blob: 38a8e3595c0041d30616c5bfae2ac900e65d0d7f [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Operations"
#include "OperationResolver.h"
#include "OperationsUtils.h"
#ifdef NN_INCLUDE_CPU_IMPLEMENTATION
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunused-parameter"
#pragma clang diagnostic ignored "-Wsign-compare"
#include <tensorflow/lite/kernels/internal/reference/reference_ops.h>
#pragma clang diagnostic pop
#include "CpuOperationUtils.h"
#endif // NN_INCLUDE_CPU_IMPLEMENTATION
namespace android {
namespace nn {
namespace reverse_op {
constexpr char kOperationName[] = "REVERSE";
// inputs consist of tensor to be reversed and a shape [1] axis tensor
constexpr uint32_t kNumInputs = 2;
constexpr uint32_t kInputTensor = 0;
constexpr uint32_t kInputAxisTensor = 1;
constexpr uint32_t kNumOutputs = 1;
constexpr uint32_t kOutputTensor = 0;
Result<Version> validate(const IOperationValidationContext* context) {
NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
// Validate the input tensor.
const OperandType inputTensorType = context->getInputType(kInputTensor);
NN_RET_CHECK(inputTensorType == OperandType::TENSOR_FLOAT16 ||
inputTensorType == OperandType::TENSOR_FLOAT32 ||
inputTensorType == OperandType::TENSOR_QUANT8_ASYMM ||
inputTensorType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED ||
inputTensorType == OperandType::TENSOR_INT32);
// Validate the axis tensor.
NN_RET_CHECK_EQ(context->getInputType(kInputAxisTensor), OperandType::TENSOR_INT32);
const Shape inputAxisTensorShape = context->getInputShape(kInputAxisTensor);
if (hasKnownRank(inputAxisTensorShape)) {
NN_RET_CHECK_EQ(getNumberOfDimensions(inputAxisTensorShape), 1U)
<< "Input tensor #" << kInputAxisTensor << " must have 1 dimension";
auto dim0 = inputAxisTensorShape.dimensions[0];
NN_RET_CHECK(!dim0 || dim0 == 1)
<< "Input tensor #" << kInputAxisTensor << " dimension must be 1 but is " << dim0;
}
// Validate the output tensor.
NN_RET_CHECK_EQ(context->getOutputType(kOutputTensor), inputTensorType);
// Consistency checks.
const Shape inputTensorShape = context->getInputShape(kInputTensor);
const Shape outputTensorShape = context->getOutputShape(kOutputTensor);
if (inputTensorType == OperandType::TENSOR_QUANT8_ASYMM ||
inputTensorType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
NN_RET_CHECK_EQ(inputTensorShape.scale, outputTensorShape.scale)
<< "Input tensor #" << kInputTensor << " scale " << inputTensorShape.scale
<< " does not match output tensor scale " << outputTensorShape.scale;
NN_RET_CHECK_EQ(inputTensorShape.offset, outputTensorShape.offset)
<< "Input tensor #" << kInputTensor << " offset " << inputTensorShape.offset
<< " does not match output tensor offset " << outputTensorShape.offset;
}
auto inputTensorRank = getNumberOfDimensions(inputTensorShape);
auto outputTensorRank = getNumberOfDimensions(outputTensorShape);
NN_RET_CHECK(!inputTensorRank || !outputTensorRank || inputTensorRank == outputTensorRank)
<< "Input tensor #" << kInputTensor << " rank " << inputTensorRank << " does not match "
<< "output tensor rank " << outputTensorRank;
return Version::FEATURE_LEVEL_7;
}
#ifdef NN_INCLUDE_CPU_IMPLEMENTATION
bool prepare(IOperationExecutionContext* context) {
const Shape inputShape = context->getInputShape(kInputTensor);
// Input tensor must be of rank 1..8.
const auto inputTensorRank = getNumberOfDimensions(inputShape);
NN_RET_CHECK_GE(inputTensorRank, 1U);
NN_RET_CHECK_LE(inputTensorRank, 8U);
// Check the axis dimension value.
const Shape axisShape = context->getInputShape(kInputAxisTensor);
NN_RET_CHECK_EQ(getNumberOfDimensions(axisShape), 1U);
NN_RET_CHECK_EQ(getNumberOfElements(axisShape), 1U);
const int32_t axisDimension = (context->getInputBuffer<int32_t>(kInputAxisTensor))[0];
NN_RET_CHECK_GE(axisDimension, 0);
NN_RET_CHECK_LT(uint32_t(axisDimension), inputTensorRank);
Shape outputShape = context->getOutputShape(kOutputTensor);
NN_RET_CHECK(SetShape(inputShape, &outputShape));
return context->setOutputShape(kOutputTensor, outputShape);
}
template <typename T>
bool reverse(IOperationExecutionContext* context) {
// Note that the NNAPI REVERSE operation requires input and output tensor to
// have the same dimensions.
const tflite::RuntimeShape tensorShape =
convertShapeToTflshape(context->getInputShape(kInputTensor));
tflite::reference_ops::Reverse((context->getInputBuffer<int32_t>(kInputAxisTensor))[0],
tensorShape, context->getInputBuffer<T>(kInputTensor),
tensorShape, context->getOutputBuffer<T>(kOutputTensor));
return true;
}
bool execute(IOperationExecutionContext* context) {
switch (context->getInputType(kInputTensor)) {
case OperandType::TENSOR_FLOAT16:
return reverse<_Float16>(context);
case OperandType::TENSOR_FLOAT32:
return reverse<float>(context);
case OperandType::TENSOR_QUANT8_ASYMM:
return reverse<uint8_t>(context);
case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
return reverse<int8_t>(context);
case OperandType::TENSOR_INT32:
return reverse<int32_t>(context);
default:
NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
}
}
#endif // NN_INCLUDE_CPU_IMPLEMENTATION
} // namespace reverse_op
NN_REGISTER_OPERATION(REVERSE, reverse_op::kOperationName, reverse_op::validate,
reverse_op::prepare, reverse_op::execute);
} // namespace nn
} // namespace android