blob: 74c37c451950ff4af4c883c83a8617f16d7f9078 [file] [log] [blame] [edit]
/*
* Copyright (C) 2018-2024 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "NetBpfLoad"
#include <arpa/inet.h>
#include <bpf/btf.h>
#include <bpf/libbpf.h>
#include <dirent.h>
#include <elf.h>
#include <errno.h>
#include <error.h>
#include <fcntl.h>
#include <fstream>
#include <inttypes.h>
#include <iostream>
#include <linux/unistd.h>
#include <log/log.h>
#include <net/if.h>
#include <optional>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <string>
#include <sys/mman.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/utsname.h>
#include <sys/wait.h>
#include <sysexits.h>
#include <unistd.h>
#include <unordered_map>
#include <vector>
#include <android-base/cmsg.h>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/macros.h>
#include <android-base/properties.h>
#include <android-base/scopeguard.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <android/api-level.h>
#include "BpfSyscallWrappers.h"
#include "bpf/BpfUtils.h"
#include "bpf_map_def.h"
// The following matches bpf_helpers.h, which is only for inclusion in bpf code
#define BPFLOADER_MAINLINE_S_VERSION 42u
#define BPFLOADER_MAINLINE_25Q2_VERSION 47u
using android::base::EndsWith;
using android::base::GetIntProperty;
using android::base::GetProperty;
using android::base::InitLogging;
using android::base::KernelLogger;
using android::base::SetProperty;
using android::base::Split;
using android::base::StartsWith;
using android::base::Tokenize;
using android::base::unique_fd;
using std::ifstream;
using std::ios;
using std::optional;
using std::string;
using std::vector;
namespace android {
namespace bpf {
// Bpf programs may specify per-program & per-map selinux_context and pin_subdir.
//
// The BpfLoader needs to convert these bpf.o specified strings into an enum
// for internal use (to check that valid values were specified for the specific
// location of the bpf.o file).
//
// It also needs to map selinux_context's into pin_subdir's.
// This is because of how selinux_context is actually implemented via pin+rename.
//
// Thus 'domain' enumerates all selinux_context's/pin_subdir's that the BpfLoader
// is aware of. Thus there currently needs to be a 1:1 mapping between the two.
//
enum class domain : int {
unspecified = 0, // means just use the default for that specific pin location
tethering, // (S+) fs_bpf_tethering /sys/fs/bpf/tethering
net_private, // (T+) fs_bpf_net_private /sys/fs/bpf/net_private
net_shared, // (T+) fs_bpf_net_shared /sys/fs/bpf/net_shared
netd_readonly, // (T+) fs_bpf_netd_readonly /sys/fs/bpf/netd_readonly
netd_shared, // (T+) fs_bpf_netd_shared /sys/fs/bpf/netd_shared
loader, // (U+) fs_bpf_loader /sys/fs/bpf/loader
// on T due to lack of sepolicy/genfscon rules it behaves simply as 'fs_bpf'
};
static constexpr domain AllDomains[] = {
domain::unspecified,
domain::tethering,
domain::net_private,
domain::net_shared,
domain::netd_readonly,
domain::netd_shared,
domain::loader,
};
static constexpr bool specified(domain d) {
return d != domain::unspecified;
}
struct Location {
const char* const dir = "";
const char* const prefix = "";
const bool t_plus = true;
};
// Returns the build type string (from ro.build.type).
const std::string& getBuildType() {
static std::string t = GetProperty("ro.build.type", "unknown");
return t;
}
// The following functions classify the 3 Android build types.
inline bool isEng() {
return getBuildType() == "eng";
}
inline bool isUser() {
return getBuildType() == "user";
}
inline bool isUserdebug() {
return getBuildType() == "userdebug";
}
#define BPF_FS_PATH "/sys/fs/bpf/"
static unsigned int page_size = static_cast<unsigned int>(getpagesize());
constexpr const char* lookupSelinuxContext(const domain d) {
switch (d) {
case domain::unspecified: return "";
case domain::tethering: return "fs_bpf_tethering";
case domain::net_private: return "fs_bpf_net_private";
case domain::net_shared: return "fs_bpf_net_shared";
case domain::netd_readonly: return "fs_bpf_netd_readonly";
case domain::netd_shared: return "fs_bpf_netd_shared";
case domain::loader: return "fs_bpf_loader";
}
}
domain getDomainFromSelinuxContext(const char s[BPF_SELINUX_CONTEXT_CHAR_ARRAY_SIZE]) {
for (domain d : AllDomains) {
// Not sure how to enforce this at compile time, so abort() bpfloader at boot instead
if (strlen(lookupSelinuxContext(d)) >= BPF_SELINUX_CONTEXT_CHAR_ARRAY_SIZE) abort();
if (!strncmp(s, lookupSelinuxContext(d), BPF_SELINUX_CONTEXT_CHAR_ARRAY_SIZE)) return d;
}
ALOGE("unrecognized selinux_context '%-32s'", s);
// Note: we *can* just abort() here as we only load bpf .o files shipped
// in the same mainline module / apex as NetBpfLoad itself.
abort();
}
constexpr const char* lookupPinSubdir(const domain d, const char* const unspecified = "") {
switch (d) {
case domain::unspecified: return unspecified;
case domain::tethering: return "tethering/";
case domain::net_private: return "net_private/";
case domain::net_shared: return "net_shared/";
case domain::netd_readonly: return "netd_readonly/";
case domain::netd_shared: return "netd_shared/";
case domain::loader: return "loader/";
}
};
domain getDomainFromPinSubdir(const char s[BPF_PIN_SUBDIR_CHAR_ARRAY_SIZE]) {
for (domain d : AllDomains) {
// Not sure how to enforce this at compile time, so abort() bpfloader at boot instead
if (strlen(lookupPinSubdir(d)) >= BPF_PIN_SUBDIR_CHAR_ARRAY_SIZE) abort();
if (!strncmp(s, lookupPinSubdir(d), BPF_PIN_SUBDIR_CHAR_ARRAY_SIZE)) return d;
}
ALOGE("unrecognized pin_subdir '%-32s'", s);
// Note: we *can* just abort() here as we only load bpf .o files shipped
// in the same mainline module / apex as NetBpfLoad itself.
abort();
}
static string pathToObjName(const string& path) {
// extract everything after the final slash, ie. this is the filename 'foo@1.o' or 'bar.o'
string filename = Split(path, "/").back();
// strip off everything from the final period onwards (strip '.o' suffix), ie. 'foo@1' or 'bar'
string name = filename.substr(0, filename.find_last_of('.'));
// strip any potential @1 suffix, this will leave us with just 'foo' or 'bar'
// this can be used to provide duplicate programs (mux based on the bpfloader version)
return name.substr(0, name.find_last_of('@'));
}
typedef struct {
const char* name;
enum bpf_prog_type type;
enum bpf_attach_type attach_type;
} sectionType;
/*
* Map section name prefixes to program types, the section name will be:
* SECTION(<prefix>/<name-of-program>)
* For example:
* SECTION("tracepoint/sched_switch_func") where sched_switch_funcs
* is the name of the program, and tracepoint is the type.
*
* However, be aware that you should not be directly using the SECTION() macro.
* Instead use the DEFINE_(BPF|XDP)_(PROG|MAP)... & LICENSE macros.
*
* Programs shipped inside the tethering apex should be limited to networking stuff,
* as KPROBE, PERF_EVENT, TRACEPOINT are dangerous to use from mainline updatable code,
* since they are less stable abi/api and may conflict with platform uses of bpf.
*/
sectionType sectionNameTypes[] = {
{"bind4/", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND},
{"bind6/", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND},
{"cgroupskb/", BPF_PROG_TYPE_CGROUP_SKB},
{"cgroupsock/", BPF_PROG_TYPE_CGROUP_SOCK},
{"cgroupsockcreate/", BPF_PROG_TYPE_CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE},
{"cgroupsockrelease/", BPF_PROG_TYPE_CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE},
{"connect4/", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT},
{"connect6/", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT},
{"egress/", BPF_PROG_TYPE_CGROUP_SKB, BPF_CGROUP_INET_EGRESS},
{"getsockopt/", BPF_PROG_TYPE_CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT},
{"ingress/", BPF_PROG_TYPE_CGROUP_SKB, BPF_CGROUP_INET_INGRESS},
{"postbind4/", BPF_PROG_TYPE_CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND},
{"postbind6/", BPF_PROG_TYPE_CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND},
{"recvmsg4/", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG},
{"recvmsg6/", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG},
{"schedact/", BPF_PROG_TYPE_SCHED_ACT},
{"schedcls/", BPF_PROG_TYPE_SCHED_CLS},
{"sendmsg4/", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG},
{"sendmsg6/", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG},
{"setsockopt/", BPF_PROG_TYPE_CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT},
{"skfilter/", BPF_PROG_TYPE_SOCKET_FILTER},
{"sockops/", BPF_PROG_TYPE_SOCK_OPS, BPF_CGROUP_SOCK_OPS},
{"sysctl", BPF_PROG_TYPE_CGROUP_SYSCTL, BPF_CGROUP_SYSCTL},
{"xdp/", BPF_PROG_TYPE_XDP},
};
typedef struct {
enum bpf_prog_type type;
enum bpf_attach_type attach_type;
string name;
vector<char> data;
vector<char> rel_data;
optional<struct bpf_prog_def> prog_def;
unique_fd prog_fd; // fd after loading
} codeSection;
static int readElfHeader(ifstream& elfFile, Elf64_Ehdr* eh) {
elfFile.seekg(0);
if (elfFile.fail()) return -1;
if (!elfFile.read((char*)eh, sizeof(*eh))) return -1;
return 0;
}
// Reads all section header tables into an Shdr array
static int readSectionHeadersAll(ifstream& elfFile, vector<Elf64_Shdr>& shTable) {
Elf64_Ehdr eh;
int ret = 0;
ret = readElfHeader(elfFile, &eh);
if (ret) return ret;
elfFile.seekg(eh.e_shoff);
if (elfFile.fail()) return -1;
// Read shdr table entries
shTable.resize(eh.e_shnum);
if (!elfFile.read((char*)shTable.data(), (eh.e_shnum * eh.e_shentsize))) return -ENOMEM;
return 0;
}
// Read a section by its index - for ex to get sec hdr strtab blob
static int readSectionByIdx(ifstream& elfFile, int id, vector<char>& sec) {
vector<Elf64_Shdr> shTable;
int ret = readSectionHeadersAll(elfFile, shTable);
if (ret) return ret;
elfFile.seekg(shTable[id].sh_offset);
if (elfFile.fail()) return -1;
sec.resize(shTable[id].sh_size);
if (!elfFile.read(sec.data(), shTable[id].sh_size)) return -1;
return 0;
}
// Read whole section header string table
static int readSectionHeaderStrtab(ifstream& elfFile, vector<char>& strtab) {
Elf64_Ehdr eh;
int ret = readElfHeader(elfFile, &eh);
if (ret) return ret;
ret = readSectionByIdx(elfFile, eh.e_shstrndx, strtab);
if (ret) return ret;
return 0;
}
// Get name from offset in strtab
static int getSymName(ifstream& elfFile, int nameOff, string& name) {
int ret;
vector<char> secStrTab;
ret = readSectionHeaderStrtab(elfFile, secStrTab);
if (ret) return ret;
if (nameOff >= (int)secStrTab.size()) return -1;
name = string((char*)secStrTab.data() + nameOff);
return 0;
}
// Reads a full section by name - example to get the GPL license
static int readSectionByName(const char* name, ifstream& elfFile, vector<char>& data) {
vector<char> secStrTab;
vector<Elf64_Shdr> shTable;
int ret;
ret = readSectionHeadersAll(elfFile, shTable);
if (ret) return ret;
ret = readSectionHeaderStrtab(elfFile, secStrTab);
if (ret) return ret;
for (int i = 0; i < (int)shTable.size(); i++) {
char* secname = secStrTab.data() + shTable[i].sh_name;
if (!secname) continue;
if (!strcmp(secname, name)) {
vector<char> dataTmp;
dataTmp.resize(shTable[i].sh_size);
elfFile.seekg(shTable[i].sh_offset);
if (elfFile.fail()) return -1;
if (!elfFile.read((char*)dataTmp.data(), shTable[i].sh_size)) return -1;
data = dataTmp;
return 0;
}
}
return -2;
}
unsigned int readSectionUint(const char* name, ifstream& elfFile) {
vector<char> theBytes;
int ret = readSectionByName(name, elfFile, theBytes);
if (ret) {
ALOGE("Couldn't find section %s.", name);
abort();
} else if (theBytes.size() < sizeof(unsigned int)) {
ALOGE("Section %s is too short.", name);
abort();
} else {
// decode first 4 bytes as LE32 uint, there will likely be more bytes due to alignment.
unsigned int value = static_cast<unsigned char>(theBytes[3]);
value <<= 8;
value += static_cast<unsigned char>(theBytes[2]);
value <<= 8;
value += static_cast<unsigned char>(theBytes[1]);
value <<= 8;
value += static_cast<unsigned char>(theBytes[0]);
ALOGD("Section %s value is %u [0x%x]", name, value, value);
return value;
}
}
static int readSectionByType(ifstream& elfFile, int type, vector<char>& data) {
int ret;
vector<Elf64_Shdr> shTable;
ret = readSectionHeadersAll(elfFile, shTable);
if (ret) return ret;
for (int i = 0; i < (int)shTable.size(); i++) {
if ((int)shTable[i].sh_type != type) continue;
vector<char> dataTmp;
dataTmp.resize(shTable[i].sh_size);
elfFile.seekg(shTable[i].sh_offset);
if (elfFile.fail()) return -1;
if (!elfFile.read((char*)dataTmp.data(), shTable[i].sh_size)) return -1;
data = dataTmp;
return 0;
}
return -2;
}
static bool symCompare(Elf64_Sym a, Elf64_Sym b) {
return (a.st_value < b.st_value);
}
static int readSymTab(ifstream& elfFile, int sort, vector<Elf64_Sym>& data) {
int ret, numElems;
Elf64_Sym* buf;
vector<char> secData;
ret = readSectionByType(elfFile, SHT_SYMTAB, secData);
if (ret) return ret;
buf = (Elf64_Sym*)secData.data();
numElems = (secData.size() / sizeof(Elf64_Sym));
data.assign(buf, buf + numElems);
if (sort) std::sort(data.begin(), data.end(), symCompare);
return 0;
}
static enum bpf_prog_type getSectionType(string& name) {
for (auto& snt : sectionNameTypes)
if (StartsWith(name, snt.name)) return snt.type;
return BPF_PROG_TYPE_UNSPEC;
}
static int readProgDefs(ifstream& elfFile, vector<struct bpf_prog_def>& pd) {
vector<char> pdData;
int ret = readSectionByName("progs", elfFile, pdData);
if (ret) return ret;
if (pdData.size() % sizeof(struct bpf_prog_def)) {
ALOGE("readProgDefs failed due to improper sized progs section, %zu %% %zu != 0",
pdData.size(), sizeof(struct bpf_prog_def));
return -1;
};
pd.resize(pdData.size() / sizeof(struct bpf_prog_def));
const char* dataPtr = pdData.data();
for (auto& p : pd) {
// Copy the structure from the ELF file and move to the next one.
memcpy(&p, dataPtr, sizeof(struct bpf_prog_def));
dataPtr += sizeof(struct bpf_prog_def);
}
return 0;
}
static int getSectionSymNames(ifstream& elfFile, const string& sectionName, vector<string>& names,
optional<unsigned> symbolType = std::nullopt) {
int ret;
string name;
vector<Elf64_Sym> symtab;
vector<Elf64_Shdr> shTable;
ret = readSymTab(elfFile, 1 /* sort */, symtab);
if (ret) return ret;
// Get index of section
ret = readSectionHeadersAll(elfFile, shTable);
if (ret) return ret;
int sec_idx = -1;
for (int i = 0; i < (int)shTable.size(); i++) {
ret = getSymName(elfFile, shTable[i].sh_name, name);
if (ret) return ret;
if (!name.compare(sectionName)) {
sec_idx = i;
break;
}
}
// No section found with matching name
if (sec_idx == -1) {
ALOGW("No %s section could be found in elf object", sectionName.c_str());
return -1;
}
for (int i = 0; i < (int)symtab.size(); i++) {
if (symbolType.has_value() && ELF_ST_TYPE(symtab[i].st_info) != symbolType) continue;
if (symtab[i].st_shndx == sec_idx) {
string s;
ret = getSymName(elfFile, symtab[i].st_name, s);
if (ret) return ret;
names.push_back(s);
}
}
return 0;
}
// Read a section by its index - for ex to get sec hdr strtab blob
static int readCodeSections(ifstream& elfFile, vector<codeSection>& cs) {
vector<Elf64_Shdr> shTable;
int entries, ret = 0;
ret = readSectionHeadersAll(elfFile, shTable);
if (ret) return ret;
entries = shTable.size();
vector<struct bpf_prog_def> pd;
ret = readProgDefs(elfFile, pd);
if (ret) return ret;
vector<string> progDefNames;
ret = getSectionSymNames(elfFile, "progs", progDefNames);
if (!pd.empty() && ret) return ret;
for (int i = 0; i < entries; i++) {
string name;
codeSection cs_temp;
cs_temp.type = BPF_PROG_TYPE_UNSPEC;
ret = getSymName(elfFile, shTable[i].sh_name, name);
if (ret) return ret;
enum bpf_prog_type ptype = getSectionType(name);
if (ptype == BPF_PROG_TYPE_UNSPEC) continue;
// This must be done before '/' is replaced with '_'.
for (auto& snt : sectionNameTypes)
if (StartsWith(name, snt.name)) cs_temp.attach_type = snt.attach_type;
string oldName = name;
// convert all slashes to underscores
std::replace(name.begin(), name.end(), '/', '_');
cs_temp.type = ptype;
cs_temp.name = name;
ret = readSectionByIdx(elfFile, i, cs_temp.data);
if (ret) return ret;
ALOGV("Loaded code section %d (%s)", i, name.c_str());
vector<string> csSymNames;
ret = getSectionSymNames(elfFile, oldName, csSymNames, STT_FUNC);
if (ret || !csSymNames.size()) return ret;
for (size_t j = 0; j < progDefNames.size(); ++j) {
if (!progDefNames[j].compare(csSymNames[0] + "_def")) {
cs_temp.prog_def = pd[j];
break;
}
}
// Check for rel section
if (cs_temp.data.size() > 0 && i < entries) {
ret = getSymName(elfFile, shTable[i + 1].sh_name, name);
if (ret) return ret;
if (name == (".rel" + oldName)) {
ret = readSectionByIdx(elfFile, i + 1, cs_temp.rel_data);
if (ret) return ret;
ALOGV("Loaded relo section %d (%s)", i, name.c_str());
}
}
if (cs_temp.data.size() > 0) {
cs.push_back(std::move(cs_temp));
ALOGV("Adding section %d to cs list", i);
}
}
return 0;
}
static int getSymNameByIdx(ifstream& elfFile, int index, string& name) {
vector<Elf64_Sym> symtab;
int ret = 0;
ret = readSymTab(elfFile, 0 /* !sort */, symtab);
if (ret) return ret;
if (index >= (int)symtab.size()) return -1;
return getSymName(elfFile, symtab[index].st_name, name);
}
static bool mapMatchesExpectations(const unique_fd& fd, const string& mapName,
const struct bpf_map_def& mapDef, const enum bpf_map_type type) {
// bpfGetFd... family of functions require at minimum a 4.14 kernel,
// so on 4.9-T kernels just pretend the map matches our expectations.
// Additionally we'll get almost equivalent test coverage on newer devices/kernels.
// This is because the primary failure mode we're trying to detect here
// is either a source code misconfiguration (which is likely kernel independent)
// or a newly introduced kernel feature/bug (which is unlikely to get backported to 4.9).
if (!isAtLeastKernelVersion(4, 14, 0)) return true;
// Assuming fd is a valid Bpf Map file descriptor then
// all the following should always succeed on a 4.14+ kernel.
// If they somehow do fail, they'll return -1 (and set errno),
// which should then cause (among others) a key_size mismatch.
int fd_type = bpfGetFdMapType(fd);
int fd_key_size = bpfGetFdKeySize(fd);
int fd_value_size = bpfGetFdValueSize(fd);
int fd_max_entries = bpfGetFdMaxEntries(fd);
int fd_map_flags = bpfGetFdMapFlags(fd);
// DEVMAPs are readonly from the bpf program side's point of view, as such
// the kernel in kernel/bpf/devmap.c dev_map_init_map() will set the flag
int desired_map_flags = (int)mapDef.map_flags;
if (type == BPF_MAP_TYPE_DEVMAP || type == BPF_MAP_TYPE_DEVMAP_HASH)
desired_map_flags |= BPF_F_RDONLY_PROG;
// The .h file enforces that this is a power of two, and page size will
// also always be a power of two, so this logic is actually enough to
// force it to be a multiple of the page size, as required by the kernel.
unsigned int desired_max_entries = mapDef.max_entries;
if (type == BPF_MAP_TYPE_RINGBUF) {
if (desired_max_entries < page_size) desired_max_entries = page_size;
}
// The following checks should *never* trigger, if one of them somehow does,
// it probably means a bpf .o file has been changed/replaced at runtime
// and bpfloader was manually rerun (normally it should only run *once*
// early during the boot process).
// Another possibility is that something is misconfigured in the code:
// most likely a shared map is declared twice differently.
// But such a change should never be checked into the source tree...
if ((fd_type == type) &&
(fd_key_size == (int)mapDef.key_size) &&
(fd_value_size == (int)mapDef.value_size) &&
(fd_max_entries == (int)desired_max_entries) &&
(fd_map_flags == desired_map_flags)) {
return true;
}
ALOGE("bpf map name %s mismatch: desired/found: "
"type:%d/%d key:%u/%d value:%u/%d entries:%u/%d flags:%u/%d",
mapName.c_str(), type, fd_type, mapDef.key_size, fd_key_size, mapDef.value_size,
fd_value_size, mapDef.max_entries, fd_max_entries, desired_map_flags, fd_map_flags);
return false;
}
static int setBtfDatasecSize(ifstream &elfFile, struct btf *btf,
struct btf_type *bt) {
const char *name = btf__name_by_offset(btf, bt->name_off);
if (!name) {
ALOGE("Couldn't resolve section name, errno: %d", errno);
return -errno;
}
vector<char> data;
int ret = readSectionByName(name, elfFile, data);
if (ret) {
ALOGE("Couldn't read section %s, ret: %d", name, ret);
return ret;
}
bt->size = data.size();
return 0;
}
static int getSymOffsetByName(ifstream &elfFile, const char *name, int *off) {
vector<Elf64_Sym> symtab;
int ret = readSymTab(elfFile, 1 /* sort */, symtab);
if (ret) return ret;
for (int i = 0; i < (int)symtab.size(); i++) {
string s;
ret = getSymName(elfFile, symtab[i].st_name, s);
if (ret) continue;
if (!strcmp(s.c_str(), name)) {
*off = symtab[i].st_value;
return 0;
}
}
return -1;
}
static int setBtfVarOffset(ifstream &elfFile, struct btf *btf,
struct btf_type *datasecBt) {
int i, vars = btf_vlen(datasecBt);
struct btf_var_secinfo *vsi;
const char *datasecName = btf__name_by_offset(btf, datasecBt->name_off);
if (!datasecName) {
ALOGE("Couldn't resolve section name, errno: %d", errno);
return -errno;
}
for (i = 0, vsi = btf_var_secinfos(datasecBt); i < vars; i++, vsi++) {
const struct btf_type *varBt = btf__type_by_id(btf, vsi->type);
if (!varBt || !btf_is_var(varBt)) {
ALOGE("Found non VAR kind btf_type, section: %s id: %d", datasecName,
vsi->type);
return -1;
}
const struct btf_var *var = btf_var(varBt);
if (var->linkage == BTF_VAR_STATIC) continue;
const char *varName = btf__name_by_offset(btf, varBt->name_off);
if (!varName) {
ALOGE("Failed to resolve var name, section: %s", datasecName);
return -1;
}
int off;
int ret = getSymOffsetByName(elfFile, varName, &off);
if (ret) {
ALOGE("No offset found in symbol table, section: %s, var: %s, ret: %d",
datasecName, varName, ret);
return ret;
}
vsi->offset = off;
}
return 0;
}
static int loadBtf(ifstream &elfFile, struct btf *btf) {
int ret;
for (unsigned int i = 1; i < btf__type_cnt(btf); ++i) {
struct btf_type *bt = (struct btf_type *)btf__type_by_id(btf, i);
if (!btf_is_datasec(bt)) continue;
ret = setBtfDatasecSize(elfFile, btf, bt);
if (ret) return ret;
ret = setBtfVarOffset(elfFile, btf, bt);
if (ret) return ret;
}
ret = btf__load_into_kernel(btf);
if (ret) {
if (errno != EINVAL) {
ALOGE("btf__load_into_kernel failed, errno: %d", errno);
return ret;
};
// For BTF_KIND_FUNC, newer kernels can read the BTF_INFO_VLEN bits of
// struct btf_type to distinguish static vs. global vs. extern
// functions, but older kernels enforce that only the BTF_INFO_KIND bits
// can be set. Retry with non-BTF_INFO_KIND bits zeroed out to handle
// this case.
for (unsigned int i = 1; i < btf__type_cnt(btf); ++i) {
struct btf_type *bt = (struct btf_type *)btf__type_by_id(btf, i);
if (btf_is_func(bt)) {
bt->info = (BTF_INFO_KIND(bt->info)) << 24;
}
}
ret = btf__load_into_kernel(btf);
if (ret) {
ALOGE("btf__load_into_kernel retry failed, errno: %d", errno);
return ret;
};
}
return 0;
}
int getKeyValueTids(const struct btf *btf, const char *mapName,
uint32_t expectedKeySize, uint32_t expectedValueSize,
uint32_t *keyTypeId, uint32_t *valueTypeId) {
const struct btf_type *kvBt;
const struct btf_member *key, *value;
const size_t max_name = 256;
char kvTypeName[max_name];
int64_t keySize, valueSize;
int32_t kvId;
if (snprintf(kvTypeName, max_name, "____btf_map_%s", mapName) == max_name) {
ALOGE("____btf_map_%s is too long", mapName);
return -1;
}
kvId = btf__find_by_name(btf, kvTypeName);
if (kvId < 0) {
ALOGE("section not found, map: %s typeName: %s", mapName, kvTypeName);
return -1;
}
kvBt = btf__type_by_id(btf, kvId);
if (!kvBt) {
ALOGE("Couldn't find BTF type, map: %s id: %u", mapName, kvId);
return -1;
}
if (!btf_is_struct(kvBt) || btf_vlen(kvBt) < 2) {
ALOGE("Non Struct kind or invalid vlen, map: %s id: %u", mapName, kvId);
return -1;
}
key = btf_members(kvBt);
value = key + 1;
keySize = btf__resolve_size(btf, key->type);
if (keySize < 0) {
ALOGE("Couldn't get key size, map: %s errno: %d", mapName, errno);
return -1;
}
valueSize = btf__resolve_size(btf, value->type);
if (valueSize < 0) {
ALOGE("Couldn't get value size, map: %s errno: %d", mapName, errno);
return -1;
}
if (expectedKeySize != keySize || expectedValueSize != valueSize) {
ALOGE("Key value size mismatch, map: %s key size: %d expected key size: "
"%d value size: %d expected value size: %d",
mapName, (uint32_t)keySize, expectedKeySize, (uint32_t)valueSize,
expectedValueSize);
return -1;
}
*keyTypeId = key->type;
*valueTypeId = value->type;
return 0;
}
static bool isBtfSupported(enum bpf_map_type type) {
return type != BPF_MAP_TYPE_DEVMAP_HASH && type != BPF_MAP_TYPE_RINGBUF;
}
static int createMaps(const char* elfPath, ifstream& elfFile, vector<unique_fd>& mapFds,
const char* prefix, const unsigned int bpfloader_ver) {
int ret;
vector<char> mdData, btfData;
vector<struct bpf_map_def> md;
vector<string> mapNames;
string objName = pathToObjName(string(elfPath));
ret = readSectionByName("maps", elfFile, mdData);
if (ret == -2) return 0; // no maps to read
if (ret) return ret;
if (mdData.size() % sizeof(struct bpf_map_def)) {
ALOGE("createMaps failed due to improper sized maps section, %zu %% %zu != 0",
mdData.size(), sizeof(struct bpf_map_def));
return -1;
};
md.resize(mdData.size() / sizeof(struct bpf_map_def));
const char* dataPtr = mdData.data();
for (auto& m : md) {
// Copy the structure from the ELF file and move to the next one.
memcpy(&m, dataPtr, sizeof(struct bpf_map_def));
dataPtr += sizeof(struct bpf_map_def);
}
ret = getSectionSymNames(elfFile, "maps", mapNames);
if (ret) return ret;
struct btf *btf = NULL;
auto scopeGuard = base::make_scope_guard([btf] { if (btf) btf__free(btf); });
if (isAtLeastKernelVersion(5, 10, 0)) {
// Untested on Linux Kernel 5.4, but likely compatible.
// On Linux Kernels older than 4.18 BPF_BTF_LOAD command doesn't exist.
// On Linux Kernels older than 5.2 BTF_KIND_VAR and BTF_KIND_DATASEC don't exist.
ret = readSectionByName(".BTF", elfFile, btfData);
if (ret) {
ALOGE("Failed to read .BTF section, ret:%d", ret);
return ret;
}
btf = btf__new(btfData.data(), btfData.size());
if (btf == NULL) {
ALOGE("btf__new failed, errno: %d", errno);
return -errno;
}
ret = loadBtf(elfFile, btf);
if (ret) return ret;
}
unsigned kvers = kernelVersion();
for (int i = 0; i < (int)mapNames.size(); i++) {
if (md[i].zero != 0) abort();
if (bpfloader_ver < md[i].bpfloader_min_ver) {
ALOGD("skipping map %s which requires bpfloader min ver 0x%05x", mapNames[i].c_str(),
md[i].bpfloader_min_ver);
mapFds.push_back(unique_fd());
continue;
}
if (bpfloader_ver >= md[i].bpfloader_max_ver) {
ALOGD("skipping map %s which requires bpfloader max ver 0x%05x", mapNames[i].c_str(),
md[i].bpfloader_max_ver);
mapFds.push_back(unique_fd());
continue;
}
if (kvers < md[i].min_kver) {
ALOGD("skipping map %s which requires kernel version 0x%x >= 0x%x",
mapNames[i].c_str(), kvers, md[i].min_kver);
mapFds.push_back(unique_fd());
continue;
}
if (kvers >= md[i].max_kver) {
ALOGD("skipping map %s which requires kernel version 0x%x < 0x%x",
mapNames[i].c_str(), kvers, md[i].max_kver);
mapFds.push_back(unique_fd());
continue;
}
if ((md[i].ignore_on_eng && isEng()) || (md[i].ignore_on_user && isUser()) ||
(md[i].ignore_on_userdebug && isUserdebug())) {
ALOGD("skipping map %s which is ignored on %s builds", mapNames[i].c_str(),
getBuildType().c_str());
mapFds.push_back(unique_fd());
continue;
}
if ((isArm() && isKernel32Bit() && md[i].ignore_on_arm32) ||
(isArm() && isKernel64Bit() && md[i].ignore_on_aarch64) ||
(isX86() && isKernel32Bit() && md[i].ignore_on_x86_32) ||
(isX86() && isKernel64Bit() && md[i].ignore_on_x86_64) ||
(isRiscV() && md[i].ignore_on_riscv64)) {
ALOGD("skipping map %s which is ignored on %s", mapNames[i].c_str(),
describeArch());
mapFds.push_back(unique_fd());
continue;
}
enum bpf_map_type type = md[i].type;
if (type == BPF_MAP_TYPE_LPM_TRIE && !isAtLeastKernelVersion(4, 14, 0)) {
// On Linux Kernels older than 4.14 this map type doesn't exist - autoskip.
ALOGD("skipping LPM_TRIE map %s - requires kver 4.14+", mapNames[i].c_str());
mapFds.push_back(unique_fd());
continue;
}
if (type == BPF_MAP_TYPE_DEVMAP && !isAtLeastKernelVersion(4, 14, 0)) {
// On Linux Kernels older than 4.14 this map type doesn't exist, but it can kind
// of be approximated: ARRAY has the same userspace api, though it is not usable
// by the same ebpf programs. However, that's okay because the bpf_redirect_map()
// helper doesn't exist on 4.9-T anyway (so the bpf program would fail to load,
// and thus needs to be tagged as 4.14+ either way), so there's nothing useful you
// could do with a DEVMAP anyway (that isn't already provided by an ARRAY)...
// Hence using an ARRAY instead of a DEVMAP simply makes life easier for userspace.
type = BPF_MAP_TYPE_ARRAY;
}
if (type == BPF_MAP_TYPE_DEVMAP_HASH && !isAtLeastKernelVersion(5, 4, 0)) {
// On Linux Kernels older than 5.4 this map type doesn't exist, but it can kind
// of be approximated: HASH has the same userspace visible api.
// However it cannot be used by ebpf programs in the same way.
// Since bpf_redirect_map() only requires 4.14, a program using a DEVMAP_HASH map
// would fail to load (due to trying to redirect to a HASH instead of DEVMAP_HASH).
// One must thus tag any BPF_MAP_TYPE_DEVMAP_HASH + bpf_redirect_map() using
// programs as being 5.4+...
type = BPF_MAP_TYPE_HASH;
}
// The .h file enforces that this is a power of two, and page size will
// also always be a power of two, so this logic is actually enough to
// force it to be a multiple of the page size, as required by the kernel.
unsigned int max_entries = md[i].max_entries;
if (type == BPF_MAP_TYPE_RINGBUF) {
if (max_entries < page_size) max_entries = page_size;
}
domain selinux_context = getDomainFromSelinuxContext(md[i].selinux_context);
if (specified(selinux_context)) {
ALOGV("map %s selinux_context [%-32s] -> %d -> '%s' (%s)", mapNames[i].c_str(),
md[i].selinux_context, static_cast<int>(selinux_context),
lookupSelinuxContext(selinux_context), lookupPinSubdir(selinux_context));
}
domain pin_subdir = getDomainFromPinSubdir(md[i].pin_subdir);
if (specified(pin_subdir)) {
ALOGV("map %s pin_subdir [%-32s] -> %d -> '%s'", mapNames[i].c_str(), md[i].pin_subdir,
static_cast<int>(pin_subdir), lookupPinSubdir(pin_subdir));
}
// Format of pin location is /sys/fs/bpf/<pin_subdir|prefix>map_<objName>_<mapName>
// except that maps shared across .o's have empty <objName>
// Note: <objName> refers to the extension-less basename of the .o file (without @ suffix).
string mapPinLoc = string(BPF_FS_PATH) + lookupPinSubdir(pin_subdir, prefix) + "map_" +
(md[i].shared ? "" : objName) + "_" + mapNames[i];
bool reuse = false;
unique_fd fd;
int saved_errno;
if (access(mapPinLoc.c_str(), F_OK) == 0) {
fd.reset(mapRetrieveRO(mapPinLoc.c_str()));
saved_errno = errno;
ALOGD("bpf_create_map reusing map %s, ret: %d", mapNames[i].c_str(), fd.get());
reuse = true;
} else {
union bpf_attr req = {
.map_type = type,
.key_size = md[i].key_size,
.value_size = md[i].value_size,
.max_entries = max_entries,
.map_flags = md[i].map_flags,
};
if (isAtLeastKernelVersion(4, 15, 0))
strlcpy(req.map_name, mapNames[i].c_str(), sizeof(req.map_name));
bool haveBtf = btf && isBtfSupported(type);
if (haveBtf) {
uint32_t kTid, vTid;
ret = getKeyValueTids(btf, mapNames[i].c_str(), md[i].key_size,
md[i].value_size, &kTid, &vTid);
if (ret) return ret;
req.btf_fd = btf__fd(btf);
req.btf_key_type_id = kTid;
req.btf_value_type_id = vTid;
}
fd.reset(bpf(BPF_MAP_CREATE, req));
saved_errno = errno;
if (fd.ok()) {
ALOGD("bpf_create_map[%s] btf:%d -> %d",
mapNames[i].c_str(), haveBtf, fd.get());
} else {
ALOGE("bpf_create_map[%s] btf:%d -> %d errno:%d",
mapNames[i].c_str(), haveBtf, fd.get(), saved_errno);
}
}
if (!fd.ok()) return -saved_errno;
// When reusing a pinned map, we need to check the map type/sizes/etc match, but for
// safety (since reuse code path is rare) run these checks even if we just created it.
// We assume failure is due to pinned map mismatch, hence the 'NOT UNIQUE' return code.
if (!mapMatchesExpectations(fd, mapNames[i], md[i], type)) return -ENOTUNIQ;
if (!reuse) {
if (specified(selinux_context)) {
string createLoc = string(BPF_FS_PATH) + lookupPinSubdir(selinux_context) +
"tmp_map_" + objName + "_" + mapNames[i];
ret = bpfFdPin(fd, createLoc.c_str());
if (ret) {
const int err = errno;
ALOGE("create %s -> %d [%d:%s]", createLoc.c_str(), ret, err, strerror(err));
return -err;
}
ret = renameat2(AT_FDCWD, createLoc.c_str(),
AT_FDCWD, mapPinLoc.c_str(), RENAME_NOREPLACE);
if (ret) {
const int err = errno;
ALOGE("rename %s %s -> %d [%d:%s]", createLoc.c_str(), mapPinLoc.c_str(), ret,
err, strerror(err));
return -err;
}
} else {
ret = bpfFdPin(fd, mapPinLoc.c_str());
if (ret) {
const int err = errno;
ALOGE("pin %s -> %d [%d:%s]", mapPinLoc.c_str(), ret, err, strerror(err));
return -err;
}
}
ret = chmod(mapPinLoc.c_str(), md[i].mode);
if (ret) {
const int err = errno;
ALOGE("chmod(%s, 0%o) = %d [%d:%s]", mapPinLoc.c_str(), md[i].mode, ret, err,
strerror(err));
return -err;
}
ret = chown(mapPinLoc.c_str(), (uid_t)md[i].uid, (gid_t)md[i].gid);
if (ret) {
const int err = errno;
ALOGE("chown(%s, %u, %u) = %d [%d:%s]", mapPinLoc.c_str(), md[i].uid, md[i].gid,
ret, err, strerror(err));
return -err;
}
}
if (isAtLeastKernelVersion(4, 14, 0)) {
int mapId = bpfGetFdMapId(fd);
if (mapId == -1) {
const int err = errno;
ALOGE("bpfGetFdMapId failed, errno: %d", err);
return -err;
}
ALOGI("map %s id %d", mapPinLoc.c_str(), mapId);
}
mapFds.push_back(std::move(fd));
}
return ret;
}
static void applyRelo(void* insnsPtr, Elf64_Addr offset, int fd) {
int insnIndex;
struct bpf_insn *insn, *insns;
insns = (struct bpf_insn*)(insnsPtr);
insnIndex = offset / sizeof(struct bpf_insn);
insn = &insns[insnIndex];
// Occasionally might be useful for relocation debugging, but pretty spammy
if (0) {
ALOGV("applying relo to instruction at byte offset: %llu, "
"insn offset %d, insn %llx",
(unsigned long long)offset, insnIndex, *(unsigned long long*)insn);
}
if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) {
ALOGE("invalid relo for insn %d: code 0x%x", insnIndex, insn->code);
return;
}
insn->imm = fd;
insn->src_reg = BPF_PSEUDO_MAP_FD;
}
static void applyMapRelo(ifstream& elfFile, vector<unique_fd> &mapFds, vector<codeSection>& cs) {
vector<string> mapNames;
int ret = getSectionSymNames(elfFile, "maps", mapNames);
if (ret) return;
for (int k = 0; k != (int)cs.size(); k++) {
Elf64_Rel* rel = (Elf64_Rel*)(cs[k].rel_data.data());
int n_rel = cs[k].rel_data.size() / sizeof(*rel);
for (int i = 0; i < n_rel; i++) {
int symIndex = ELF64_R_SYM(rel[i].r_info);
string symName;
ret = getSymNameByIdx(elfFile, symIndex, symName);
if (ret) return;
// Find the map fd and apply relo
for (int j = 0; j < (int)mapNames.size(); j++) {
if (!mapNames[j].compare(symName)) {
applyRelo(cs[k].data.data(), rel[i].r_offset, mapFds[j]);
break;
}
}
}
}
}
static int loadCodeSections(const char* elfPath, vector<codeSection>& cs, const string& license,
const char* prefix, const unsigned int bpfloader_ver) {
unsigned kvers = kernelVersion();
if (!kvers) {
ALOGE("unable to get kernel version");
return -EINVAL;
}
string objName = pathToObjName(string(elfPath));
for (int i = 0; i < (int)cs.size(); i++) {
unique_fd& fd = cs[i].prog_fd;
int ret;
string name = cs[i].name;
if (!cs[i].prog_def.has_value()) {
ALOGE("[%d] '%s' missing program definition! bad bpf.o build?", i, name.c_str());
return -EINVAL;
}
unsigned min_kver = cs[i].prog_def->min_kver;
unsigned max_kver = cs[i].prog_def->max_kver;
ALOGD("cs[%d].name:%s min_kver:%x .max_kver:%x (kvers:%x)", i, name.c_str(), min_kver,
max_kver, kvers);
if (kvers < min_kver) continue;
if (kvers >= max_kver) continue;
unsigned bpfMinVer = cs[i].prog_def->bpfloader_min_ver;
unsigned bpfMaxVer = cs[i].prog_def->bpfloader_max_ver;
domain selinux_context = getDomainFromSelinuxContext(cs[i].prog_def->selinux_context);
domain pin_subdir = getDomainFromPinSubdir(cs[i].prog_def->pin_subdir);
ALOGD("cs[%d].name:%s requires bpfloader version [0x%05x,0x%05x)", i, name.c_str(),
bpfMinVer, bpfMaxVer);
if (bpfloader_ver < bpfMinVer) continue;
if (bpfloader_ver >= bpfMaxVer) continue;
if ((cs[i].prog_def->ignore_on_eng && isEng()) ||
(cs[i].prog_def->ignore_on_user && isUser()) ||
(cs[i].prog_def->ignore_on_userdebug && isUserdebug())) {
ALOGD("cs[%d].name:%s is ignored on %s builds", i, name.c_str(),
getBuildType().c_str());
continue;
}
if ((isArm() && isKernel32Bit() && cs[i].prog_def->ignore_on_arm32) ||
(isArm() && isKernel64Bit() && cs[i].prog_def->ignore_on_aarch64) ||
(isX86() && isKernel32Bit() && cs[i].prog_def->ignore_on_x86_32) ||
(isX86() && isKernel64Bit() && cs[i].prog_def->ignore_on_x86_64) ||
(isRiscV() && cs[i].prog_def->ignore_on_riscv64)) {
ALOGD("cs[%d].name:%s is ignored on %s", i, name.c_str(), describeArch());
continue;
}
if (specified(selinux_context)) {
ALOGV("prog %s selinux_context [%-32s] -> %d -> '%s' (%s)", name.c_str(),
cs[i].prog_def->selinux_context, static_cast<int>(selinux_context),
lookupSelinuxContext(selinux_context), lookupPinSubdir(selinux_context));
}
if (specified(pin_subdir)) {
ALOGV("prog %s pin_subdir [%-32s] -> %d -> '%s'", name.c_str(),
cs[i].prog_def->pin_subdir, static_cast<int>(pin_subdir),
lookupPinSubdir(pin_subdir));
}
// strip any potential $foo suffix
// this can be used to provide duplicate programs
// conditionally loaded based on running kernel version
name = name.substr(0, name.find_last_of('$'));
bool reuse = false;
// Format of pin location is
// /sys/fs/bpf/<prefix>prog_<objName>_<progName>
string progPinLoc = string(BPF_FS_PATH) + lookupPinSubdir(pin_subdir, prefix) + "prog_" +
objName + '_' + string(name);
if (access(progPinLoc.c_str(), F_OK) == 0) {
fd.reset(retrieveProgram(progPinLoc.c_str()));
ALOGD("New bpf prog load reusing prog %s, ret: %d (%s)", progPinLoc.c_str(), fd.get(),
!fd.ok() ? std::strerror(errno) : "ok");
reuse = true;
} else {
static char log_buf[1 << 20]; // 1 MiB logging buffer
union bpf_attr req = {
.prog_type = cs[i].type,
.insn_cnt = static_cast<__u32>(cs[i].data.size() / sizeof(struct bpf_insn)),
.insns = ptr_to_u64(cs[i].data.data()),
.license = ptr_to_u64(license.c_str()),
.log_level = 1,
.log_size = sizeof(log_buf),
.log_buf = ptr_to_u64(log_buf),
.kern_version = kvers,
.expected_attach_type = cs[i].attach_type,
};
if (isAtLeastKernelVersion(4, 15, 0))
strlcpy(req.prog_name, cs[i].name.c_str(), sizeof(req.prog_name));
fd.reset(bpf(BPF_PROG_LOAD, req));
// Kernel should have NULL terminated the log buffer, but force it anyway for safety
log_buf[sizeof(log_buf) - 1] = 0;
// Strip out final newline if present
int log_chars = strlen(log_buf);
if (log_chars && log_buf[log_chars - 1] == '\n') log_buf[--log_chars] = 0;
bool log_oneline = !strchr(log_buf, '\n');
ALOGD("BPF_PROG_LOAD call for %s (%s) returned '%s' fd: %d (%s)", elfPath,
cs[i].name.c_str(), log_oneline ? log_buf : "{multiline}",
fd.get(), !fd.ok() ? std::strerror(errno) : "ok");
if (!fd.ok()) {
// kernel NULL terminates log_buf, so this checks for non-empty string
if (log_buf[0]) {
vector<string> lines = Split(log_buf, "\n");
ALOGW("BPF_PROG_LOAD - BEGIN log_buf contents:");
for (const auto& line : lines) ALOGW("%s", line.c_str());
ALOGW("BPF_PROG_LOAD - END log_buf contents.");
}
if (cs[i].prog_def->optional) {
ALOGW("failed program %s is marked optional - continuing...",
cs[i].name.c_str());
continue;
}
ALOGE("non-optional program %s failed to load.", cs[i].name.c_str());
}
}
if (!fd.ok()) return fd.get();
if (!reuse) {
if (specified(selinux_context)) {
string createLoc = string(BPF_FS_PATH) + lookupPinSubdir(selinux_context) +
"tmp_prog_" + objName + '_' + string(name);
ret = bpfFdPin(fd, createLoc.c_str());
if (ret) {
const int err = errno;
ALOGE("create %s -> %d [%d:%s]", createLoc.c_str(), ret, err, strerror(err));
return -err;
}
ret = renameat2(AT_FDCWD, createLoc.c_str(),
AT_FDCWD, progPinLoc.c_str(), RENAME_NOREPLACE);
if (ret) {
const int err = errno;
ALOGE("rename %s %s -> %d [%d:%s]", createLoc.c_str(), progPinLoc.c_str(), ret,
err, strerror(err));
return -err;
}
} else {
ret = bpfFdPin(fd, progPinLoc.c_str());
if (ret) {
const int err = errno;
ALOGE("create %s -> %d [%d:%s]", progPinLoc.c_str(), ret, err, strerror(err));
return -err;
}
}
if (chmod(progPinLoc.c_str(), 0440)) {
const int err = errno;
ALOGE("chmod %s 0440 -> [%d:%s]", progPinLoc.c_str(), err, strerror(err));
return -err;
}
if (chown(progPinLoc.c_str(), (uid_t)cs[i].prog_def->uid,
(gid_t)cs[i].prog_def->gid)) {
const int err = errno;
ALOGE("chown %s %d %d -> [%d:%s]", progPinLoc.c_str(), cs[i].prog_def->uid,
cs[i].prog_def->gid, err, strerror(err));
return -err;
}
}
if (isAtLeastKernelVersion(4, 14, 0)) {
int progId = bpfGetFdProgId(fd);
if (progId == -1) {
const int err = errno;
ALOGE("bpfGetFdProgId failed, errno: %d", err);
return -err;
}
int jitLen = bpfGetFdJitProgLen(fd);
if (jitLen == -1) {
const int err = errno;
ALOGE("bpfGetFdJitProgLen failed, ret: %d", err);
return -err;
}
int xlatLen = bpfGetFdXlatProgLen(fd);
if (xlatLen == -1) {
const int err = errno;
ALOGE("bpfGetFdXlatProgLen failed, ret: %d", err);
return -err;
}
ALOGI("prog %s id %d len jit:%d xlat:%d", progPinLoc.c_str(), progId, jitLen, xlatLen);
if (!jitLen && bpfloader_ver >= BPFLOADER_MAINLINE_25Q2_VERSION) {
ALOGE("Kernel eBPF JIT failure for %s", progPinLoc.c_str());
return -ENOTSUP;
}
}
}
return 0;
}
int loadProg(const char* const elfPath, const unsigned int bpfloader_ver,
const char* const prefix) {
vector<char> license;
vector<codeSection> cs;
vector<unique_fd> mapFds;
int ret;
ifstream elfFile(elfPath, ios::in | ios::binary);
if (!elfFile.is_open()) return -1;
ret = readSectionByName("license", elfFile, license);
if (ret) {
ALOGE("Couldn't find license in %s", elfPath);
return ret;
} else {
ALOGD("Loading ELF object %s with license %s",
elfPath, (char*)license.data());
}
unsigned int bpfLoaderMinVer = readSectionUint("bpfloader_min_ver", elfFile);
unsigned int bpfLoaderMaxVer = readSectionUint("bpfloader_max_ver", elfFile);
// inclusive lower bound check
if (bpfloader_ver < bpfLoaderMinVer) {
ALOGD("BpfLoader version 0x%05x ignoring ELF object %s with min ver 0x%05x",
bpfloader_ver, elfPath, bpfLoaderMinVer);
return 0;
}
// exclusive upper bound check
if (bpfloader_ver >= bpfLoaderMaxVer) {
ALOGD("BpfLoader version 0x%05x ignoring ELF object %s with max ver 0x%05x",
bpfloader_ver, elfPath, bpfLoaderMaxVer);
return 0;
}
ALOGD("BpfLoader version 0x%05x processing ELF object %s with ver [0x%05x,0x%05x)",
bpfloader_ver, elfPath, bpfLoaderMinVer, bpfLoaderMaxVer);
ret = createMaps(elfPath, elfFile, mapFds, prefix, bpfloader_ver);
if (ret) {
ALOGE("Failed to create maps: (ret=%d) in %s", ret, elfPath);
return ret;
}
for (int i = 0; i < (int)mapFds.size(); i++)
ALOGV("map_fd found at %d is %d in %s", i, mapFds[i].get(), elfPath);
ret = readCodeSections(elfFile, cs);
// BPF .o's with no programs are only supported by mainline netbpfload,
// make sure .o's targeting non-mainline (ie. S) bpfloader don't show up.
if (ret == -ENOENT && bpfLoaderMinVer >= BPFLOADER_MAINLINE_S_VERSION)
return 0;
if (ret) {
ALOGE("Couldn't read all code sections in %s", elfPath);
return ret;
}
applyMapRelo(elfFile, mapFds, cs);
ret = loadCodeSections(elfPath, cs, string(license.data()), prefix, bpfloader_ver);
if (ret) ALOGE("Failed to load programs, loadCodeSections ret=%d", ret);
return ret;
}
static bool exists(const char* const path) {
int v = access(path, F_OK);
if (!v) return true;
if (errno == ENOENT) return false;
ALOGE("FATAL: access(%s, F_OK) -> %d [%d:%s]", path, v, errno, strerror(errno));
abort(); // can only hit this if permissions (likely selinux) are screwed up
}
#define APEXROOT "/apex/com.android.tethering"
#define BPFROOT APEXROOT "/etc/bpf"
const Location locations[] = {
// S+ Tethering mainline module (network_stack): tether offload
{
.dir = BPFROOT "/tethering/",
.prefix = "tethering/",
.t_plus = false,
},
// T+ Tethering mainline module (shared with netd & system server)
// netutils_wrapper (for iptables xt_bpf) has access to programs
{
.dir = BPFROOT "/netd_shared/",
.prefix = "netd_shared/",
},
// T+ Tethering mainline module (shared with netd & system server)
// netutils_wrapper has no access, netd has read only access
{
.dir = BPFROOT "/netd_readonly/",
.prefix = "netd_readonly/",
},
// T+ Tethering mainline module (shared with system server)
{
.dir = BPFROOT "/net_shared/",
.prefix = "net_shared/",
},
// T+ Tethering mainline module (not shared, just network_stack)
{
.dir = BPFROOT "/net_private/",
.prefix = "net_private/",
},
};
static int loadAllElfObjects(const unsigned int bpfloader_ver, const Location& location) {
int retVal = 0;
DIR* dir;
struct dirent* ent;
if ((dir = opendir(location.dir)) != NULL) {
while ((ent = readdir(dir)) != NULL) {
string s = ent->d_name;
if (!EndsWith(s, ".o")) continue;
string progPath(location.dir);
progPath += s;
int ret = loadProg(progPath.c_str(), bpfloader_ver, location.prefix);
if (ret) {
retVal = ret;
ALOGE("Failed to load object: %s, ret: %s", progPath.c_str(), std::strerror(-ret));
} else {
ALOGD("Loaded object: %s", progPath.c_str());
}
}
closedir(dir);
}
return retVal;
}
static int createSysFsBpfSubDir(const char* const prefix) {
if (*prefix) {
mode_t prevUmask = umask(0);
string s = "/sys/fs/bpf/";
s += prefix;
errno = 0;
int ret = mkdir(s.c_str(), S_ISVTX | S_IRWXU | S_IRWXG | S_IRWXO);
if (ret && errno != EEXIST) {
const int err = errno;
ALOGE("Failed to create directory: %s, ret: %s", s.c_str(), std::strerror(err));
return -err;
}
umask(prevUmask);
}
return 0;
}
// Technically 'value' doesn't need to be newline terminated, but it's best
// to include a newline to match 'echo "value" > /proc/sys/...foo' behaviour,
// which is usually how kernel devs test the actual sysctl interfaces.
static int writeProcSysFile(const char *filename, const char *value) {
unique_fd fd(open(filename, O_WRONLY | O_CLOEXEC));
if (fd < 0) {
const int err = errno;
ALOGE("open('%s', O_WRONLY | O_CLOEXEC) -> %s", filename, strerror(err));
return -err;
}
int len = strlen(value);
int v = write(fd, value, len);
if (v < 0) {
const int err = errno;
ALOGE("write('%s', '%s', %d) -> %s", filename, value, len, strerror(err));
return -err;
}
if (v != len) {
// In practice, due to us only using this for /proc/sys/... files, this can't happen.
ALOGE("write('%s', '%s', %d) -> short write [%d]", filename, value, len, v);
return -EINVAL;
}
return 0;
}
#define APEX_MOUNT_POINT "/apex/com.android.tethering"
const char * const platformBpfLoader = "/system/bin/bpfloader";
const char *const uprobestatsBpfLoader =
"/apex/com.android.uprobestats/bin/uprobestatsbpfload";
static int logTetheringApexVersion(void) {
char * found_blockdev = NULL;
FILE * f = NULL;
char buf[4096];
f = fopen("/proc/mounts", "re");
if (!f) return 1;
// /proc/mounts format: block_device [space] mount_point [space] other stuff... newline
while (fgets(buf, sizeof(buf), f)) {
char * blockdev = buf;
char * space = strchr(blockdev, ' ');
if (!space) continue;
*space = '\0';
char * mntpath = space + 1;
space = strchr(mntpath, ' ');
if (!space) continue;
*space = '\0';
if (strcmp(mntpath, APEX_MOUNT_POINT)) continue;
found_blockdev = strdup(blockdev);
break;
}
fclose(f);
f = NULL;
if (!found_blockdev) return 2;
ALOGV("Found Tethering Apex mounted from blockdev %s", found_blockdev);
f = fopen("/proc/mounts", "re");
if (!f) { free(found_blockdev); return 3; }
while (fgets(buf, sizeof(buf), f)) {
char * blockdev = buf;
char * space = strchr(blockdev, ' ');
if (!space) continue;
*space = '\0';
char * mntpath = space + 1;
space = strchr(mntpath, ' ');
if (!space) continue;
*space = '\0';
if (strcmp(blockdev, found_blockdev)) continue;
if (strncmp(mntpath, APEX_MOUNT_POINT "@", strlen(APEX_MOUNT_POINT "@"))) continue;
char * at = strchr(mntpath, '@');
if (!at) continue;
char * ver = at + 1;
ALOGI("Tethering APEX version %s", ver);
}
fclose(f);
free(found_blockdev);
return 0;
}
static bool hasGSM() {
static string ph = GetProperty("gsm.current.phone-type", "");
static bool gsm = (ph != "");
static bool logged = false;
if (!logged) {
logged = true;
ALOGI("hasGSM(gsm.current.phone-type='%s'): %s", ph.c_str(), gsm ? "true" : "false");
}
return gsm;
}
static bool isTV() {
if (hasGSM()) return false; // TVs don't do GSM
static string key = GetProperty("ro.oem.key1", "");
static bool tv = StartsWith(key, "ATV00");
static bool logged = false;
if (!logged) {
logged = true;
ALOGI("isTV(ro.oem.key1='%s'): %s.", key.c_str(), tv ? "true" : "false");
}
return tv;
}
static bool isWear() {
static string wearSdkStr = GetProperty("ro.cw_build.wear_sdk.version", "");
static int wearSdkInt = GetIntProperty("ro.cw_build.wear_sdk.version", 0);
static string buildChars = GetProperty("ro.build.characteristics", "");
static vector<string> v = Tokenize(buildChars, ",");
static bool watch = (std::find(v.begin(), v.end(), "watch") != v.end());
static bool wear = (wearSdkInt > 0) || watch;
static bool logged = false;
if (!logged) {
logged = true;
ALOGI("isWear(ro.cw_build.wear_sdk.version=%d[%s] ro.build.characteristics='%s'): %s",
wearSdkInt, wearSdkStr.c_str(), buildChars.c_str(), wear ? "true" : "false");
}
return wear;
}
static int libbpfPrint(enum libbpf_print_level lvl, const char *const formatStr,
va_list argList) {
int32_t prio;
switch (lvl) {
case LIBBPF_WARN:
prio = ANDROID_LOG_WARN;
break;
case LIBBPF_INFO:
prio = ANDROID_LOG_INFO;
break;
case LIBBPF_DEBUG:
prio = ANDROID_LOG_DEBUG;
break;
}
char *s = strdup(formatStr ?: "(no format string)");
int len = strlen(s);
if (len && s[len - 1] == '\n')
s[len - 1] = 0;
LOG_PRI_VA(prio, LOG_TAG, s, argList);
free(s);
return 0;
}
static int doLoad(char** argv, char * const envp[]) {
if (!isAtLeastS) {
ALOGE("Impossible - not reachable on Android <S.");
// for safety, we don't fail, this is a just-in-case workaround
// for any possible busted 'optimized' start everything vendor init hacks on R
return 0;
}
libbpf_set_print(libbpfPrint);
const bool runningAsRoot = !getuid(); // true iff U QPR3 or V+
const int first_api_level = GetIntProperty("ro.board.first_api_level", api_level);
// last in U QPR2 beta1
const bool has_platform_bpfloader_rc = exists("/system/etc/init/bpfloader.rc");
// first in U QPR2 beta~2
const bool has_platform_netbpfload_rc = exists("/system/etc/init/netbpfload.rc");
// Version of Network BpfLoader depends on the Android OS version
unsigned int bpfloader_ver = BPFLOADER_MAINLINE_S_VERSION; // [42u]
if (isAtLeastT) ++bpfloader_ver; // [43] BPFLOADER_MAINLINE_T_VERSION
if (isAtLeastU) ++bpfloader_ver; // [44] BPFLOADER_MAINLINE_U_VERSION
if (runningAsRoot) ++bpfloader_ver; // [45] BPFLOADER_MAINLINE_U_QPR3_VERSION
if (isAtLeastV) ++bpfloader_ver; // [46] BPFLOADER_MAINLINE_V_VERSION
if (isAtLeast25Q2) ++bpfloader_ver; // [47] BPFLOADER_MAINLINE_25Q2_VERSION
ALOGI("NetBpfLoad v0.%u (%s) api:%d/%d kver:%07x (%s) libbpf: v%u.%u "
"uid:%d rc:%d%d",
bpfloader_ver, argv[0], android_get_device_api_level(), api_level,
kernelVersion(), describeArch(), libbpf_major_version(),
libbpf_minor_version(), getuid(), has_platform_bpfloader_rc,
has_platform_netbpfload_rc);
if (!has_platform_bpfloader_rc && !has_platform_netbpfload_rc) {
ALOGE("Unable to find platform's bpfloader & netbpfload init scripts.");
return 1;
}
if (has_platform_bpfloader_rc && has_platform_netbpfload_rc) {
ALOGE("Platform has *both* bpfloader & netbpfload init scripts.");
return 1;
}
logTetheringApexVersion();
// both S and T require kernel 4.9 (and eBpf support)
if (!isAtLeastKernelVersion(4, 9, 0)) {
ALOGE("Android S & T require kernel 4.9.");
return 1;
}
// U bumps the kernel requirement up to 4.14
if (isAtLeastU && !isAtLeastKernelVersion(4, 14, 0)) {
ALOGE("Android U requires kernel 4.14.");
return 1;
}
// V bumps the kernel requirement up to 4.19
// see also: //system/netd/tests/kernel_test.cpp TestKernel419
if (isAtLeastV && !isAtLeastKernelVersion(4, 19, 0)) {
ALOGE("Android V requires kernel 4.19.");
return 1;
}
// 25Q2 bumps the kernel requirement up to 5.4
// see also: //system/netd/tests/kernel_test.cpp TestKernel54
if (isAtLeast25Q2 && !isAtLeastKernelVersion(5, 4, 0)) {
ALOGE("Android 25Q2 requires kernel 5.4.");
return 1;
}
// Technically already required by U, but only enforce on V+
// see also: //system/netd/tests/kernel_test.cpp TestKernel64Bit
if (isAtLeastV && isKernel32Bit() && isAtLeastKernelVersion(5, 16, 0)) {
ALOGE("Android V+ platform with 32 bit kernel version >= 5.16.0 is unsupported");
if (!isTV()) return 1;
}
if (isKernel32Bit() && isAtLeast25Q2) {
ALOGE("Android 25Q2 requires 64 bit kernel.");
return 1;
}
// 6.6 is highest version supported by Android V, so this is effectively W+ (sdk=36+)
if (isKernel32Bit() && isAtLeastKernelVersion(6, 7, 0)) {
ALOGE("Android platform with 32 bit kernel version >= 6.7.0 is unsupported");
return 1;
}
// Various known ABI layout issues, particularly wrt. bpf and ipsec/xfrm.
if (isAtLeastV && isKernel32Bit() && isX86()) {
ALOGE("Android V requires X86 kernel to be 64-bit.");
if (!isTV()) return 1;
}
if (isAtLeastV) {
bool bad = false;
if (!isLtsKernel()) {
ALOGW("Android V+ only supports LTS kernels.");
bad = true;
}
#define REQUIRE(maj, min, sub) \
if (isKernelVersion(maj, min) && !isAtLeastKernelVersion(maj, min, sub)) { \
ALOGW("Android V+ requires %d.%d kernel to be %d.%d.%d+.", maj, min, maj, min, sub); \
bad = true; \
}
REQUIRE(4, 19, 236)
REQUIRE(5, 4, 186)
REQUIRE(5, 10, 199)
REQUIRE(5, 15, 136)
REQUIRE(6, 1, 57)
REQUIRE(6, 6, 0)
REQUIRE(6, 12, 0)
#undef REQUIRE
if (bad) {
ALOGE("Unsupported kernel version (%07x).", kernelVersion());
}
}
/* Android 14/U should only launch on 64-bit kernels
* T launches on 5.10/5.15
* U launches on 5.15/6.1
* So >=5.16 implies isKernel64Bit()
*
* We thus added a test to V VTS which requires 5.16+ devices to use 64-bit kernels.
*
* Starting with Android V, which is the first to support a post 6.1 Linux Kernel,
* we also require 64-bit userspace.
*
* There are various known issues with 32-bit userspace talking to various
* kernel interfaces (especially CAP_NET_ADMIN ones) on a 64-bit kernel.
* Some of these have userspace or kernel workarounds/hacks.
* Some of them don't...
* We're going to be removing the hacks.
* (for example "ANDROID: xfrm: remove in_compat_syscall() checks").
* Note: this check/enforcement only applies to *system* userspace code,
* it does not affect unprivileged apps, the 32-on-64 compatibility
* problems are AFAIK limited to various CAP_NET_ADMIN protected interfaces.
*
* Additionally the 32-bit kernel jit support is poor,
* and 32-bit userspace on 64-bit kernel bpf ringbuffer compatibility is broken.
* Note, however, that TV and Wear devices will continue to support 32-bit userspace
* on ARM64.
*/
if (isUserspace32bit() && isAtLeastKernelVersion(6, 2, 0)) {
// Stuff won't work reliably, but...
if (isArm() && (isTV() || isWear())) {
// exempt Arm TV or Wear devices (arm32 ABI is far less problematic than x86-32)
ALOGW("[Arm TV/Wear] 32-bit userspace unsupported on 6.2+ kernels.");
} else if (first_api_level <= 33 /*T*/ && isArm()) {
// also exempt Arm devices upgrading with major kernel rev from T-
// might possibly be better for them to run with a newer kernel...
ALOGW("[Arm KernelUpRev] 32-bit userspace unsupported on 6.2+ kernels.");
} else if (isArm()) {
ALOGE("[Arm] 64-bit userspace required on 6.2+ kernels (%d).", first_api_level);
return 1;
} else { // x86 since RiscV cannot be 32-bit
ALOGE("[x86] 64-bit userspace required on 6.2+ kernels.");
return 1;
}
}
// On handheld, 6.6 is highest version supported by Android V (sdk=35), so this is for sdk=36+
if (!isArm() && isUserspace32bit() && isAtLeastKernelVersion(6, 7, 0)) {
ALOGE("64-bit userspace required on 6.7+ kernels.");
return 1;
}
if (isAtLeast25Q2) {
FILE * f = fopen("/system/etc/init/netbpfload.rc", "re");
if (!f) {
ALOGE("failure opening /system/etc/init/netbpfload.rc");
return 1;
}
int y = -1, q = -1, a = -1, b = -1, c = -1;
int v = fscanf(f, "# %d %d %d %d %d #", &y, &q, &a, &b, &c);
ALOGI("detected %d of 5: %dQ%d api:%d.%d.%d", v, y, q, a, b, c);
fclose(f);
if (v != 5 || y != 2025 || a != 36 || b) return 1;
if (q < 2 || q > 3) return 1;
if (c < 0 || c > 1) return 1;
}
// Ensure we can determine the Android build type.
if (!isEng() && !isUser() && !isUserdebug()) {
ALOGE("Failed to determine the build type: got %s, want 'eng', 'user', or 'userdebug'",
getBuildType().c_str());
return 1;
}
if (runningAsRoot) {
// Note: writing this proc file requires being root (always the case on V+)
// Linux 5.16-rc1 changed the default to 2 (disabled but changeable),
// but we need 0 (enabled)
// (this writeFile is known to fail on at least 4.19, but always defaults to 0 on
// pre-5.13, on 5.13+ it depends on CONFIG_BPF_UNPRIV_DEFAULT_OFF)
if (writeProcSysFile("/proc/sys/kernel/unprivileged_bpf_disabled", "0\n") &&
isAtLeastKernelVersion(5, 13, 0)) return 1;
}
if (isAtLeastU) {
// Note: writing these proc files requires CAP_NET_ADMIN
// and sepolicy which is only present on U+,
// on Android T and earlier versions they're written from the 'load_bpf_programs'
// trigger (ie. by init itself) instead.
// Enable the eBPF JIT -- but do note that on 64-bit kernels it is likely
// already force enabled by the kernel config option BPF_JIT_ALWAYS_ON.
// (Note: this (open) will fail with ENOENT 'No such file or directory' if
// kernel does not have CONFIG_BPF_JIT=y)
// BPF_JIT is required by R VINTF (which means 4.14/4.19/5.4 kernels),
// but 4.14/4.19 were released with P & Q, and only 5.4 is new in R+.
if (writeProcSysFile("/proc/sys/net/core/bpf_jit_enable", "1\n")) return 1;
// Enable JIT kallsyms export for privileged users only
// (Note: this (open) will fail with ENOENT 'No such file or directory' if
// kernel does not have CONFIG_HAVE_EBPF_JIT=y)
if (writeProcSysFile("/proc/sys/net/core/bpf_jit_kallsyms", "1\n")) return 1;
}
// Create all the pin subdirectories
// (this must be done first to allow selinux_context and pin_subdir functionality,
// which could otherwise fail with ENOENT during object pinning or renaming,
// due to ordering issues)
for (const auto& location : locations) {
if (location.t_plus && !isAtLeastT) continue;
if (createSysFsBpfSubDir(location.prefix)) return 1;
}
if (isAtLeastT) {
// Note: there's no actual src dir for fs_bpf_loader .o's,
// so it is not listed in 'locations[].prefix'.
// This is because this is primarily meant for triggering genfscon rules,
// and as such this will likely always be the case.
// Thus we need to manually create the /sys/fs/bpf/loader subdirectory.
if (createSysFsBpfSubDir("loader")) return 1;
}
// Load all ELF objects, create programs and maps, and pin them
for (const auto& location : locations) {
if (location.t_plus && !isAtLeastT) continue;
if (loadAllElfObjects(bpfloader_ver, location) != 0) {
ALOGE("=== CRITICAL FAILURE LOADING BPF PROGRAMS FROM %s ===", location.dir);
ALOGE("If this triggers reliably, you're probably missing kernel options or patches.");
ALOGE("If this triggers randomly, you might be hitting some memory allocation "
"problems or startup script race.");
ALOGE("--- DO NOT EXPECT SYSTEM TO BOOT SUCCESSFULLY ---");
sleep(20);
return 2;
}
}
int key = 1;
int value = 123;
unique_fd map(
createMap(BPF_MAP_TYPE_ARRAY, sizeof(key), sizeof(value), 2, 0));
if (writeToMapEntry(map, &key, &value, BPF_ANY)) {
ALOGE("Critical kernel bug - failure to write into index 1 of 2 element bpf map array.");
return 1;
}
// on S we haven't created this subdir yet, but we need it for 'mainline_done' flag below
if (!isAtLeastT && createSysFsBpfSubDir("netd_shared")) return 1;
// leave a flag that we're done
if (createSysFsBpfSubDir("netd_shared/mainline_done")) return 1;
// platform bpfloader will only succeed when run as root
if (!runningAsRoot) {
// unreachable on U QPR3+ which always runs netbpfload as root
ALOGI("mainline done, no need to transfer control to platform bpf loader.");
return 0;
}
// unreachable before U QPR3
if (exists(uprobestatsBpfLoader)) {
ALOGI("done, transferring control to uprobestatsbpfload.");
const char *args[] = {
uprobestatsBpfLoader,
NULL,
};
execve(args[0], (char **)args, envp);
ALOGI("unable to execute uprobestatsbpfload, transferring control to "
"platform bpfloader.");
}
// platform BpfLoader *needs* to run as root
const char * args[] = { platformBpfLoader, NULL, };
execve(args[0], (char**)args, envp);
ALOGE("FATAL: execve('%s'): %d[%s]", platformBpfLoader, errno, strerror(errno));
return 1;
}
} // namespace bpf
} // namespace android
int main(int argc, char** argv, char * const envp[]) {
if (android::bpf::isAtLeastT) {
InitLogging(argv, &KernelLogger);
} else {
// S lacks the sepolicy to make non-root uid KernelLogger viable
InitLogging(argv);
}
if (argc == 2 && !strcmp(argv[1], "done")) {
// we're being re-exec'ed from platform bpfloader to 'finalize' things
if (!SetProperty("bpf.progs_loaded", "1")) {
ALOGE("Failed to set bpf.progs_loaded property to 1.");
return 125;
}
ALOGI("success.");
return 0;
}
return android::bpf::doLoad(argv, envp);
}