were pseudorandom, all zero but one bit set, or |
| all zero plus a counter that starts at zero. |
| |
| Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that |
| satisfy this are |
| 4 6 8 16 19 4 |
| 9 15 3 18 27 15 |
| 14 9 3 7 17 3 |
| Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing |
| for "differ" defined as + with a one-bit base and a two-bit delta. I |
| used http://burtleburtle.net/bob/hash/avalanche.html to choose |
| the operations, constants, and arrangements of the variables. |
| |
| This does not achieve avalanche. There are input bits of (a,b,c) |
| that fail to affect some output bits of (a,b,c), especially of a. The |
| most thoroughly mixed value is c, but it doesn't really even achieve |
| avalanche in c. |
| |
| This allows some parallelism. Read-after-writes are good at doubling |
| the number of bits affected, so the goal of mixing pulls in the opposite |
| direction as the goal of parallelism. I did what I could. Rotates |
| seem to cost as much as shifts on every machine I could lay my hands |
| on, and rotates are much kinder to the top and bottom bits, so I used |
| rotates. |
| ------------------------------------------------------------------------------- |
| */ |
| #define mix(a,b,c) \ |
| { \ |
| a -= c; a ^= rot(c, 4); c += b; \ |
| b -= a; b ^= rot(a, 6); a += c; \ |
| c -= b; c ^= rot(b, 8); b += a; \ |
| a -= c; a ^= rot(c,16); c += b; \ |
| b -= a; b ^= rot(a,19); a += c; \ |
| c -= b; c ^= rot(b, 4); b += a; \ |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| final -- final mixing of 3 32-bit values (a,b,c) into c |
| |
| Pairs of (a,b,c) values differing in only a few bits will usually |
| produce values of c that look totally different. This was tested for |
| * pairs that differed by one bit, by two bits, in any combination |
| of top bits of (a,b,c), or in any combination of bottom bits of |
| (a,b,c). |
| * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed |
| the output delta to a Gray code (a^(a>>1)) so a string of 1's (as |
| is commonly produced by subtraction) look like a single 1-bit |
| difference. |
| * the base values were pseudorandom, all zero but one bit set, or |
| all zero plus a counter that starts at zero. |
| |
| These constants passed: |
| 14 11 25 16 4 14 24 |
| 12 14 25 16 4 14 24 |
| and these came close: |
| 4 8 15 26 3 22 24 |
| 10 8 15 26 3 22 24 |
| 11 8 15 26 3 22 24 |
| ------------------------------------------------------------------------------- |
| */ |
| #define final(a,b,c) \ |
| { \ |
| c ^= b; c -= rot(b,14); \ |
| a ^= c; a -= rot(c,11); \ |
| b ^= a; b -= rot(a,25); \ |
| c ^= b; c -= rot(b,16); \ |
| a ^= c; a -= rot(c,4); \ |
| b ^= a; b -= rot(a,14); \ |
| c ^= b; c -= rot(b,24); \ |
| } |
| |
| |
| /* |
| ------------------------------------------------------------------------------- |
| hashlittle() -- hash a variable-length key into a 32-bit value |
| k : the key (the unaligned variable-length array of bytes) |
| length : the length of the key, counting by bytes |
| initval : can be any 4-byte value |
| Returns a 32-bit value. Every bit of the key affects every bit of |
| the return value. Two keys differing by one or two bits will have |
| totally different hash values. |
| |
| The best hash table sizes are powers of 2. There is no need to do |
| mod a prime (mod is sooo slow!). If you need less than 32 bits, |
| use a bitmask. For example, if you need only 10 bits, do |
| h = (h & hashmask(10)); |
| In which case, the hash table should have hashsize(10) elements. |
| |
| If you are hashing n strings (uint8_t **)k, do it like this: |
| for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h); |
| |
| By Bob Jenkins, 2006. [email protected]. You may use this |
| code any way you wish, private, educational, or commercial. It's free. |
| |
| Use for hash table lookup, or anything where one collision in 2^^32 is |
| acceptable. Do NOT use for cryptographic purposes. |
| ------------------------------------------------------------------------------- |
| */ |
| |
| static uint32_t hashlittle( const void *key, size_t length, uint32_t initval) |
| { |
| uint32_t a,b,c; /* internal state */ |
| union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ |
| |
| /* Set up the internal state */ |
| a = b = c = 0xdeadbeef + ((uint32_t)length) + initval; |
| |
| u.ptr = key; |
| if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { |
| const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ |
| |
| /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ |
| while (length > 12) |
| { |
| a += k[0]; |
| b += k[1]; |
| c += k[2]; |
| mix(a,b,c); |
| length -= 12; |
| k += 3; |
| } |
| |
| /*----------------------------- handle the last (probably partial) block */ |
| /* |
| * "k[2]&0xffffff" actually reads beyond the end of the string, but |
| * then masks off the part it's not allowed to read. Because the |
| * string is aligned, the masked-off tail is in the same word as the |
| * rest of the string. Every machine with memory protection I've seen |
| * does it on word boundaries, so is OK with this. But VALGRIND will |
| * still catch it and complain. The masking trick does make the hash |
| * noticably faster for short strings (like English words). |
| */ |
| #ifndef VALGRIND |
| |
| switch(length) |
| { |
| case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
| case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; |
| case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; |
| case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; |
| case 8 : b+=k[1]; a+=k[0]; break; |
| case 7 : b+=k[1]&0xffffff; a+=k[0]; break; |
| case 6 : b+=k[1]&0xffff; a+=k[0]; break; |
| case 5 : b+=k[1]&0xff; a+=k[0]; break; |
| case 4 : a+=k[0]; break; |
| case 3 : a+=k[0]&0xffffff; break; |
| case 2 : a+=k[0]&0xffff; break; |
| case 1 : a+=k[0]&0xff; break; |
| case 0 : return c; /* zero length strings require no mixing */ |
| } |
| |
| #else /* make valgrind happy */ |
| |
| const uint8_t *k8 = (const uint8_t *)k; |
| switch(length) |
| { |
| case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
| case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
| case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ |
| case 9 : c+=k8[8]; /* fall through */ |
| case 8 : b+=k[1]; a+=k[0]; break; |
| case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
| case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ |
| case 5 : b+=k8[4]; /* fall through */ |
| case 4 : a+=k[0]; break; |
| case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
| case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ |
| case 1 : a+=k8[0]; break; |
| case 0 : return c; |
| } |
| |
| #endif /* !valgrind */ |
| |
| } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { |
| const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ |
| const uint8_t *k8; |
| |
| /*--------------- all but last block: aligned reads and different mixing */ |
| while (length > 12) |
| { |
| a += k[0] + (((uint32_t)k[1])<<16); |
| b += k[2] + (((uint32_t)k[3])<<16); |
| c += k[4] + (((uint32_t)k[5])<<16); |
| mix(a,b,c); |
| length -= 12; |
| k += 6; |
| } |
| |
| /*----------------------------- handle the last (probably partial) block */ |
| k8 = (const uint8_t *)k; |
| switch(length) |
| { |
| case 12: c+=k[4]+(((uint32_t)k[5])<<16); |
| b+=k[2]+(((uint32_t)k[3])<<16); |
| a+=k[0]+(((uint32_t)k[1])<<16); |
| break; |
| case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
| case 10: c+=k[4]; |
| b+=k[2]+(((uint32_t)k[3])<<16); |
| a+=k[0]+(((uint32_t)k[1])<<16); |
| break; |
| case 9 : c+=k8[8]; /* fall through */ |
| case 8 : b+=k[2]+(((uint32_t)k[3])<<16); |
| a+=k[0]+(((uint32_t)k[1])<<16); |
| break; |
| case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
| case 6 : b+=k[2]; |
| a+=k[0]+(((uint32_t)k[1])<<16); |
| break; |
| case 5 : b+=k8[4]; /* fall through */ |
| case 4 : a+=k[0]+(((uint32_t)k[1])<<16); |
| break; |
| case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
| case 2 : a+=k[0]; |
| break; |
| case 1 : a+=k8[0]; |
| break; |
| case 0 : return c; /* zero length requires no mixing */ |
| } |
| |
| } else { /* need to read the key one byte at a time */ |
| const uint8_t *k = (const uint8_t *)key; |
| |
| /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ |
| while (length > 12) |
| { |
| a += k[0]; |
| a += ((uint32_t)k[1])<<8; |
| a += ((uint32_t)k[2])<<16; |
| a += ((uint32_t)k[3])<<24; |
| b += k[4]; |
| b += ((uint32_t)k[5])<<8; |
| b += ((uint32_t)k[6])<<16; |
| b += ((uint32_t)k[7])<<24; |
| c += k[8]; |
| c += ((uint32_t)k[9])<<8; |
| c += ((uint32_t)k[10])<<16; |
| c += ((uint32_t)k[11])<<24; |
| mix(a,b,c); |
| length -= 12; |
| k += 12; |
| } |
| |
| /*-------------------------------- last block: affect all 32 bits of (c) */ |
| switch(length) /* all the case statements fall through */ |
| { |
| case 12: c+=((uint32_t)k[11])<<24; |
| case 11: c+=((uint32_t)k[10])<<16; |
| case 10: c+=((uint32_t)k[9])<<8; |
| case 9 : c+=k[8]; |
| case 8 : b+=((uint32_t)k[7])<<24; |
| case 7 : b+=((uint32_t)k[6])<<16; |
| case 6 : b+=((uint32_t)k[5])<<8; |
| case 5 : b+=k[4]; |
| case 4 : a+=((uint32_t)k[3])<<24; |
| case 3 : a+=((uint32_t)k[2])<<16; |
| case 2 : a+=((uint32_t)k[1])<<8; |
| case 1 : a+=k[0]; |
| break; |
| case 0 : return c; |
| } |
| } |
| |
| final(a,b,c); |
| return c; |
| } |
| |
| unsigned long lh_char_hash(const void *k) |
| { |
| static volatile int random_seed = -1; |
| |
| if (random_seed == -1) { |
| int seed; |
| /* we can't use -1 as it is the unitialized sentinel */ |
| while ((seed = json_c_get_random_seed()) == -1); |
| #if defined __GNUC__ |
| __sync_val_compare_and_swap(&random_seed, -1, seed); |
| #elif defined _MSC_VER |
| InterlockedCompareExchange(&random_seed, seed, -1); |
| #else |
| #warning "racy random seed initializtion if used by multiple threads" |
| random_seed = seed; /* potentially racy */ |
| #endif |
| } |
| |
| return hashlittle((const char*)k, strlen((const char*)k), random_seed); |
| } |
| |
| int lh_char_equal(const void *k1, const void *k2) |
| { |
| return (strcmp((const char*)k1, (const char*)k2) == 0); |
| } |
| |
| struct lh_table* lh_table_new(int size, const char *name, |
| lh_entry_free_fn *free_fn, |
| lh_hash_fn *hash_fn, |
| lh_equal_fn *equal_fn) |
| { |
| int i; |
| struct lh_table *t; |
| |
| t = (struct lh_table*)calloc(1, sizeof(struct lh_table)); |
| if(!t) lh_abort("lh_table_new: calloc failed\n"); |
| t->count = 0; |
| t->size = size; |
| t->name = name; |
| t->table = (struct lh_entry*)calloc(size, sizeof(struct lh_entry)); |
| if(!t->table) lh_abort("lh_table_new: calloc failed\n"); |
| t->free_fn = free_fn; |
| t->hash_fn = hash_fn; |
| t->equal_fn = equal_fn; |
| for(i = 0; i < size; i++) t->table[i].k = LH_EMPTY; |
| return t; |
| } |
| |
| struct lh_table* lh_kchar_table_new(int size, const char *name, |
| lh_entry_free_fn *free_fn) |
| { |
| return lh_table_new(size, name, free_fn, lh_char_hash, lh_char_equal); |
| } |
| |
| struct lh_table* lh_kptr_table_new(int size, const char *name, |
| lh_entry_free_fn *free_fn) |
| { |
| return lh_table_new(size, name, free_fn, lh_ptr_hash, lh_ptr_equal); |
| } |
| |
| void lh_table_resize(struct lh_table *t, int new_size) |
| { |
| struct lh_table *new_t; |
| struct lh_entry *ent; |
| |
| new_t = lh_table_new(new_size, t->name, NULL, t->hash_fn, t->equal_fn); |
| ent = t->head; |
| while(ent) { |
| lh_table_insert(new_t, ent->k, ent->v); |
| ent = ent->next; |
| } |
| free(t->table); |
| t->table = new_t->table; |
| t->size = new_size; |
| t->head = new_t->head; |
| t->tail = new_t->tail; |
| t->resizes++; |
| free(new_t); |
| } |
| |
| void lh_table_free(struct lh_table *t) |
| { |
| struct lh_entry *c; |
| for(c = t->head; c != NULL; c = c->next) { |
| if(t->free_fn) { |
| t->free_fn(c); |
| } |
| } |
| free(t->table); |
| free(t); |
| } |
| |
| |
| int lh_table_insert(struct lh_table *t, void *k, const void *v) |
| { |
| unsigned long h, n; |
| |
| t->inserts++; |
| if(t->count >= t->size * LH_LOAD_FACTOR) lh_table_resize(t, t->size * 2); |
| |
| h = t->hash_fn(k); |
| n = h % t->size; |
| |
| while( 1 ) { |
| if(t->table[n].k == LH_EMPTY || t->table[n].k == LH_FREED) break; |
| t->collisions++; |
| if ((int)++n == t->size) n = 0; |
| } |
| |
| t->table[n].k = k; |
| t->table[n].v = v; |
| t->count++; |
| |
| if(t->head == NULL) { |
| t->head = t->tail = &t->table[n]; |
| t->table[n].next = t->table[n].prev = NULL; |
| } else { |
| t->tail->next = &t->table[n]; |
| t->table[n].prev = t->tail; |
| t->table[n].next = NULL; |
| t->tail = &t->table[n]; |
| } |
| |
| return 0; |
| } |
| |
| |
| struct lh_entry* lh_table_lookup_entry(struct lh_table *t, const void *k) |
| { |
| unsigned long h = t->hash_fn(k); |
| unsigned long n = h % t->size; |
| int count = 0; |
| |
| t->lookups++; |
| while( count < t->size ) { |
| if(t->table[n].k == LH_EMPTY) return NULL; |
| if(t->table[n].k != LH_FREED && |
| t->equal_fn(t->table[n].k, k)) return &t->table[n]; |
| if ((int)++n == t->size) n = 0; |
| count++; |
| } |
| return NULL; |
| } |
| |
| |
| const void* lh_table_lookup(struct lh_table *t, const void *k) |
| { |
| void *result; |
| lh_table_lookup_ex(t, k, &result); |
| return result; |
| } |
| |
| json_bool lh_table_lookup_ex(struct lh_table* t, const void* k, void **v) |
| { |
| struct lh_entry *e = lh_table_lookup_entry(t, k); |
| if (e != NULL) { |
| if (v != NULL) *v = (void *)e->v; |
| return TRUE; /* key found */ |
| } |
| if (v != NULL) *v = NULL; |
| return FALSE; /* key not found */ |
| } |
| |
| int lh_table_delete_entry(struct lh_table *t, struct lh_entry *e) |
| { |
| ptrdiff_t n = (ptrdiff_t)(e - t->table); /* CAW: fixed to be 64bit nice, still need the crazy negative case... */ |
| |
| /* CAW: this is bad, really bad, maybe stack goes other direction on this machine... */ |
| if(n < 0) { return -2; } |
| |
| if(t->table[n].k == LH_EMPTY || t->table[n].k == LH_FREED) return -1; |
| t->count--; |
| if(t->free_fn) t->free_fn(e); |
| t->table[n].v = NULL; |
| t->table[n].k = LH_FREED; |
| if(t->tail == &t->table[n] && t->head == &t->table[n]) { |
| t->head = t->tail = NULL; |
| } else if (t->head == &t->table[n]) { |
| t->head->next->prev = NULL; |
| t->head = t->head->next; |
| } else if (t->tail == &t->table[n]) { |
| t->tail->prev->next = NULL; |
| t->tail = t->tail->prev; |
| } else { |
| t->table[n].prev->next = t->table[n].next; |
| t->table[n].next->prev = t->table[n].prev; |
| } |
| t->table[n].next = t->table[n].prev = NULL; |
| return 0; |
| } |
| |
| |
| int lh_table_delete(struct lh_table *t, const void *k) |
| { |
| struct lh_entry *e = lh_table_lookup_entry(t, k); |
| if(!e) return -1; |
| return lh_table_delete_entry(t, e); |
| } |
| |
| int lh_table_length(struct lh_table *t) |
| { |
| return t->count; |
| } |