blob: 1aa7fea41e40af4346a4856be3d3d37a549d4384 [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_FRAMEWORKS_ML_NN_RUNTIME_TEST_FUZZING_RANDOM_GRAPH_GENERATOR_UTILS_H
#define ANDROID_FRAMEWORKS_ML_NN_RUNTIME_TEST_FUZZING_RANDOM_GRAPH_GENERATOR_UTILS_H
#include <android/log.h>
#include <chrono>
#include <fstream>
#include <limits>
#include <memory>
#include <random>
#include <sstream>
#include <string>
#include <vector>
#include "RandomGraphGenerator.h"
#include "RandomVariable.h"
#include "TestHarness.h"
#include "TestNeuralNetworksWrapper.h"
namespace android {
namespace nn {
namespace fuzzing_test {
#define NN_FUZZER_LOG_INIT(filename) Logger::get()->init((filename))
#define NN_FUZZER_LOG_WRITE_FATAL_TO_SYSLOG(logTag) \
LoggerStream::writeAbortMessageToSystemLog(logTag)
#define NN_FUZZER_LOG_CLOSE Logger::get()->close()
#define NN_FUZZER_LOG \
if (!Logger::get()->enabled()) \
; \
else \
LoggerStream(false) << alignedString(__FUNCTION__, 20)
#define NN_FUZZER_CHECK(condition) \
if ((condition)) \
; \
else \
LoggerStream(true) << alignedString(__FUNCTION__, 20) << "Check failed " << #condition \
<< ": "
// A Singleton manages the global configurations of logging.
class Logger {
public:
static Logger* get() {
static Logger instance;
return &instance;
}
void init(const std::string& filename) {
os.open(filename);
mStart = std::chrono::high_resolution_clock::now();
}
bool enabled() { return os.is_open(); }
void close() {
if (os.is_open()) os.close();
}
void log(const std::string& str) {
if (os.is_open()) os << getElapsedTime() << str << std::flush;
}
private:
Logger() = default;
Logger(const Logger&) = delete;
Logger& operator=(const Logger&) = delete;
std::string getElapsedTime();
std::ofstream os;
std::chrono::time_point<std::chrono::high_resolution_clock> mStart;
};
// Controls logging of a single line.
class LoggerStream {
public:
LoggerStream(bool abortAfterLog) : mAbortAfterLog(abortAfterLog) {}
~LoggerStream() {
Logger::get()->log(ss.str() + '\n');
if (mAbortAfterLog) {
if (LoggerStream::mWriteAbortMessageToSystemLog) {
__android_log_print(ANDROID_LOG_FATAL, mLogTag.c_str(), "%s", ss.str().c_str());
} else {
std::cout << ss.str() << std::endl;
}
abort();
}
}
template <typename T>
LoggerStream& operator<<(const T& str) {
ss << str;
return *this;
}
static void writeAbortMessageToSystemLog(const std::string& logTag) {
LoggerStream::mWriteAbortMessageToSystemLog = true;
LoggerStream::mLogTag = logTag;
}
private:
LoggerStream(const LoggerStream&) = delete;
LoggerStream& operator=(const LoggerStream&) = delete;
std::stringstream ss;
bool mAbortAfterLog;
static bool mWriteAbortMessageToSystemLog;
static std::string mLogTag;
};
template <typename T>
inline std::string toString(const T& obj) {
return std::to_string(obj);
}
template <typename T>
inline std::string joinStr(const std::string& joint, const std::vector<T>& items) {
std::stringstream ss;
for (uint32_t i = 0; i < items.size(); i++) {
if (i == 0) {
ss << toString(items[i]);
} else {
ss << joint << toString(items[i]);
}
}
return ss.str();
}
template <typename T, class Function>
inline std::string joinStr(const std::string& joint, const std::vector<T>& items, Function str) {
std::stringstream ss;
for (uint32_t i = 0; i < items.size(); i++) {
if (i != 0) ss << joint;
ss << str(items[i]);
}
return ss.str();
}
template <typename T>
inline std::string joinStr(const std::string& joint, int limit, const std::vector<T>& items) {
if (items.size() > static_cast<size_t>(limit)) {
std::vector<T> topMax(items.begin(), items.begin() + limit);
return joinStr(joint, topMax) + ", (" + toString(items.size() - limit) + " ommited), " +
toString(items.back());
} else {
return joinStr(joint, items);
}
}
static const char* kLifeTimeNames[6] = {
"TEMPORARY_VARIABLE", "SUBGRAPH_INPUT", "SUBGRAPH_OUTPUT",
"CONSTANT_COPY", "CONSTANT_REFERENCE", "NO_VALUE",
};
static const bool kScalarDataType[]{
true, // ANEURALNETWORKS_FLOAT32
true, // ANEURALNETWORKS_INT32
true, // ANEURALNETWORKS_UINT32
false, // ANEURALNETWORKS_TENSOR_FLOAT32
false, // ANEURALNETWORKS_TENSOR_INT32
false, // ANEURALNETWORKS_TENSOR_QUANT8_ASYMM
true, // ANEURALNETWORKS_BOOL
false, // ANEURALNETWORKS_TENSOR_QUANT16_SYMM
false, // ANEURALNETWORKS_TENSOR_FLOAT16
false, // ANEURALNETWORKS_TENSOR_BOOL8
true, // ANEURALNETWORKS_FLOAT16
false, // ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL
false, // ANEURALNETWORKS_TENSOR_QUANT16_ASYMM
false, // ANEURALNETWORKS_TENSOR_QUANT8_SYMM
false, // ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED
};
static const uint32_t kSizeOfDataType[]{
4, // ANEURALNETWORKS_FLOAT32
4, // ANEURALNETWORKS_INT32
4, // ANEURALNETWORKS_UINT32
4, // ANEURALNETWORKS_TENSOR_FLOAT32
4, // ANEURALNETWORKS_TENSOR_INT32
1, // ANEURALNETWORKS_TENSOR_QUANT8_ASYMM
1, // ANEURALNETWORKS_BOOL
2, // ANEURALNETWORKS_TENSOR_QUANT16_SYMM
2, // ANEURALNETWORKS_TENSOR_FLOAT16
1, // ANEURALNETWORKS_TENSOR_BOOL8
2, // ANEURALNETWORKS_FLOAT16
1, // ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL
2, // ANEURALNETWORKS_TENSOR_QUANT16_ASYMM
1, // ANEURALNETWORKS_TENSOR_QUANT8_SYMM
1, // ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED
};
template <>
inline std::string toString<RandomVariableType>(const RandomVariableType& type) {
static const std::string typeNames[] = {"FREE", "CONST", "OP"};
return typeNames[static_cast<int>(type)];
}
inline std::string alignedString(std::string str, int width) {
str.push_back(':');
str.resize(width + 1, ' ');
return str;
}
template <>
inline std::string toString<RandomVariableRange>(const RandomVariableRange& range) {
return "[" + joinStr(", ", 20, range.getChoices()) + "]";
}
template <>
inline std::string toString<RandomOperandType>(const RandomOperandType& type) {
static const std::string typeNames[] = {"Input", "Output", "Internal", "Parameter", "No Value"};
return typeNames[static_cast<int>(type)];
}
template <>
inline std::string toString<RandomVariableNode>(const RandomVariableNode& var) {
std::stringstream ss;
ss << "var" << var->index << " = ";
switch (var->type) {
case RandomVariableType::FREE:
ss << "FREE " << toString(var->range);
break;
case RandomVariableType::CONST:
ss << "CONST " << toString(var->value);
break;
case RandomVariableType::OP:
ss << "var" << var->parent1->index << " " << var->op->getName();
if (var->parent2 != nullptr) ss << " var" << var->parent2->index;
ss << ", " << toString(var->range);
break;
default:
NN_FUZZER_CHECK(false);
}
ss << ", timestamp = " << var->timestamp;
return ss.str();
}
template <>
inline std::string toString<RandomVariable>(const RandomVariable& var) {
return "var" + std::to_string(var.get()->index);
}
template <>
inline std::string toString<RandomOperand>(const RandomOperand& op) {
return toString(op.type) + ", dimension = [" +
joinStr(", ", op.dimensions,
[](const RandomVariable& var) { return std::to_string(var.getValue()); }) +
"], scale = " + toString(op.scale) + " , zero_point = " + toString(op.zeroPoint);
}
// This class is a workaround for two issues our code relies on:
// 1. sizeof(bool) is implementation defined.
// 2. vector<bool> does not allow direct pointer access via the data() method.
class bool8 {
public:
bool8() : mValue() {}
/* implicit */ bool8(bool value) : mValue(value) {}
inline operator bool() const { return mValue != 0; }
private:
uint8_t mValue;
};
static_assert(sizeof(bool8) == 1, "size of bool8 must be 8 bits");
struct RandomNumberGenerator {
static std::mt19937 generator;
};
inline bool getBernoulli(double p) {
std::bernoulli_distribution dis(p);
return dis(RandomNumberGenerator::generator);
}
template <typename T>
inline constexpr bool nnIsFloat = std::is_floating_point_v<T> || std::is_same_v<T, _Float16>;
// getUniform for floating point values operates on a open interval (lower, upper).
// This is important for generating a scale that is greater than but not equal to a lower bound.
template <typename T>
inline std::enable_if_t<nnIsFloat<T>, T> getUniform(T lower, T upper) {
float nextLower = std::nextafter(static_cast<float>(lower), std::numeric_limits<float>::max());
std::uniform_real_distribution<float> dis(nextLower, upper);
return dis(RandomNumberGenerator::generator);
}
template <typename T>
inline std::enable_if_t<nnIsFloat<T>, T> getUniformNonZero(T lower, T upper, T zeroPoint) {
if (upper >= zeroPoint) {
upper = std::nextafter(static_cast<float>(upper), std::numeric_limits<float>::min());
}
std::uniform_real_distribution<float> dis(lower, upper);
const float value = dis(RandomNumberGenerator::generator);
return value >= zeroPoint ? std::nextafter(value, std::numeric_limits<float>::max()) : value;
}
// getUniform for integers operates on a closed interval [lower, upper].
// This is important that 255 should be included as a valid candidate for QUANT8_ASYMM values.
template <typename T>
inline std::enable_if_t<std::is_integral_v<T>, T> getUniform(T lower, T upper) {
std::uniform_int_distribution<T> dis(lower, upper);
return dis(RandomNumberGenerator::generator);
}
template <typename T>
inline std::enable_if_t<std::is_integral_v<T>, T> getUniformNonZero(T lower, T upper, T zeroPoint) {
if (upper >= zeroPoint) upper--;
std::uniform_int_distribution<T> dis(lower, upper);
const T value = dis(RandomNumberGenerator::generator);
return value >= zeroPoint ? value + 1 : value;
}
template <typename T>
inline const T& getRandomChoice(const std::vector<T>& choices) {
NN_FUZZER_CHECK(!choices.empty()) << "Empty choices!";
std::uniform_int_distribution<size_t> dis(0, choices.size() - 1);
size_t i = dis(RandomNumberGenerator::generator);
return choices[i];
}
template <typename T>
inline void randomShuffle(std::vector<T>* vec) {
std::shuffle(vec->begin(), vec->end(), RandomNumberGenerator::generator);
}
} // namespace fuzzing_test
} // namespace nn
} // namespace android
#endif // ANDROID_FRAMEWORKS_ML_NN_RUNTIME_TEST_FUZZING_RANDOM_GRAPH_GENERATOR_UTILS_H